

Savitha Subramanian MD Associate Professor of Medicine Division of Metabolism, Endocrinology and Nutrition University of Washington, Seattle *UW ECHO 03-31-21*

Case 1

- 53 year old male with 5 years of type 2 diabetes, no complications
- On metformin 1000mg twice daily
- Has gained 15 lbs early during pandemic working from home
- Commercially insured
- A1C 8.6% over recent 12 months

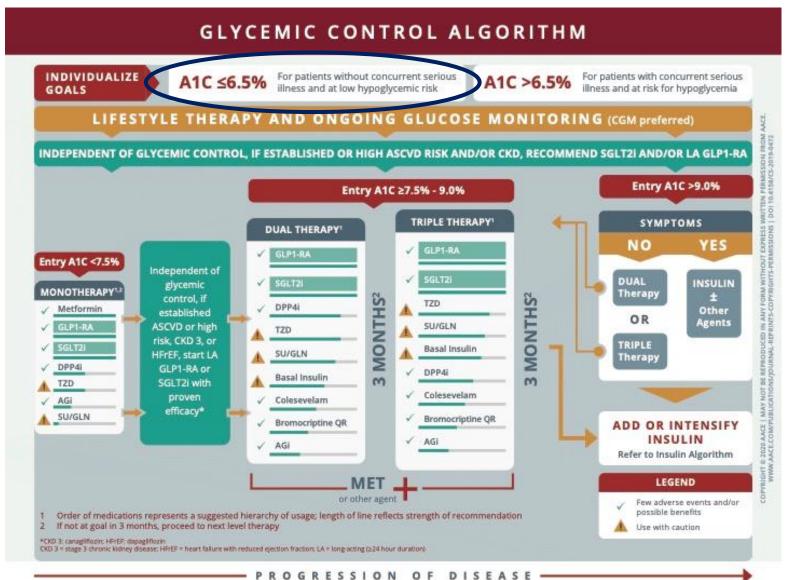
What is the next step?

Common questions

I don't know which one to pick

OR

My patient can't afford these new and expensive drugs, what can I use for diabetes management?

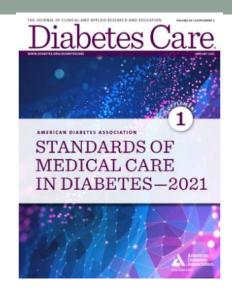

Several available guidelines

- American College of Physicians
- American Association of Clinical Endocrinologists
- American Diabetes Association

ACP recommendations for A1c targets for T2D

- Less intense approach
- 1. Personalize goals based on patient preference, discussion of benefits and harms of pharmacotherapy, general health and life expectancy, treatment burden and costs of care
- 2. A1C between 7-8% in most patients with T2D
- 3. De-intensify therapy with A1C <6.5%
- Treat to minimize sx of hyperglycemia, no targets for older individuals with ↓ life expectancy, chronic conditions (COPD, CHF) as harms outweigh benefits

AACE Diabetes management guidelines


Garber AJ et al. AACE Consensus Statement Vol 26, Issue 1, P107-139, Jan 01, 2020

Several available guidelines

- American College of Physicians
- American Association of Clinical Endocrinologists
- American Diabetes Association

ADA Standards of Care (SOC)

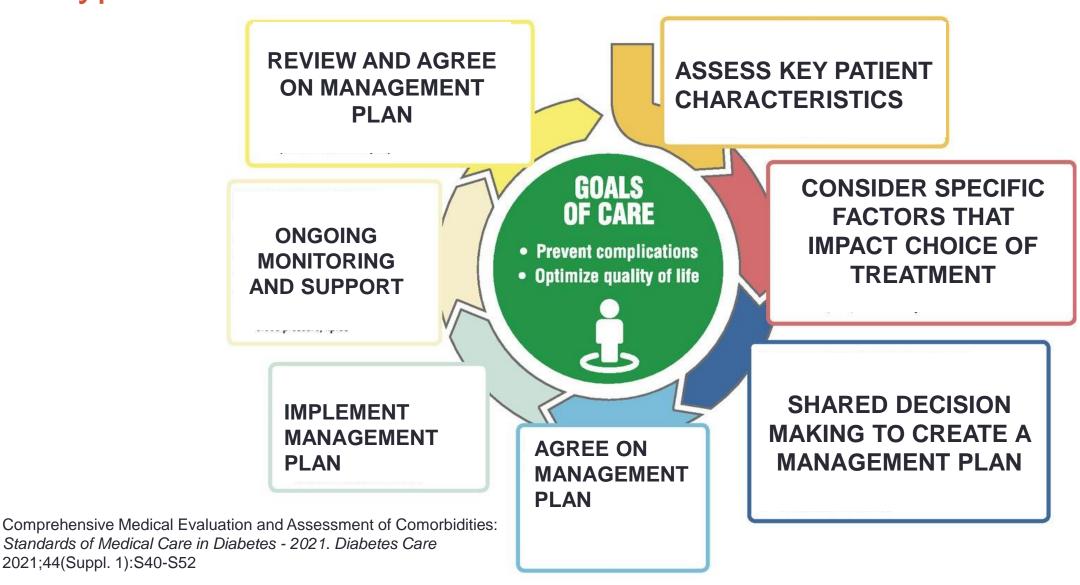
- Reviewed and updated annually
- Evidence-based
 - Evidence grading system (A, B, C, E)
 - Search Medline for new evidence since January 2020
 - Print (January supplement of Diabetes Care)
 - Abridged for PCPs: Clinical Diabetes
- Online: professional.diabetes.org/SOC
 - Full and abridged PDF
 - SOC Slides
 - SOC App

Standards of Care

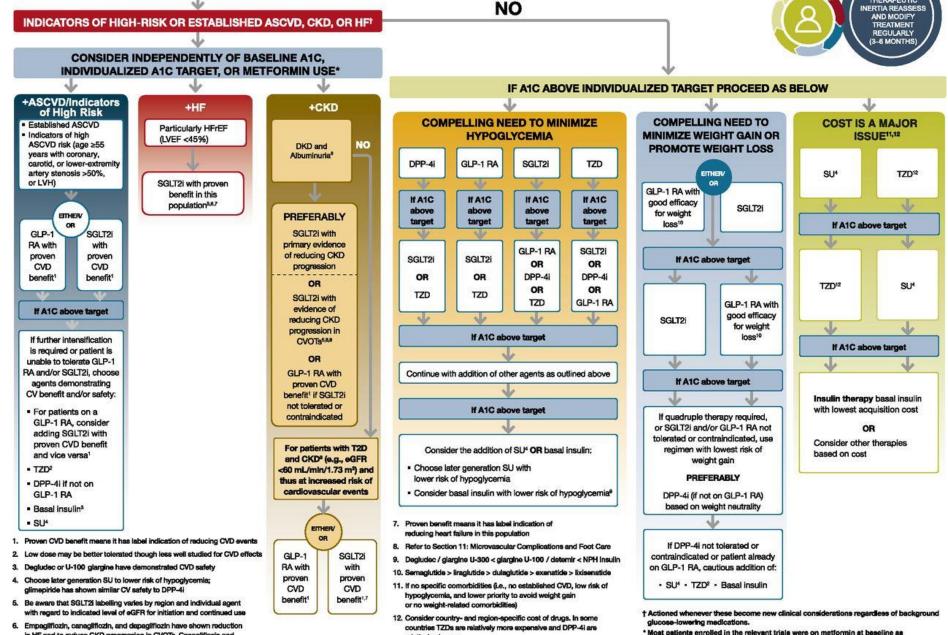
Standards of Medical Care in Diabetes—2021 Abridged for Primary Care Providers

American Diabetes Association

Clinical Diabetes 2021 Jan; 39(1): 14-43.


