
Hypertension Pearls

For the Diagnosis and Management of Complex Hypertension

October 5, 2022

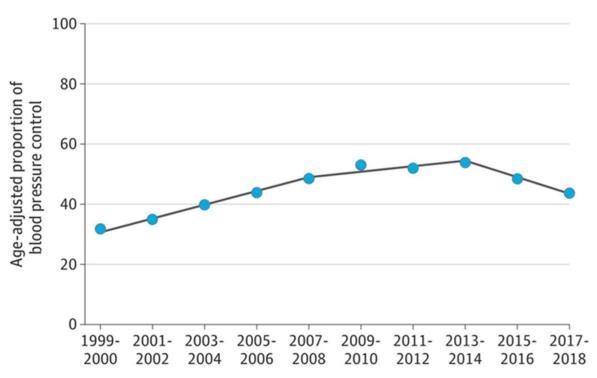
Jordana Cohen, MD, MSCE
Assistant Professor of Medicine and Epidemiology
Renal-Electrolyte and Hypertension Division
Perelman School of Medicine, University of Pennsylvania

j @jordy_bc

University of Washington Cardiometabolic ECHO

Disclosures

- Funding: K23-HL133843, R01-HL153646, R01-HL157108, R01-HL155599, R01-HL157264, U01-HL160277, U24-DK060990, and R01-AG074989, and American Heart Association Bugher Award
- Disclosures: UpToDate (royalties)
- Off-Label Use: None


Objectives

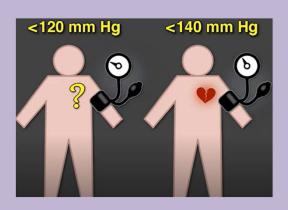
- Reinforce key competencies in hypertension diagnosis and management based on most the recent guidelines and evidence
- Develop a practical approach to the evaluation and management of resistant hypertension

The power of inertia

Muntner P, et al. *JAMA*. 2020;324(12):1190-1200

Blood pressure control among all adults with hypertension

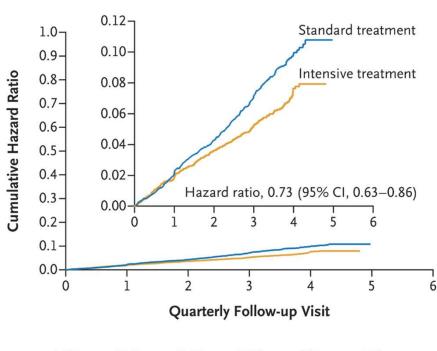
- Current hypertension <u>diagnostic</u> thresholds
 - ≥130/80 in all comers
 - Except ≥140/90 in those with ASCVD risk <10%
- Current hypertension <u>treatment</u> thresholds
 - <130/80 in all comers


2021 KDIGO Guidelines

• Recommendation 3.1.1

We suggest that adults with high BP and CKD be treated with a target systolic blood pressure (SBP) of <120 mm Hg, when tolerated, using standardized office BP measurement (2B).

Clinical Condition(s)	BP Threshold, mm Hg	BP Goal, mm Hg
General		
Clinical CVD or 10-year ASCVD risk ≥10%	≥130/80	<130/80
No clinical CVD and 10-year ASCVD risk $<\!10\%$	≥140/90	<130/80
Older persons (≥65 years of age; noninstitutionalized, ambulatory, community-living adults)	≥130 (SBP)	<130 (SBP)
Specific comorbidities		
Diabetes mellitus	≥130/80	<130/80
Chronic kidney disease	≥130/80	<130/80
Chronic kidney disease after renal transplantation	≥130/80	<130/80
Heart failure	≥130/80	<130/80
Stable ischemic heart disease	≥130/80	<130/80
Secondary stroke prevention	≥140/90	<130/80
Peripheral artery disease	≥130/80	<130/80


