LECTURE 1: DIABETES MEDICATIONS FOR TYPE 2 DIABETES

Nicole Ehrhardt, MD

Division of Metabolism, Endocrinology, and Nutrition University of Washington

Disclosures:

 Dr. Ehrhardt has received a consulting fee from Novo Nordisk and received investigator-initiated grants from Dexcom and educational grants from Merck and NovoNordisk

Objectives:

- Understand how to safely prescribe and use older diabetes medications
- Understand physiology and mechanism of action, efficacy, safety, tolerability, managing side effects, dosing and administration of individual drugs.
- Assess the cardiac and renal benefits or lack of cardiac benefits in these older medications
- Understand use in renal disease and liver disease

Recommendations ADA

- Diet, physical activity, and behavioral therapy designed to achieve >5% weight loss should be prescribed for overweight and obese patients with type 2 diabetes ready to achieve weight loss. A
- Such interventions should be high intensity (≥16 sessions in 6 months) and focus on diet, physical activity, and behavioral strategies to achieve a 500–750 kcal/day energy deficit. A
- Diets should be individualized, as those that provide the same caloric restriction but differ in protein, carbohydrate, and fat content are equally effective in achieving weight loss. A

Nutr

Physical

Activity

 For patients who achieve shortterm weight-loss goals, long-term (≥1 year) comprehensive weight maintenance programs should be prescribed. Such programs should provide at least monthly contact and encourage ongoing monitoring of body weight (weekly or more frequently), continued consumption of a reduced-calorie diet, and participation in high levels of physical activity (200–300 min/week). A

LIFESTYLE THERAPY

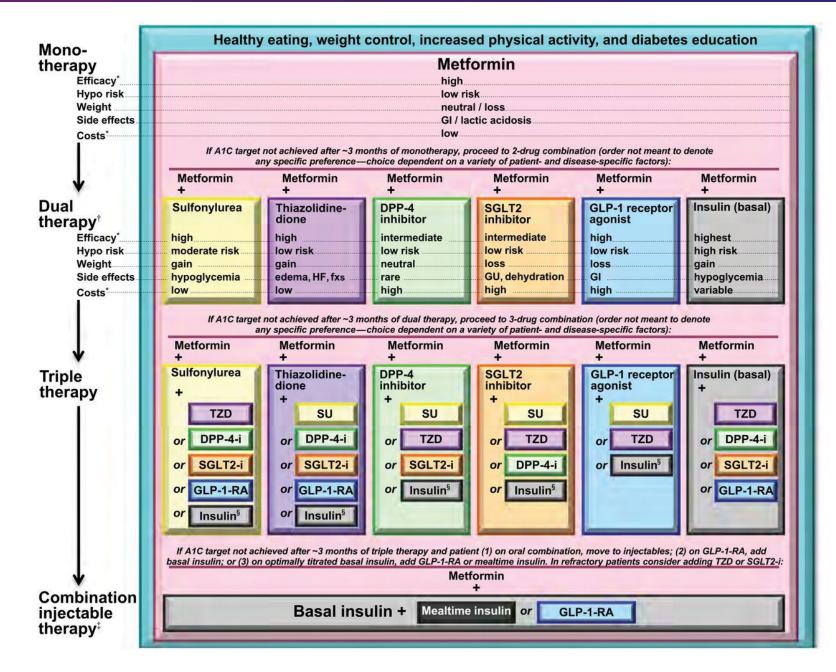
Clinical benefits of weight loss are progressive and more intensive weight loss goals (i.e., 15%) may be appropriate

Goal:>7% sustained weight loss

5% is needed to produce beneficial outcomes in glycemic control, lipids, and blood pressure al replacement