Evidence grading

- A—Clear evidence from well-conducted, generalizable randomized controlled trials that are adequately powered
- **B**—Supportive evidence from well-conducted cohort studies
- C—Supportive evidence from poorly controlled or uncontrolled studies
- E—Expert consensus or clinical experience


Two themes

- 1. How to individualize care
- 2. How to pick the appropriate diabetes therapy based on patient characteristics
 - ✓Glycemic management
 - ✓CV risk reduction
 - ✓ Kidney risk reduction

Decision cycle for patient-centered glycemic management in Type 2 diabetes

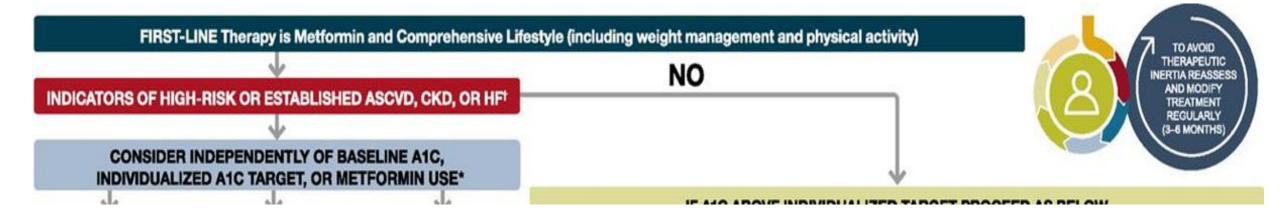
Medication selection sequence for type 2 diabetes treatment v2021

relatively cheaper.

glucose-lowering therapy.

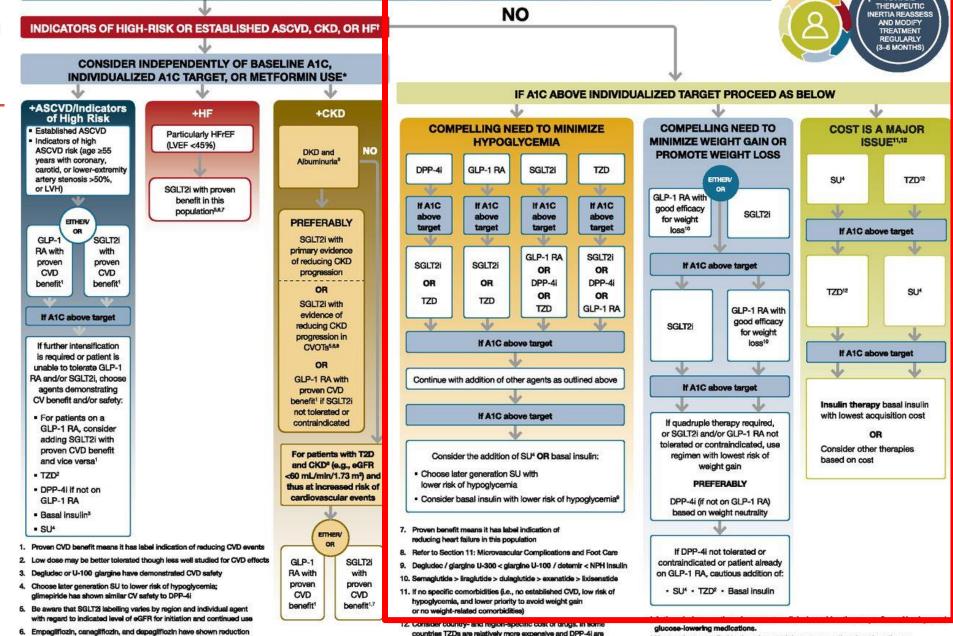
TO AVOID THERAPEUTIC

FIRST-LINE Therapy is Metformin and Comprehensive Lifestyle (including weight management and physical activity)


Pharmacologic Approaches to Glycemic Management: Standards of Medical Care in Diabetes - 2021. Diabetes Care 2021;44(Suppl. 1) S111-S124

in HF and to reduce CKD progression in CVOTs. Canagliflozin and dapagliflozin have primary renal outcome data. Dapagliflozin and

Appropriate Glucose-lowering Medication Selection in T2D


✓Glycemic management✓CV and renal risk reduction

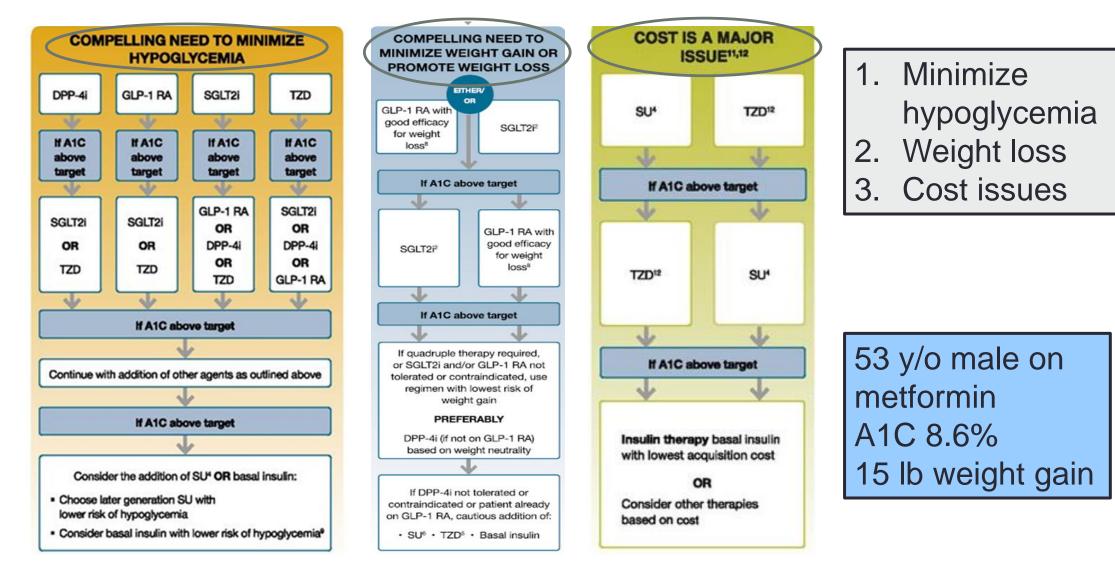
- Metformin at the time of diagnosis + lifestyle modification
- Additional or alternative agents can be considered in special circumstances

PICK BASED ON CARDIAC OR RENAL STATUS!