SPRINT Trial

Final Report of a Trial of Intensive versus Standard Blood-Pressure Control

The SPRINT Research Group*

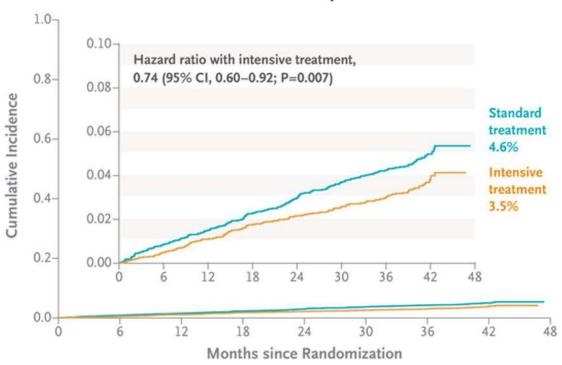
DOI: 10.1056/NEJMoa1901281

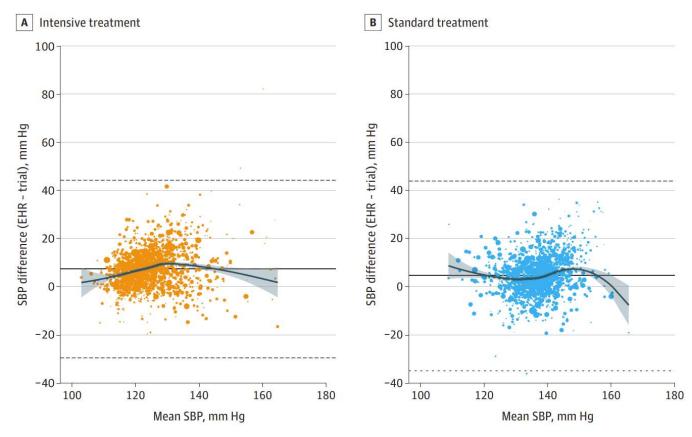
No. at Risk

Standard treatment	4683	4443	4247	2950	801	120
Intensive treatment	4678	4439	4275	3028	855	125

STEP Trial

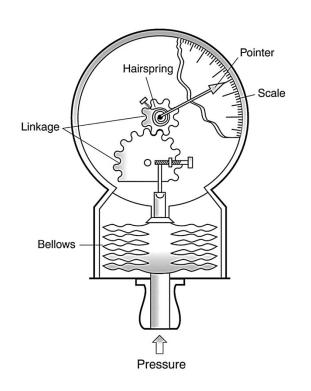
Intensive Treatment 110 to <130 mm Hg Target Systolic Blood Pressure Standard Treatment 130 to <150 mm Hg




Trial of Intensive Blood-Pressure Control in Older Patients with Hypertension

Zhang W et al. DOI:10.1056/NEJMoa2111437

Cumulative Incidence of Primary-Outcome Events


Differences in clinic vs. research study blood pressure measurements: SPRINT

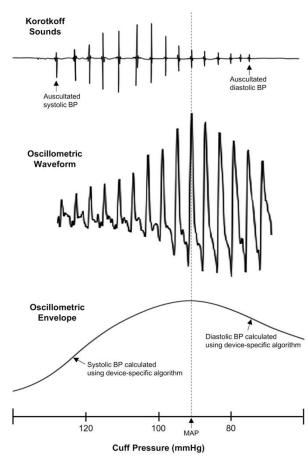


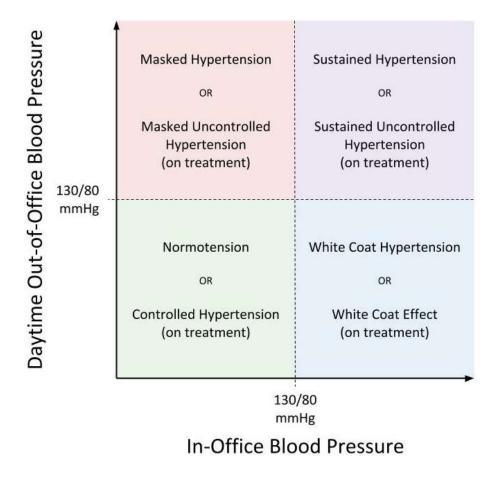
Table 9. Blood Pressure Variability ⁵²			
Factor	Systolic (mmHg)		
Cuff too small	10–40 🕇		
Cuff over clothing	10–40 ↑ or ↓		
Back/feet unsupported	5–15 ♠		
Legs crossed	5–8 ♠		
Arm tense	15 ∱		
Not resting 3 to 5 minutes	10–20 🕇		
Anxiety/white coat hypertension	As much as 30 🛉		
Patient talking	10−15 ↑		
Labored breathing	5–8 ♠		
Full bladder	10–15 ♠		
Pain	10–30 ↑		
	10 ↑ or ↓		
Arm below or above heart level	For every 1 cm above or below heart level, blood pressure varies by 0.8 mmHg.		
Factor	Diastolic (mmHg)		
Arm extended and unsupported	Diastolic ↑ 10%		

Evolution of blood pressure measurement

History and Justification of a National Blood Pressure Measurement Validated Device Listing

One solution to issues with in-office blood pressure measurement: *Automated office blood pressure*

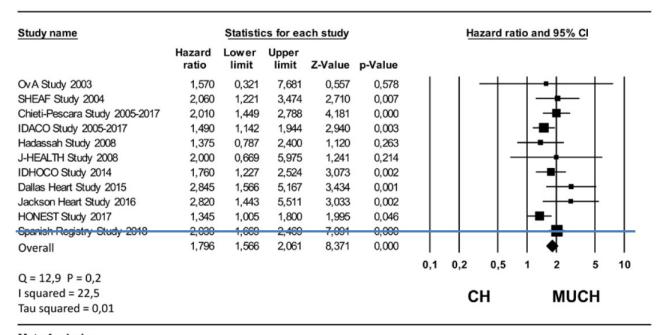
- Considered "standardized blood pressure measurement" by multiple guidelines
- Oscillometric device
- Records multiple blood pressure readings (observed or unobserved) after a rest period with a single activation
 - Pre-programmed 5-minute rest, then 3 readings at 1minute intervals
 - · Can calculate an average of these readings