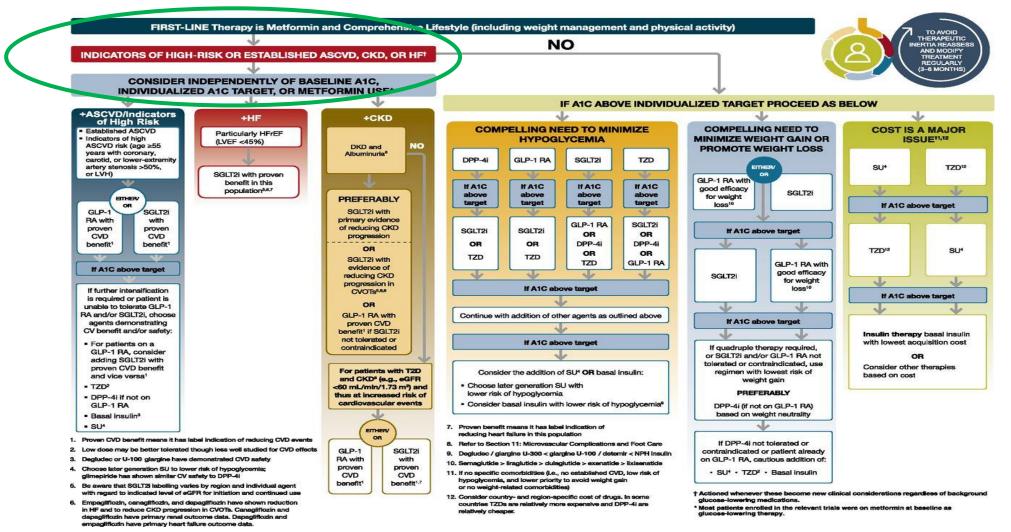
dical evaluation/ arance dical supervision

Franz MJ, et al. J Acad Nutr Diet 2015; 115:1447–146 Lean ME et al. Lancet 2018;391:541–551 American Diabetes Association Diabetes Care 2019 Jan; 42(Supplement 1): S46-S60 Endocrine Practice: January 2020, Vol. 26, No. 1, pp. 107-139