Medication selection sequence for type 2 diabetes treatment – v2021

relatively cheaper.

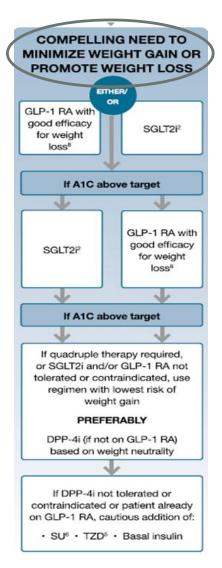
* Most patients enrolled in the relevant trials were on metformin at baseline as


glucose-lowering therapy.

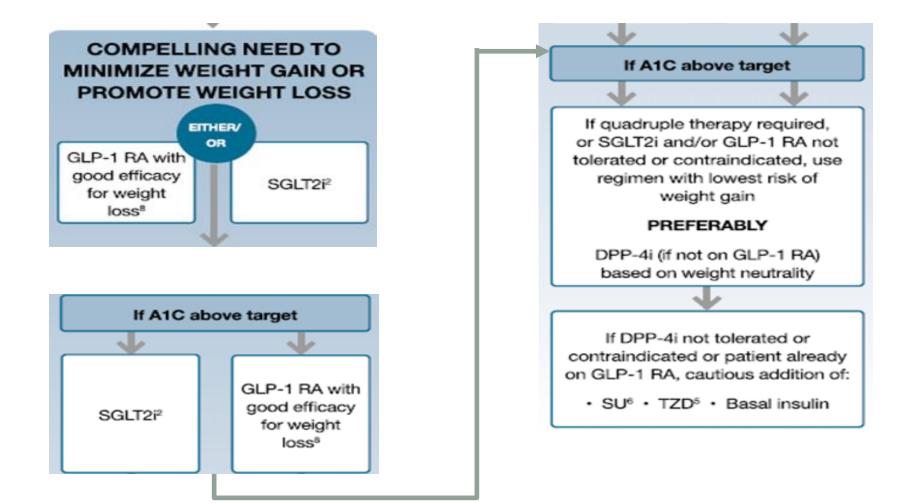
FIRST-LINE Therapy is Metformin and Comprehensive Lifestyle (including weight management and physical activity)

Pharmacologic Approaches to Glycemic Management: *Standards of Medical Care in Diabetes - 2021*. *Diabetes Care* 2021;44(Suppl. 1) S111-S124

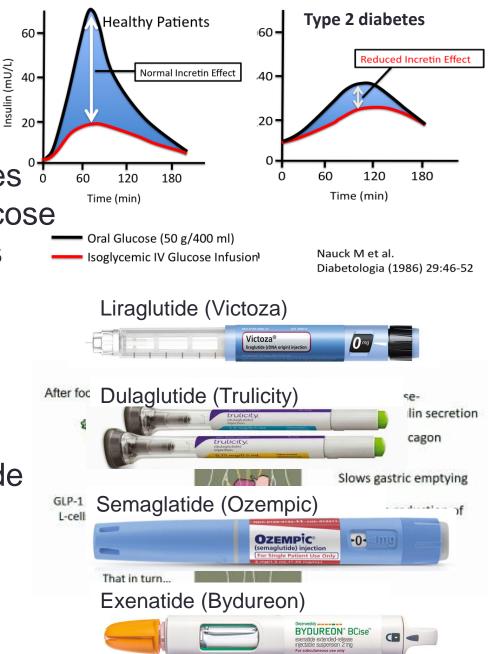
 Empagliflozin, canagliflozin, and dapagliflozin have shown reduction in HF and to reduce CKD progression in CVOTs. Canagliflozin and dapagliflozin have primary renal outcome data. Dapagliflozin and


No ASCVD/HF/CKD: If A1C is above individualized target

Pharmacologic Approaches to Glycemic Management: Standards of Medical Care in Diabetes - 2021.

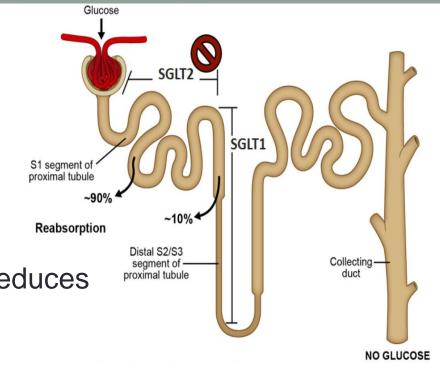

No ASCVD/HF/CKD: If A1C is above individualized target

53 y/o male on metformin A1C 8.6% 15 lb weight gain


Pharmacologic Approaches to Glycemic Management: Standards of Medical Care in Diabetes - 2021. Diabetes Care 2020;43(Suppl. 1):S111-124

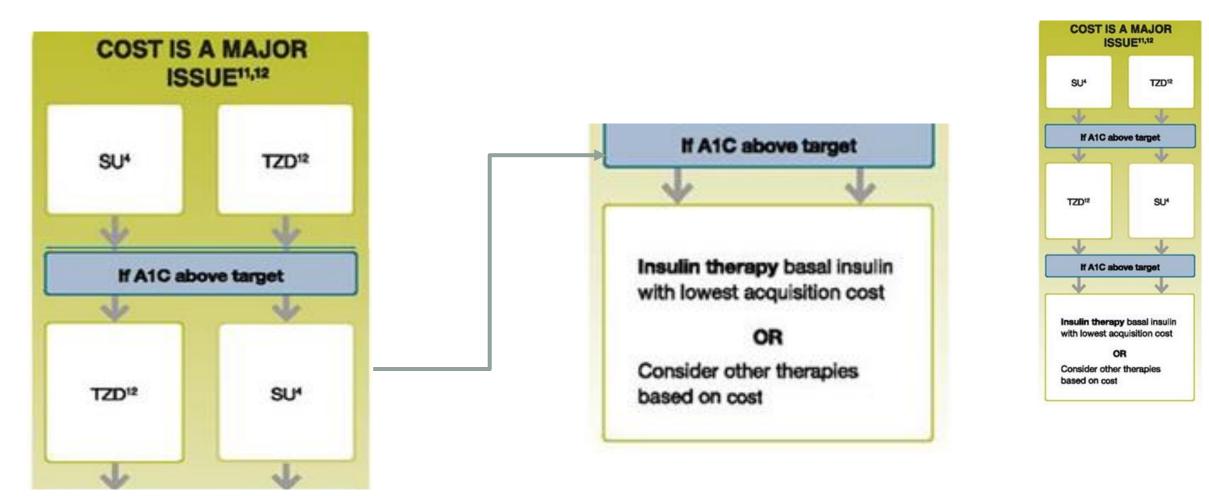
Choosing SGLT2i or GLP1RA for weight loss

GLP1 receptor analogs


- Incretin effect greater insulin secretory responses after oral glucose load than after intravenous glucose infusion that lead to identical glycemic excursions
- Short-acting or long acting
- Daily or weekly injections; oral formulation also available
- Can be chosen before insulin therapy
- Semaglutide >liraglutide > dulaglutide > exenatide lixisenatide
- Mostly covered by state Medicaid plans and Medicare Part D