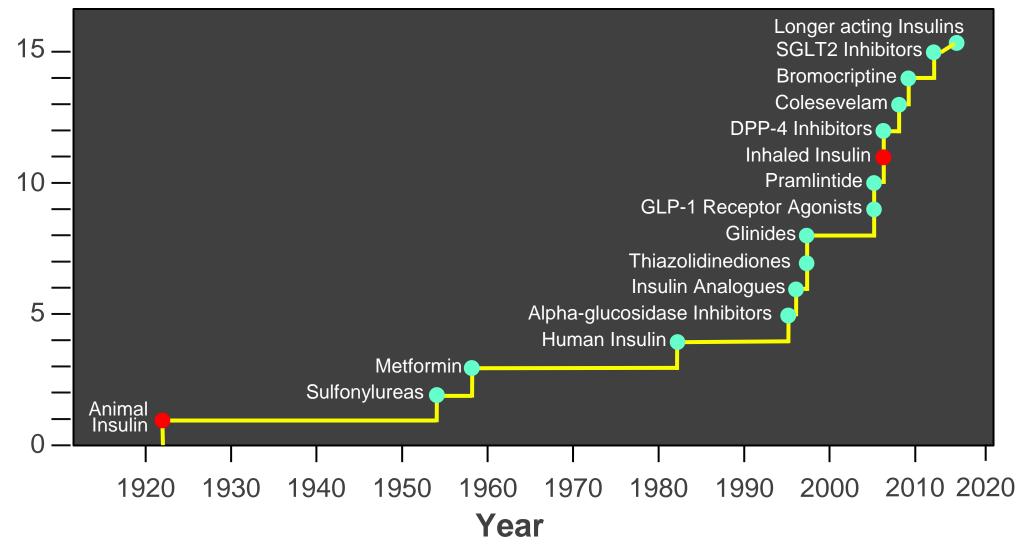


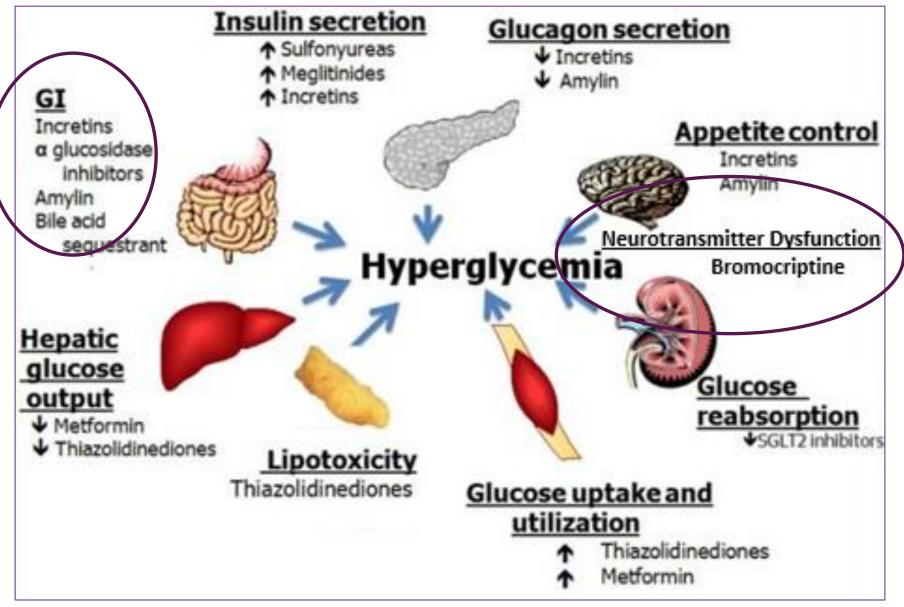
Insulin

As glucose toxicity resolves, simplifying the regimen and consider changing to insulin sparing agents if possible



Glucose-lowering medication in type 2 diabetes: 2021 ADA Professional Practice Committee (PPC) adaptation of Davies et al.




How to Think about Selecting the Appropriate Diabetes Medication(s)

- Mechanism of action
- Efficacy (on average how much does it lower blood sugar)
- Does it cause hypoglycemia yes/no
- Weight gain/Weight loss/Weight neutral
- Cardiovascular effects
- Use in CKD and liver disease and renal/liver protective effect
- Common side-effects
- Serious side-effects

Classes of Glucose Lowering Agents for Treating Type 2 Diabetes

Target Sites of Action

UW Medicine

Biguanides/Metformin

Biguanides/Metformin

Class/Main Action	Name(s)	Daily Dose Range	Considerations
 Biguanides Decreases hepatic glucose output First line med at diagnosis of type 2 	metformin (Glucophage) Riomet (liquid metformin) Extended Release-XR (Glucophage XR) (Glumetza) (Fortamet)	500 - 2500 mg (usually BID w/ meal) 500 - 2500mg 500mg/5mL (1x daily w/dinner) 500 - 2000 mg 500 - 2000 mg 500 - 2500 mg	 Side effects: nausea, bloating, diarrhea, B12 deficiency. To minimize GI Side effects, use XR and take w/ meals. Obtain GFR before starting. If GFR <30, do not use. If GFR <45, don't start Meformin If pt on Metformin and GFR falls to 30-45, eval risk vs. benefit; consider decreasing dose. For dye study, if GFR <60, liver disease, alcoholism or heart failure, restart metformin after 48 hours if renal function stable. Benefits: lowers cholesterol, no hypo or weight gain, cheap. Approved for pediatrics, 10 yrs + Lowers A1c 1.0%-2.0%.

Metformin/Risk for Lactic Acidosis Previous US Food and Drug Administration Prescribing Guidelines for Metformin as Related to Kidney Function

- "DO Not Use"
- Serum creatinine levels:
 ≥ 1.5 mg/dL males
 ≥ 1.4 mg/dL females

Metformin in Patients With T2D and Kidney Disease:

A Systematic Review

Table 2. Possible Approach to Metformin Prescribing in the Setting of CKD^a

CKD Stage	eGFR, mL/min per 1.73 m ²	Maximal Total Daily Dose, mg	Other Recommendations
1	≥90	2550	
2	60 -<90	2550	
3A	45 -<60	2000	Avoid if kidney function is or expected to become unstable Consider more cautious follow-up of kidney function
3B	30 -<45	1000	Do not initiate therapy at this stage but drug may be continued Avoid if kidney function is or expected to become unstable Consider more cautious follow-up of kidney function
4	15 -<30	Do not use	
5	<15	Do not use	

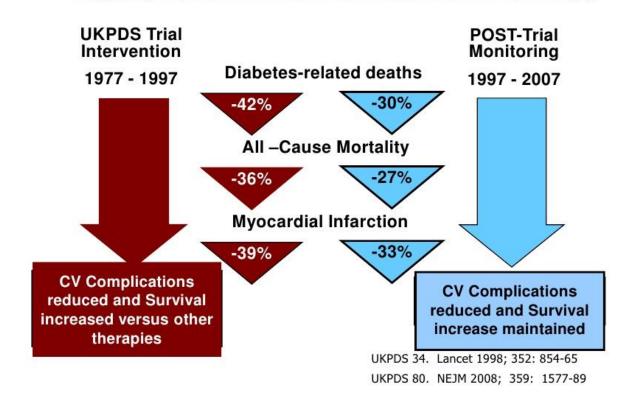
- 3 per 100,000 person-years to 10 per 100,000 personyears

-Indistinguishable from the background rate in the overall population with diabetes.

Abbreviations: CKD, chronic kidney disease; eGFR, estimated glomerular filtration rate.

^a This strategy has not been evaluated or validated in a clinical trial; there are no data to support its efficacy, safety, or potential to improve clinical outcomes.

Metformin: FDA Safety Review of Metformin-Containing Drugs April 2016 updated


Liver Disease and Metformin

- 50%-70% reduction in HCC risk among those treated with metformin
- Hep C : reduced in risk for HCC, liver related mortality, and transplantation,.
- Reduce the incidence of overt hepatic encephalopathy by 8 folds through inhibition of glutaminase activity
- Metformin is often withheld from patients with liver diseases due to an exaggerated concern for metformin-associated lactic acidosis (MALA)
- MALA is an exceedingly rare condition with an estimated incidence of < 10 per 100000 patient-years of exposure in patients without significant renal impairment

UKPDS:CV risk reduction

Lessons from UKPDS:

Legacy Effect of Earlier Metformin Therapy

 The number needed to treat to avoid one death was 14

• ARR 0.07

Summary: Metformin

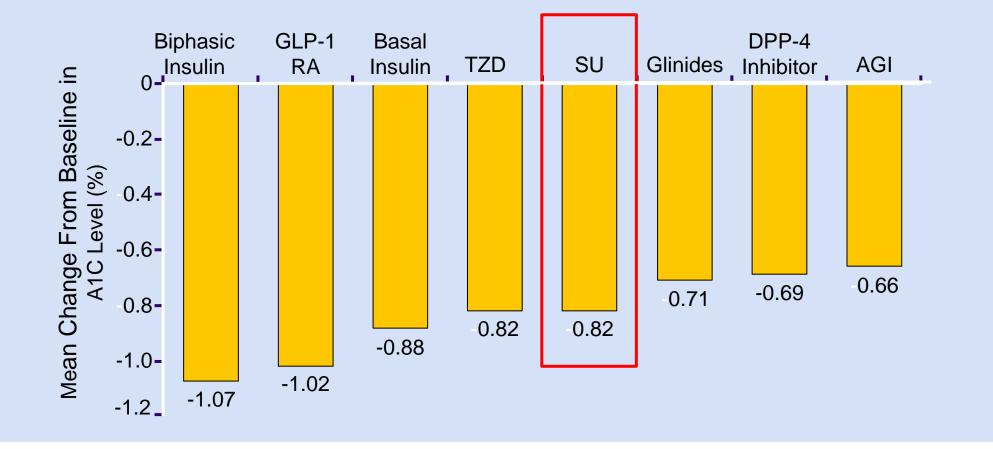
- Try again low dose with Extended release (XR) in those with hx of GI intolerance
- Do not stop if GFR > 30 and can start GFR> 45
- Cheap, low risk hypoglycemia, causes slight weight loss
- May have cancer benefit effects, may have CV benefits
- Consider use in prediabetes (hx of GDM, BMI >30, Age <60)

Sulfonylureas

Sulfonylureas

- Glimepiride and glipizide associated with a reduced likelihood of hypoglycemia
- Glimepiride also improves first-phase insulin secretion

-reducing postprandial hyperglycemia.