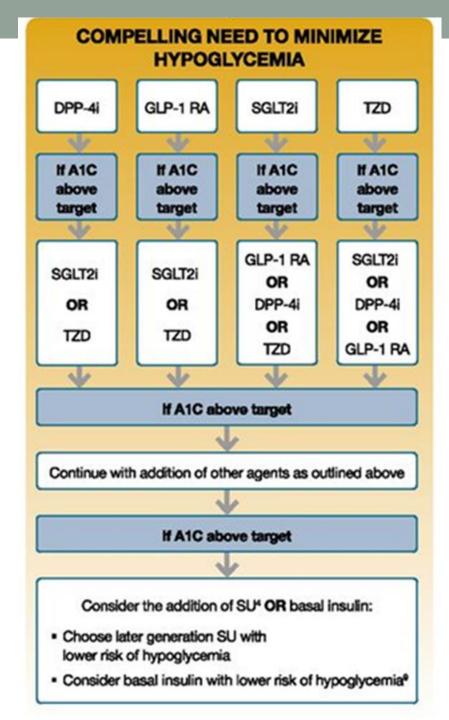
SGLT2 inhibitors

- SGLT2 mediates glucose reabsorption in the kidney
- Blockade of SGLT2
 - Inhibits glucose absorption at the proximal nephron → reduces glucose reabsorption
 - Self limited glucose lowering and weight loss
- Available drugs:
 - empagliflozin, canagliflozin, dapagliflozin, ertugliflozin (the "flozins")
 - Come in 2 doses
 - Combinations with metformin or DPP4 inhibitors also available


Case 1

- Started on dulaglutide 0.75mg weekly and tolerated well
- Returned in 3 months and had lost 8 lbs
- A1C 7.1%
- Option to increase to 1.5mg weekly
- Continue metformin indefinitely

If newer agents not affordable what options do we have?


If cost is an issue

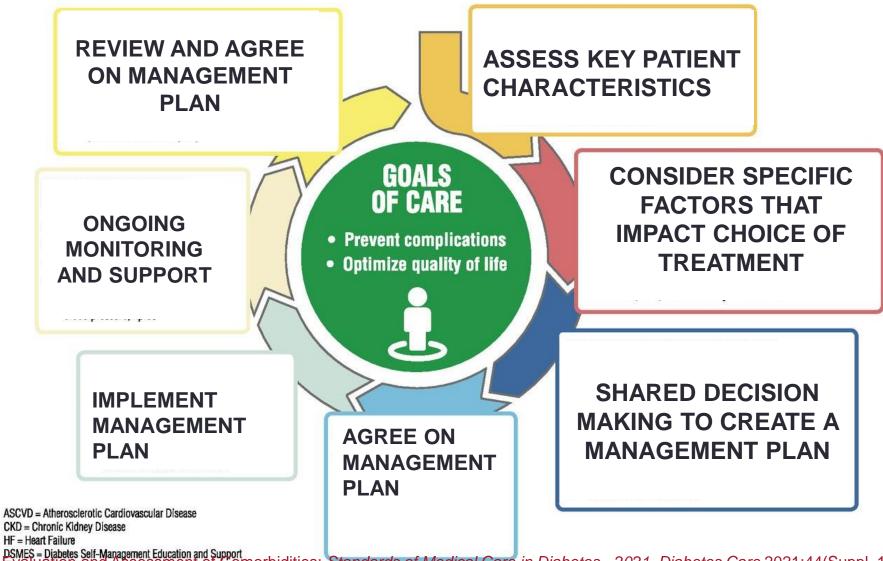
- Sulfonylurea; TZD; basal insulin with lowest cost
- Without specific comorbidities
- Country and region-specific choice- TZD, DPP4i

Need to reduce hypoglycemia

Don't use a sulfonylurea

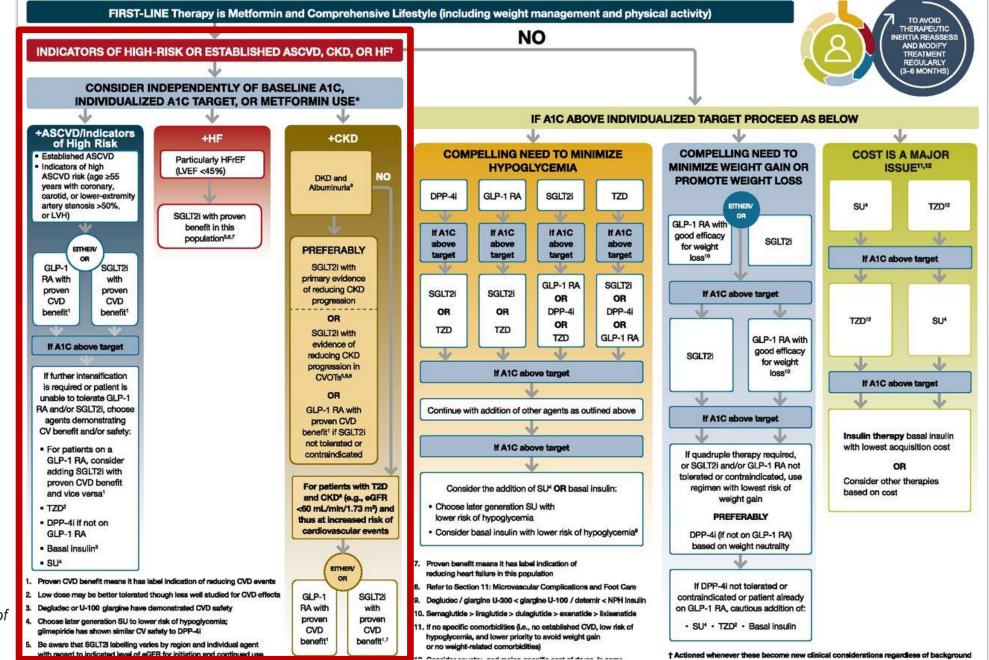
Case 2

- 67 year old male with Type 2 diabetes for 8 years establishes care
- Diabetes regimen: metformin 1000mg twice daily, glipizide 10mg twice daily
- HTN, CAD, 2 stents placed 3 years ago; EF is 40%
- Other meds: aspirin, beta blocker, ACEI, statin
- BP 132/76 mmHg, BMI 33 kg/m²; eGFR 57 ml/m²/min
- A1C 8.1%
- UACR 210 mg/g (<30)


What is the next best medication?

Case 2

- 67 year old male with Type 2 diabetes for 8 years establishes care
- Diabetes regimen: metformin 1000mg twice daily, glipizide 10mg twice daily
- HTN, CAD, 2 stents placed 3 years ago; EF is 40%
- Other meds: aspirin, beta blocker, ACEI, statin
- BP 132/76 mmHg, BMI 33 kg/m²; eGFR 57 ml/m²/min
- A1C 8.1%
- UACR 210 mg/g (<30)


What is the next best medication?