• Glyburide more associated with hypoglycemia

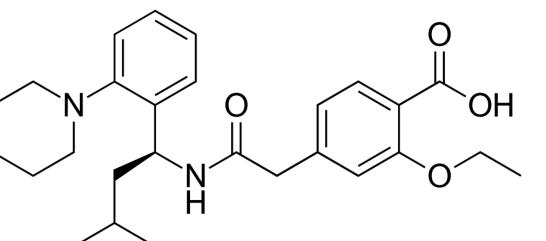
Sulfonylureas Stimulates sustained insulin release 	glyburide: (Diabeta) (Glynase PresTabs)	1.25 – 20 mg 0.75 – 12 mg	Can take once or twice daily before meals. Low cost generic. Side effects: hypoglycemia and weight gain. Eliminated via kidney.
	glipizide: (Glucotrol) (Glucotrol XL)	2.5 – 40 mg 2.5 – 20 mg	Caution : Glyburide most likely to cause hypoglycemia.
	glimepiride (Amaryl)	1.0 – 8 mg	Lowers A1c 1.0% – 2.0%.

https://diabetesed.net/pocket-cards-insulin-and-diabetes-medication/

Efficacy added to Metformin

Liu SC, et al. Diabetes Obes Metab. 2012;14:810-820.

Sulfonylureas in CKD


- Stage 2(eGFR 60-90)& Stage 3a&b (eGRF 59-30):
- Glyburide (Glibenclamide): Limit use in stage 2. Not recommended Stage 3
- Glimiperide: Start at reduced dose 1-2mg daily for Stage 2 -3. Not recommended Stage 4.

Stage 4 CKD (eGFR < 30)

*Glipizide short acting is preferred (dose 2.5 to 10 mg/day)

Diabetologia. 1996 Dec; 39(12):1617-24 Jönsson A et al. Eur J Clin Pharmacol. 1998 Feb; 53(6):429-35 Meglitinide(glinide)

Short Acting Secretagogues:^L

Nateglinide (Starlix 60-120mg with meals)

- CKD stage 5 avoid
- CKD stage 4 reduce to 60 mg TID

Repaglinide (Prandin 0.5 mg to 4 mg before meals)

• CKD stages 4 and 5 without dose reduction.

Diabetes Care 2003 Mar; 26(3): 886-891 Oncotarget 2017 Sep 29; 8(44): 78086–78095

Sulfonylureas and Liver disease

- Main risk hypoglycemia
- Increased odds of HCC development by up to 3 folds amongst patients with T2DM treated with sulfonylureas
- Expert opinions advise that insulin secretagogues be avoided or used with extreme caution in patients with CLD/ESLD

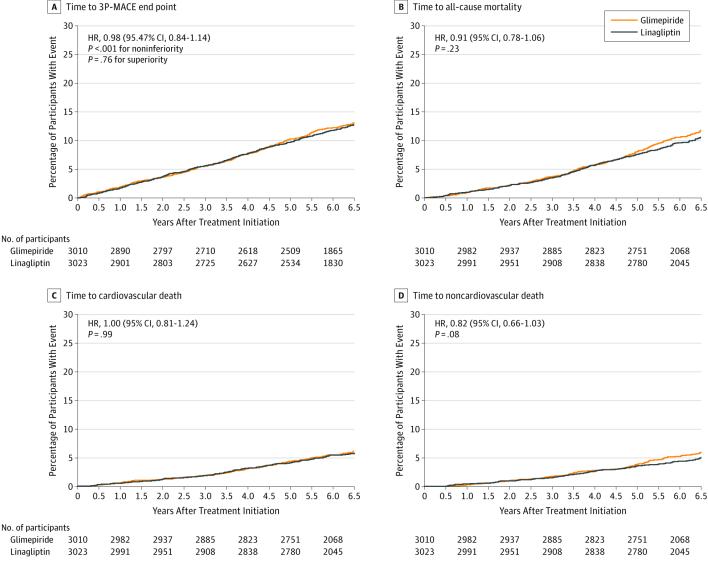
Singh S, et al Am J Gastroenterol. 2013 Jun;108(6):881-91 Lee JY et al.. Sci Rep. 2019;9:853

Second and Third Generation Sulfonylurea vs. Metformin Monotherapy in Patients with Type 2 Diabetes

B: Cardiovascular mortality

				-			
ADOPT 2006 ²⁰⁻²⁶	8/1447	4/1455	2.01 (0.61-6.66)	-			
Campbell et al., 1994 ²⁷	0/24	0/24	Not estimable				No increased r
DeFronzo et al., 1995 ²⁹	0/209	1/210	0.33 (0.01-8.17)				
Derosa et al., 2004 ⁴²	0/81	0/83	Not estimable				with
Hermann et al., 1991b ³¹⁻³⁴	1/34	0/38	3.34 (0.14–79.42)		•		Sulfonylurea us
Lawrence et al., 2004 ³⁶	0/22	1/21	0.32 (0.01-7.42)				-
Tosi et al., 2003 ³⁸	0/22	0/22	Not estimable				
Yamanouchi et al., 2005 ⁴³	0/37	0/39	Not estimable				
Overall	9/1876	6/1892	1.47 (0.54–4.01)				
Heterogeneity: /2 = 0%							
C: Nonfatal macrovasc	ular outcomes			0.01 0.1	1 10	100	
ADOPT 2006 ²⁰⁻²⁶	41/1447	58/1455	0.71 (0.48–1.05)		-		
Hermann et al., 1991b ³¹⁻³⁴	9/34	18/38	0.56 (0.29–1.07)	_			Favors
Tosi et al., 2003 ³⁸	0/22	0/22	Not estimable				
Yamanouchi et al., 200543	0/37	0/39	Not estimable				Sulfonylurea u
Overall	50/1540	76/1554	0.67 (0.48–0.93)		•		
Heterogeneity: $l^2 = 0\%$		10,1001			•		
0 ,				0.01 0.1	1 10	100	
				Relativ	e risk (95% CI)		

Cardiovascular Mortality :RR 1.47 95% CI 0.54 to 4.01


CMAJ Open. 2014 Jul-Sep; 2(3): E162-E175

UW Medicine

FROM: EFFECT OF LINAGLIPTIN VS GLIMEPIRIDE ON MAJOR ADVERSE CARDIOVASCULAR OUTCOMES IN PATIENTS WITH TYPE 2 DIABETES: THE CAROLINA RANDOMIZED CLINICAL

TRIAL

 Pts with CV risk and early T2D had non-inferior risk of a composite cardiovascular outcome over 6.3 yrs.