Decision cycle for patient-centered glycemic management in Type 2 diabetes

Comprehensive Medical Signature Medical Signature Self-Management Education and Support of Comorbidities: Standards of Medical Care in Diabetes - 2021. Diabetes Care 2021;44(Suppl. 1):S40-S52

Medication selection sequence in type 2 diabetes

27

Pharmacologic Approaches to Glycemic Management: *Standards of Medical Care in Diabetes - 2021*. *Diabetes Care* 2021;44(Suppl. 1)

Medication selection in the presence of ASCVD, CHF or INDICATORS OF HIGH-RISK OR ESTABLIS CONSIDER INDEPENDENTLY OF BASELINE A1C, CONSIDER INDEPENDENTLY OF INDIVIDUALIZED A1C TARGET, OR METFORMIN USE* INDIVIDUALIZED A1C TARGET, OF +ASCVD/Indicators of High Risk +ASCVD/Indicators Established ASCVD Particular +HF +CKD Indicators of high (LVEF <45 of High Risk ASCVD risk (age ≥55 years with coronary. carotid, or lower-extremity Established ASCVD artery stenosis >50%, Particularly HFrEF or LVH) SGLT2i with Indicators of high benefit i (LVEF <45%) populati ASCVD risk (age ≥55 NO DKD and ETTHER OR years with coronary, Albuminuria⁸ GLP-1 SGLT2i RA with with carotid, or lower-extremity proven proven CVD CVD artery stenosis >50%, benefit¹ benefit¹ or LVH) If A1C above target reducing CKD progression in If further intensification CVOTs5.8.8 is required or patient is OR unable to tolerate GLP-1 RA and/or SGLT2i, choose GLP-1 RA with agents demonstrating proven CVD 67 y/o male on metformin, CV benefit and/or safety: benefit¹ if SGLT2i not tolerated or For patients on a contraindicated GLP-1 RA, consider gipizide adding SGLT2i with proven CVD benefit For patients with T2D and vice versa¹ and CKD^a (e.g., eGFR TZD² <60 mL/min/1.73 m²) and A1C 8.1% thus at increased risk of - DPP-4i if not on cardiovascular events GLP-1 RA Basal insulin³ CAD, HFrEF, CKD, SU⁴ ETTHER/ OP 1. Proven CVD benefit means it has label indication of reducing CVD events Low dose may be better tolerated though less well studied for CVD effects GLP-1 SGLT2i albuminuria RA with Degludec or U-100 glargine have demonstrated CVD safety with proven Droven 4. Choose later generation SU to lower risk of hypoglycemia; glimepiride has shown similar CV safety to DPP-4i CVD CVD benefit¹ benefit^{1,7} 5. Be aware that SGLT2 labelling varies by region and individual agent with regard to indicated level of eGFR for initiation and continued use

Pharmacologic Approaches to Glycemic Management: Standards of Medical Care in Diabetes - 2021. Diabetes Care 2021;44(Suppl. 1)

Choosing Based on Cardiac and/or Renal status: Key Concepts

If patients have :

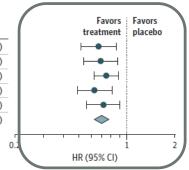
ASCVD (established ASCVD or indicators of high risk)

- Add GLP-1 RA with proven benefit
- Add SGLT2i with proven benefit
- If HF or CKD predominates
 - Add SGLT2i with evidence of reducing HF and/or CKD progression
 - If patient can't take an SGLT2i, use a GLP1 RA with proven benefit for CVD

SGLT2i improve CV & kidney outcomes in T2D

HR (95% CI)

3 point MACE \ 10%

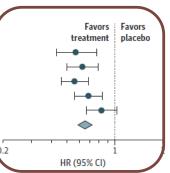

	Treatment		Placebo			
	No./total No.	Rate/1000 patient-years	No./total No.	Rate/1000 patient-years	Hazard ratio (95% CI)	Fav treatm
EMPA-REG OUTCOME	490/4687	37.4	282/2333	43.9	0.86 (0.74-0.99)	F
CANVAS program	NA/5795	26.9	NA/4347	31.5	0.86 (0.75-0.97)	
DECLARE-TIMI 58	756/8582	22.6	803/8578	24.2	0.93 (0.84-1.03)	
CREDENCE	217/2202	38.7	269/2199	48.7	0.80 (0.67-0.95)	H
VERTIS CV	735/5499	40.0	368/2747	40.3	0.99 (0.88-1.12)	
Fixed-effects model (Q=	5.22; df = 4; P = .2	27; I ² = 23.4%)			0.90 (0.85-0.95)	
						0.2

	Favors treatment		
	ucutinent	placebo	
	⊢●⊣		
	+●	-	
	⊢●⊣		
	H	н	
	\$		
			-
	1		2
I	HR (95% CI)		-

Hosp. heart failure 1 32%

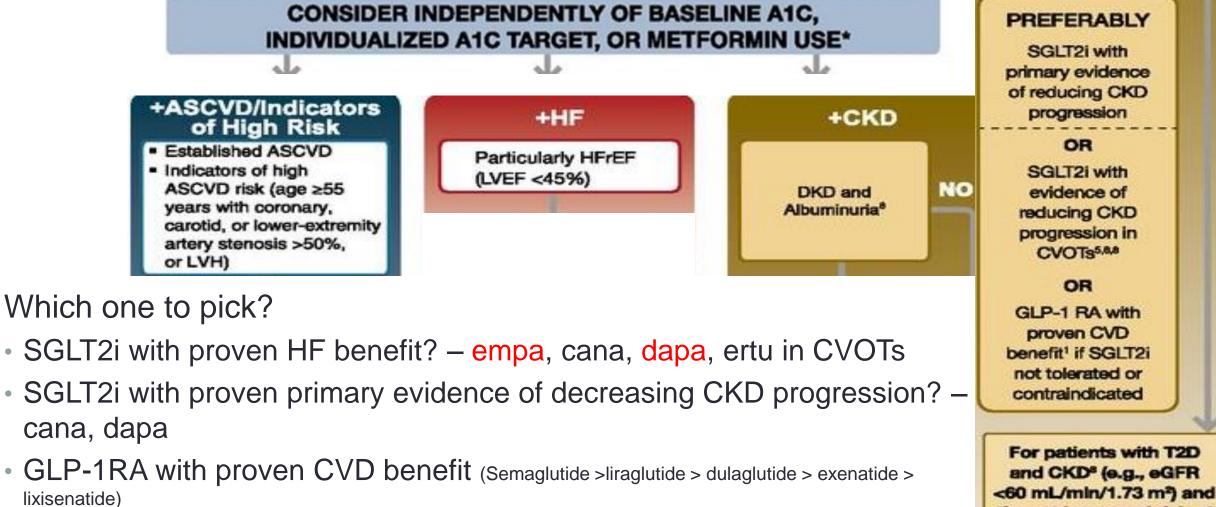

CKD progression \downarrow 38%

	Treatment		Placebo				
	No./total No.	Rate/1000 patient-years	No./total No.	Rate/1000 patient-years	Hazard ratio (95% CI)	Favors treatment	
EMPA-REG OUTCOME	126/4687	9.4	95/2333	14.5	0.65 (0.50-0.85)		
CANVAS program	NA/5795	5.5	NA/4347	8.7	0.67 (0.52-0.87)		
DECLARE-TIMI 58	212/8582	6.2	286/8578	8.5	0.73 (0.61-0.88)		
CREDENCE	89/2202	15.7	141/2199	25.3	0.61 (0.47-0.80)		
VERTIS CV	139/5499	7.3	99/2747	10.5	0.70 (0.54-0.90)		
Fixed-effects model (Q = 1.39; <i>df</i> = 4; <i>P</i> = .85; <i>I</i> ² = 0.0%)					0.68 (0.61-0.76)	•	