Glimepiride

- Linagliptin

2751

2780

2751

2780

2068

2045

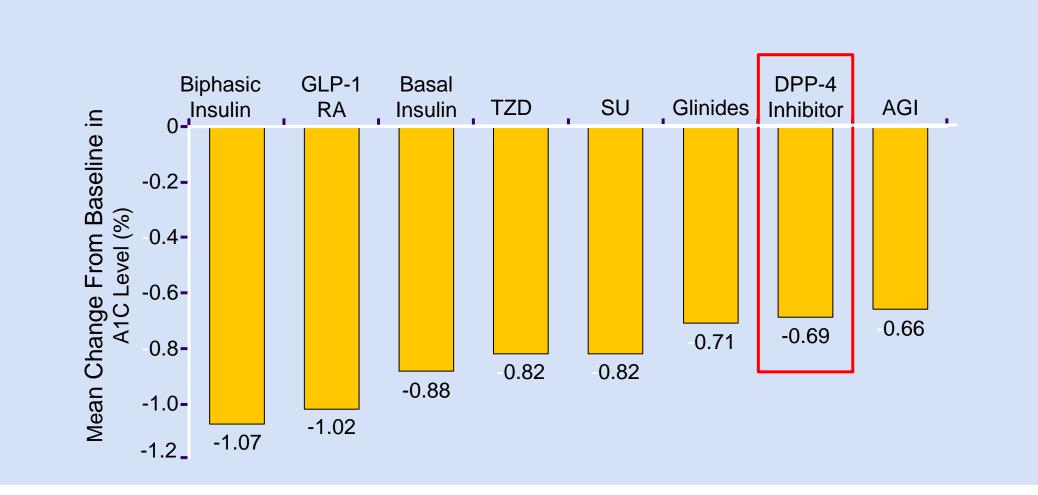
2068

2045

JAMA. 2019;322(12):1155-1166. doi:10.1001/jama.2019.13772

Summary: Sulfonylureas

- Continue both metformin and sulfonylureas(glimiperide) if start basal insulin
- Use glimepiride if possible given has more post meal benefit
- Start low dose if eGFR < 60 i.e. 1mg glimepiride
- If eGFR < 30 use glipizide short acting 2.5mg daily to bid
- Weight gain and no CV benefit but also no harm
- Cost effective but may increase risk for hypo


Dipeptidyl Peptidase (DPP)-4 Inhibitors

Dipeptidyl Peptidase (DPP)-4 Inhibitors

Class/Main Action	Name(s)	Daily Dose Range	Considerations
DPP – 4 Inhibitors "Incretin Enhancers"	sitagliptin (Januvia)	25 - 100 mg daily – eliminated via kidney*	*If creat elevated, see med insert for dosing. Side effects: headache and flu-like symptoms.
 Prolongs action of gut hormones Increases insulin secretion 	saxagliptin (Onglyza)†	2.5 - 5 mg daily – eliminated via kidney*, feces	Can cause severe, disabling joint pain. Contact MD, stop med. Report signs of pancreatitis.
 Delays gastric emptying 	linagliptin (Tradjenta)	5 mg daily – eliminated via feces	*Saxagliptin and alogliptin can increase risk of heart failure. Notify MD for shortness of breath, edema, weakness, etc.
	alogliptin (Nesina)†	6.25 - 25 mg daily – eliminated via kidney*	No wt gain or hypoglycemia. Lowers A1c 0.6%-0.8%.

Efficacy added to Metformin

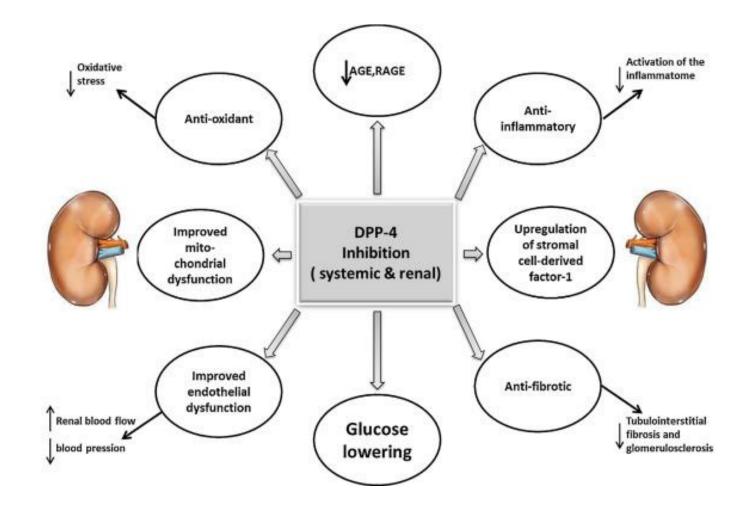
Liu SC, et al. Diabetes Obes Metab. 2012;14:810-820.

DPP-4 Inhibitors: Use in CKD

- Most DPP-4 inhibitors reduce dose
 - ► Example:

Sitagliptin (Januvia to 50mg : eGFR: 30-45) 25mg when eGFR< 30

VS.


Linagliptin(Tradjenta) not renally cleared

- Safety data stage 1-4 CKD
- Limited data in ESRD

DDP-4 Inhibitors and Potential Renal Benefit

Significant reductions in microalbuminuria and in proteinuria

Scheen AJ et al. Diabetes Metab. 2018 Mar;44(2):101-111.

DDP-4 Inhibitors and Liver Disease

- No improvement of fibrosis randomized, placebo-controlled trials of sitagliptin for NASH
- The hepatic protective effects of DPP-4 inhibitors maybe from direct actions on hepatocytes *via* GLP-1 receptors and appear to occur irrespective of the degree of glycemic control
- HCV-infected T-cells may be responsible for the increased serum DPP-4 activity in patients with HCV infection
- Limited human clinical data likely safe to Child stage b

Alam S et al. Hepat Med. 2018; 10:23–31 Zhonget al . Diabetes. 2013;62:149–157

Study	Intervention	Primary endpoint	N	Follow- up time (years)	Mean age	Mean HbA1c levels (%)	CV status of patients	
SAVOR TIMI	Saxagliptin versus placebo to standard of care	CV death, AMI, or stroke	18,206	2.1	≥40	≥6.5	CVD or high CV risk	CV
TECOS	Sitagliptin versus placebo	CV death, AMI, unstable angina, or stroke	14,724	3	≥50	6.5–11	Pre- existing CVD	Outcome Studies for DDP4-Is
EXAMINE	Alogliptin versus placebo to standard of care	CV death, AMI, or stroke	5380	1.5	≥18	6.5–11	Acute coronary syndrom e within previous 15– 90 days	

Adapted: Del Olmo-Garcia et al. J Diabetes Res. 2018 Apr 2.

DPP-4 Inhibitors and CV Protection?

- 4 large trials failed to show CV benefit
 - SAVOR-TIMI 53 (Saxagliptin Assessment of Vascular Outcomes Recorded in Patients with Diabetes Mellitus-Thrombolysis in Myocardial infarction) – May increase CHF
 - EXAMINE (Study of Alogliptin in Subjects with Type 2 Diabetes and Acute Coronary Syndrome) - May increase CHF
 - TECOS (Trial Evaluating Cardiovascular Outcomes with Sitagliptin) - neutral
 - CAROLINA Study (Linagliptin) neutral

Summary: DPP-4 Inhibitors

- Mild glycemic benefit (0.6-0.8% HbA1c reduction)
- Can use in renal disease and some potential renal benefit
- Significant cost (\$200 to \$400/month)
- NO CV benefit -?? Harm for HF in those with or at risk for CHF
- Weight neutral
- Well tolerated/ few side effects

QUESTIONS

Case 1

- Pt newly diagnosed DM. Their HbA1c is 9.0%.
 - What would you do?
 - What further questions do you need to ask first?

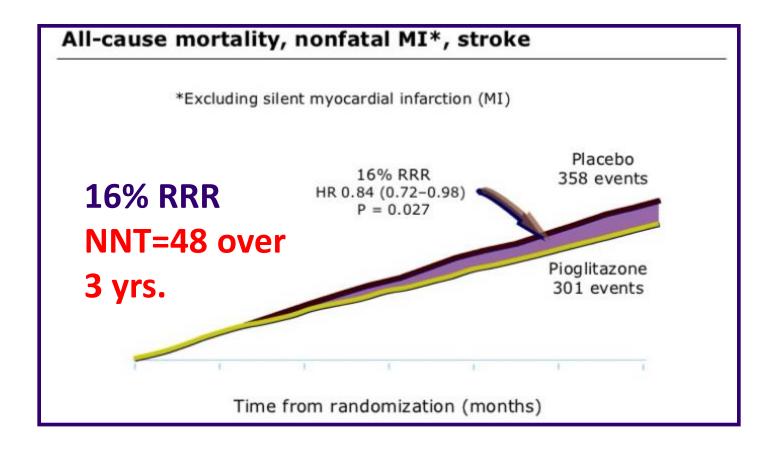
- Insulin + metformin (symptoms)
 Metformin + glimepiride 4mg
- I would likely not start metformin and DDP-4I

- A1c Goal
- What type of DM
- Age
- Weight
- renal function
- Symptoms
- What insurance he/she has, if any
- Have they had a primary CV event
- Risk for hypoglycemia

Pt is 45 y/o without renal disease or CVD and BMI 28 with Medicaid insurance

Case 2

- 70 y/o female with DM for 8 yrs. on metformin. HbA1c is 8.2%.
 - Next step?


What questions should you ask?

- A1c goal is 7.5% given age
- GFR is 40
- Insurance

Glimiperide 1mg or Glipizide 5mg XR vs. Sitagliptin 50mg or Linagliptin 5mg

Secondary Prevention of Macrovascular Events in Patients with T2DM: PROactive Study