Cardiovascular death 15%

	Treatment		Placebo				
	No./total No.	Rate/1000 patient-years	No./total No.	Rate/1000 patient-years	Hazard ratio (95% CI)	Favors Favors treatment placebo	
EMPA-REG OUTCOME	172/4687	12.4	137/2333	20.2	0.62 (0.49-0.77)	⊢●	
CANVAS program	NA/5795	11.6	NA/4347	12.8	0.87 (0.72-1.06)	⊢ ● ∔I	
DECLARE-TIMI 58	245/8582	7.0	249/8578	7.1	0.98 (0.82-1.17)	⊢	
CREDENCE	110/2202	19.0	140/2199	24.4	0.78 (0.61-1.00)	⊢ •−-İ	
VERTIS CV	341/5499	17.6	184/2747	19.0	0.92 (0.77-1.10)	⊢●┤	
Fixed-effects model (Q=	:11.22; df = 4; P =	.02; I ² =64.3%)			0.85 (0.78-0.93)		
						0.2 1	



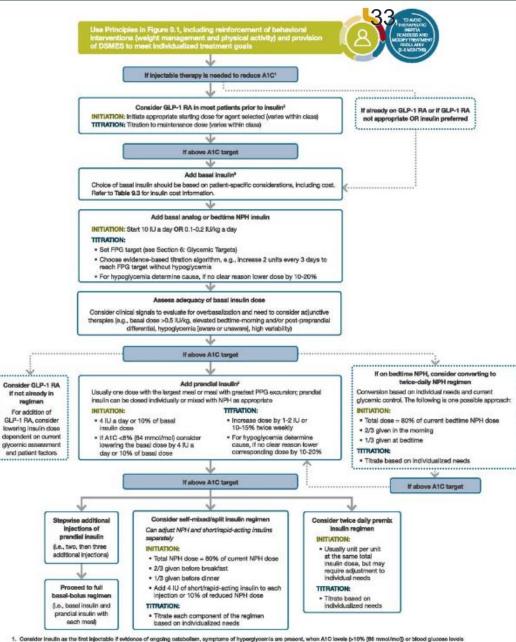
EMPA-REG OUTCOME	81/4645	6.3	/1/2323	11.5	0.54 (0.40-0.75)
CANVAS program	NA/5795	5.5	NA/4347	9.0	0.60 (0.47-0.77)
DECLARE-TIMI 58	127/8582	3.7	238/8578	7.0	0.53 (0.43-0.66)
CREDENCE	153/2202	27.0	224/2199	40.4	0.66 (0.53-0.81)
VERTIS CV	175/5499	9.3	108/2747	11.5	0.81 (0.64-1.03)
Fixed-effects model (Q=7	0.62 (0.56-0.70)				

McGuire DK et al, JAMA Cardiology 2020

Medication selection in the presence of ASCVD, CHF or CKD

Pharmacologic Approaches to Glycemic Management: Standards of Medical Care in Diabetes - 2021. Diabetes Care 2021;44(Suppl. 1)

thus at increased risk of


cardiovascular events

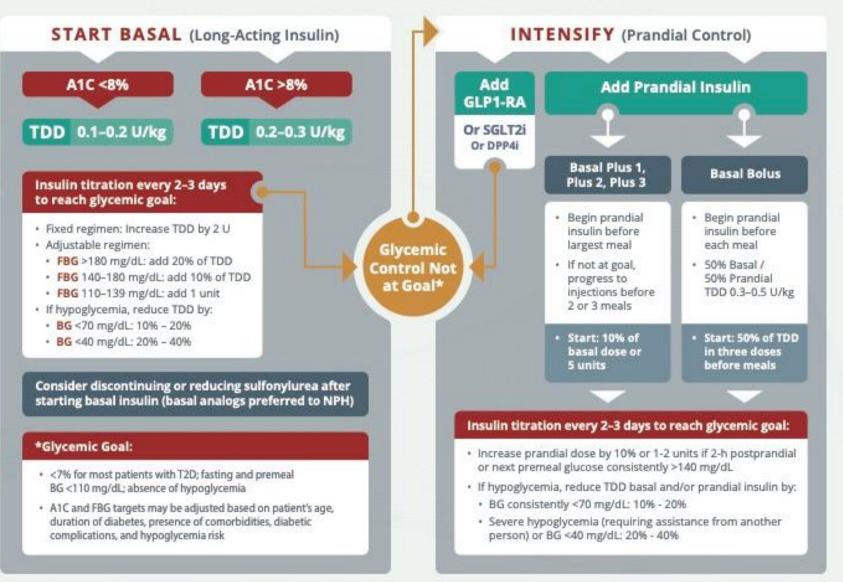
Case 2: Management of diabetes, CAD, EF 40% and early CKD

- Early initiation of SGLT2i is beneficial
- eGFR threshold is 30ml/min/1.73m²; may change with reporting of new trials
- Low dose SGLT2i for albuminuric kidney disease
- If not tolerated, can consider GLP-1RA
- Patient started on empagliflozin 10mg
- eGFR dropped to 54ml/min/1.73m² and hovered

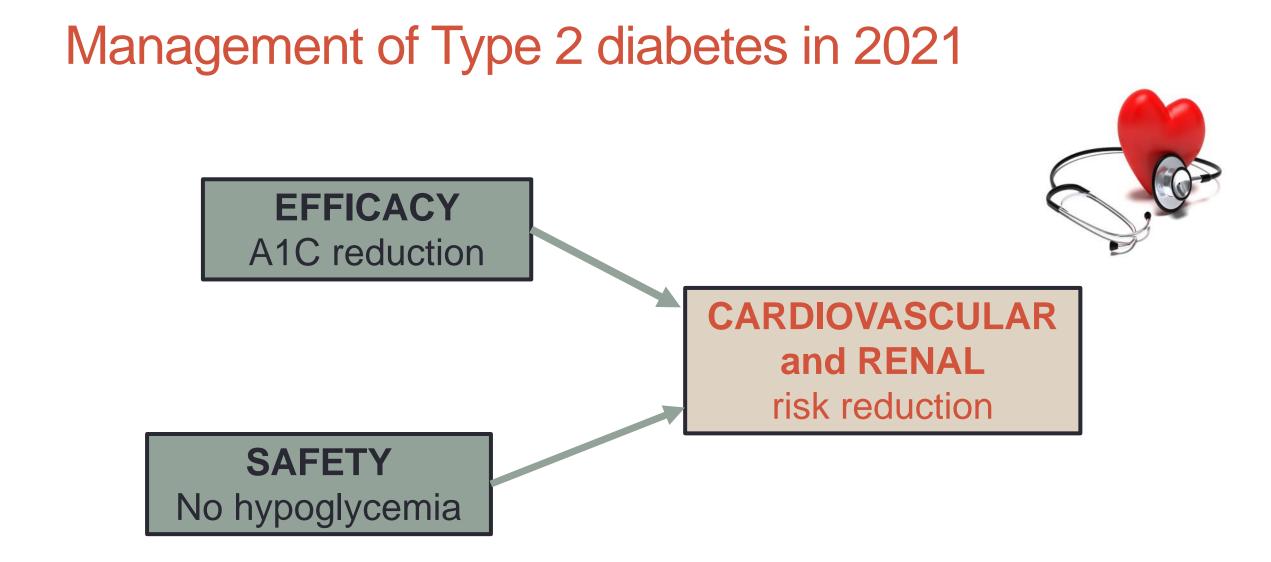
Injectable therapy algorithm

- If injectable therapy needed
- Consider GLP1 RA prior to insulin
- If already on GLP1RA, add basal insulin

Control in team of the interior interior in the interior interior in the interior nterior interior interior interior interior interior interior


- 3. For patients on GLP-1 RA and basel insulin combination, consider use of a fixed-ratio combination product (DegLina or iGiarLix).
- 4. Consider witching from evening NPH to a basel energy if the patient develops hypoglycenia and/or inquently forgets to administer NPH in the evening and would be better managed with an AM dose of a long-acting basel insulin.

5. If adding prancial insulin to NPH, consider initiation of a self-mixed or premixed insulin regimen to decrease the number of injections required


Injectable GLP-1 RA are appropriate.

AACE Diabetes guidelines

ALGORITHM FOR ADDING/INTENSIFYING INSULIN

Garber AJ et al. AACE Consensus Statement Vol 26, Issue 1, P107-139, Jan 01, 2020

Cardiovascular Disease and Risk Management

Case 1 again – addressing CV risk

- 53 year old male with type 2 diabetes, no complications
- On metformin 1000mg twice daily and dulaglutide 0.75mg weekly

• BMI 32

- BP: 145-150mmHg systolics; diastolic 85-95mmHg
- Non-fasting lipid profile Total cholesterol 237; Triglycerides 320; HDL-C 25; LDL-C 148 mg/dL

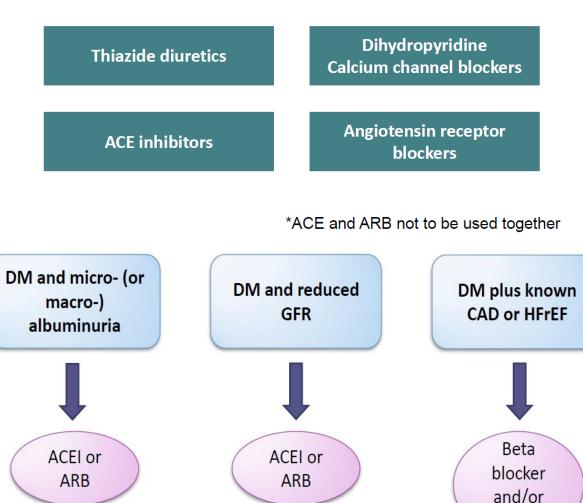
How do you address his CV risk?

Case 1 again – addressing CV risk

- 53 year old male with type 2 diabetes, no complications
- On metformin 1000mg twice daily and dulaglutide 0.75mg weekly

• BMI 32

- BP: 145-150mmHg systolics; diastolic 85-95mmHg
- Non-fasting lipid profile Total cholesterol 237; Triglycerides 320; HDL-C 25; LDL-C 148 mg/dL

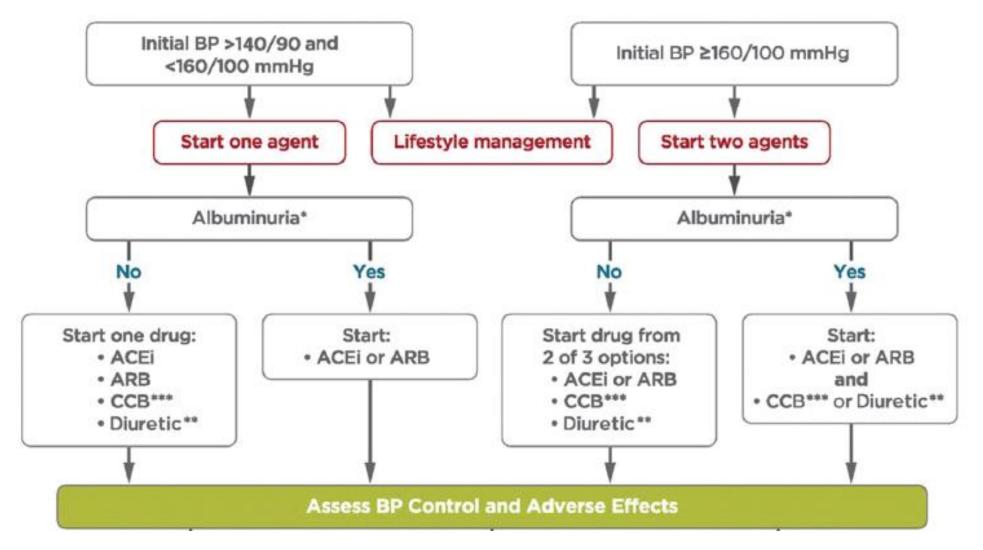

How do you address his CV risk?

Hypertension: Screening and Diagnosis

- Blood pressure measured at every routine clinical visit.
 - Patients found to have elevated blood pressure (≥140/90 mmHg) should have blood pressure confirmed using multiple readings, including measurements on a separate day, to diagnose hypertension.
- All hypertensive patients with diabetes should monitor their blood pressure at home.

Treatment of hypertension in diabetes

- Lifestyle management
 - weight loss
 - physical activity 30-45min/d
 - \downarrow Na intake (DASH diet)
- First line medications
 - ACEi, ARB, CCB, Thiazides
 - Thiazides should not be withheld
 - Impaired pancreatic insulin release in in observational studies
 - No adverse clinical outcomes data
- Compelling indications

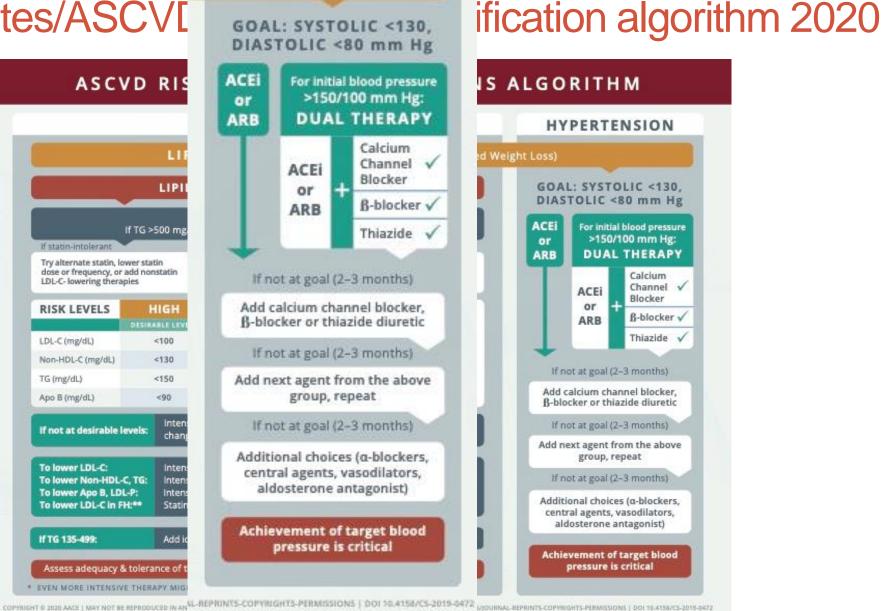


ACEI/ARB

Case 1 again – addressing hypertension

- 53 year old male with type 2 diabetes, no complications
- BMI 32
- BP: 145-150mmHg systolics; diastolic 85-95mmHg
- Started on single agent- lisinopril 10 mg, titrated to 20mg daily

Hypertension in diabetes: treatment


Cardiovascular Disease and Risk Management: Standards of Medical Care in Diabetes - 2021.

Resistant hypertension in diabetes: treatment

- If BP targets are not met, add medications in sequence
- If not controlled on ≥3 medications (incl diuretic) or controlled HTN on ≥4 medications- evaluate for secondary HTN
 - Renal artery stenosis
 - Primary hyperaldosteronism
- Use a mineralocorticoid receptor antagonist and refer to specialist

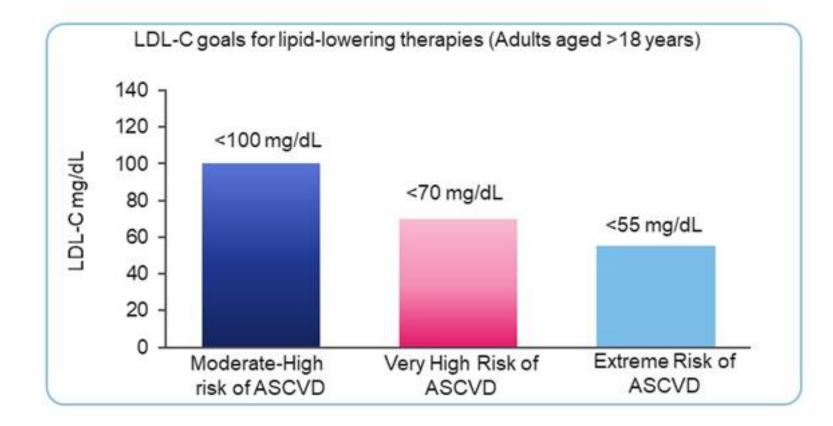
Cardiovascular Disease and Risk Management: Standards of Medical Care in Diabetes - 2021.

AACE Diabetes/ASCV[

HYPERTENSION

ight Loss)

Case 1 again – addressing CV risk, lipids


- 53 year old male with 5 years of type 2 diabetes, HTN, no complications
- On metformin 1000mg twice daily, dulaglutide 0.75mg weekly, lisinopril 20mg
- BMI 32
- Non-fasting lipid profile Total cholesterol 237; Triglycerides 320; HDL-C 25; LDL-C 148 mg/dL

Lipid management in diabetes

- Drug of choice for CV risk reduction and LDL-C lowering are the statins
- Overall benefits of statin therapy across all risk levels and subgroups
- Two dose intensities- moderate and high
- CV risk enhancers- retinopathy, albuminuria, CKD
- Drugs besides statins for CV risk reduction-
 - Ezetimibe
 - PCSK9 inhibitors
 - Icosapent ethyl
- Triglycerides ≥ 500mg/dL increase pancreatitis risk
 - R/o secondary causes
 - Medical therapy to prevent pancreatitis

		High-Intensity	Moderate-Intensity
k	LDL-C Lowering [†]	≥50%	30% to 49%
	Statins	Atorvastatin (40 mg [‡]) 80 mg Rosuvastatin 20 (40 mg)	Atorvastatin 10 mg (20 mg) Rosuvastatin (5 mg) 10 mg Simvastatin 20-40 mg [§]
		-	Pravastatin 40 mg (80 mg) Lovastatin 40 mg (80 mg) Fluvastatin XL 80 mg Fluvastatin 40 mg BID Pitavastatin 1–4 mg

ASCVD risk categories and goals in diabetes

Lipid Management in Diabetes

Primary Prevention – without ASCVD

Age 40-75: Moderate intensity statin therapy

Patients at high risk: Multiple risk factors or age 50-75 it is reasonable to use high intensity statin therapy

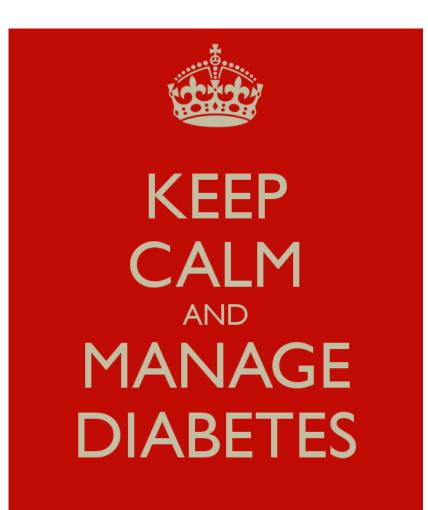
Age > 75: Moderate intensity statin therapy is reasonable after discussion

Patients with 10-year risk > 20%: reasonable to add ezetimibe to maximally tolerated statin to reduce LDL by > 50%

Age <40 or Type 1 diabetes: With additional risk factors may be reasonable to initiate moderate intensity statin therapy

Secondary Prevention – known ASCVD

All ages < 75: High intensity statin therapy/maximally tolerated statin


Age >75: Reasonable to continue statin therapy or initiate statin therapy after discussion.

Very High Risk: If LDL > 70mg/dl on maximally tolerated statin consider adding ezetimibe or PCSK9 inhibitor

Case 1 again – addressing CV risk, lipids

- 53 year old male with type 2 diabetes, HTN, no complications
- On metformin 1000mg twice daily, dulaglutide 0.75mg weekly, lisinopril 20mg
- BMI 32
- Non-fasting lipid profile Total cholesterol 237; Triglycerides 320; HDL-C 25; LDL-C 148 mg/dL
- Primary ASCVD prevention
- Moderate intensity statin

	High-Intensity	Moderate-Intensity
LDL-C Lowering [†]	≥50%	30% to 49%
Statins	Atorvastatin (40 mg [‡]) 80 mg Rosuvastatin 20 (40 mg)	Atorvastatin 10 mg (20 mg) Rosuvastatin (5 mg) 10 mg Simvastatin 20-40 mg [§]
	-	Pravastatin 40 mg (80 mg) Lovastatin 40 mg (80 mg) Fluvastatin XL 80 mg Fluvastatin 40 mg BID Pitavastatin 1–4 mg