Out-of-office Blood pressure screening

Annals of Internal Medicine

www.USPreventiveServicesTaskForce.org

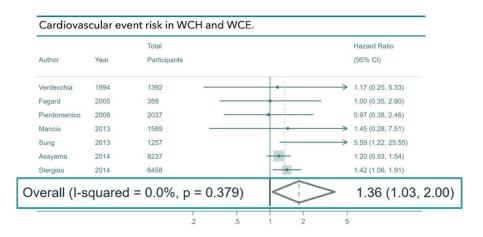
Population	Adults aged ≥18 y without known hypertension
Recommendation	Screen for high blood pressure; obtain measurements outside of the clinical setting for diagnostic confirmation. Grade: A

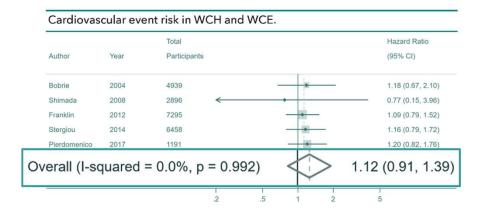


Many of the limitations of in-office BP are mitigated by out-of-office BP measurement

Clinic	HBPM	Daytime ABPM	Nighttime ABPM	24-Hour ABPM
120/80	120/80	120/80	100/65	115/75
130/80	130/80	130/80	110/65	125/75
140/90	135/85	135/85	120/70	130/80
160/100	145/90	145/90	140/85	145/90

13


Cardiovascular risk of masked hypertension



Meta Analysis

Cardiovascular risk of white coat hypertension

- •Risk is only present among untreated patients
- •Risk is substantially lower than sustained or masked hypertension
- ·Patients with white coat hypertension
 - Should be treated based on their out-of-office BP readings
 - Should be monitored closely with out-of-office BP monitoring due to a high risk of transitioning to sustained hypertension

FDA 510(k) device clearance

- The FDA does not "approve" most devices for patient use, they "clear" them
- Clearance requires demonstrating "equivalence" to an existing device
 - There are no enforced guidelines on what "equivalence" means
 - Up to the manufacturer to determine
- The 510(k) process does not require demonstration of accuracy
- The FDA has no enforcement division to prohibit selling invalid devices

"From about 3000 cuff-based BP measuring devices on the market today, less than 15% have published evidence on accuracy performance."

Cuffless Technology

Caution: FDA 510(k) cleared, NOT recommended for clinical use



Validated device listings

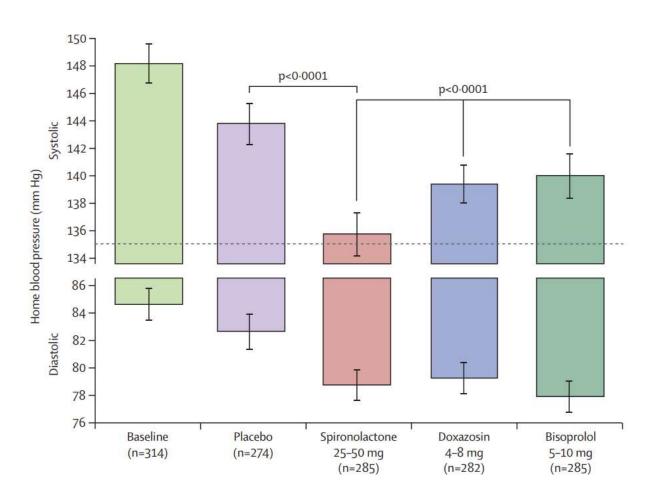
www.validatebp.org

www.stridebp.org

19

Evaluation and Management of Patients with Difficult to Control Hypertension

Treatment Resistant Hypertension


- Hypertension affects 46% of the adult population in the United States
- Approximately 20% of patients taking antihypertensive medications appear to have treatment-resistant hypertension
 - BP not adequately controlled with 3 antihypertensive medications including a diuretic or requires a minimum of 4 antihypertensive medications to achieve adequate control
- Apparent treatment-resistant hypertension is associated with a markedly higher risk of cardiovascular mortality and all-cause mortality, independent of BP control

Management of resistant hypertension

- 1) Highest tolerated dose of first line agents
 - a) ACEIs/ARBs, CCBs, thiazide/thiazide-like diuretics
- 2) Maximize diuretic therapy
- 3) Add a mineralocorticoid receptor antagonist or potassium-sparing diuretic
 - a) Do this BEFORE adding a beta-blocker unless there is a specific indication
- 4) Add other agents with different/complimentary mechanisms of action

Management of Treatment Resistant Hypertension

High quality evidence supports the use of mineralocorticoid receptor antagonist (MRA) therapy for the management of treatment-resistant hypertension

Adding fourth through n_{th} line therapy

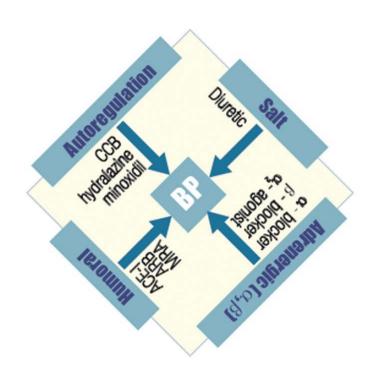
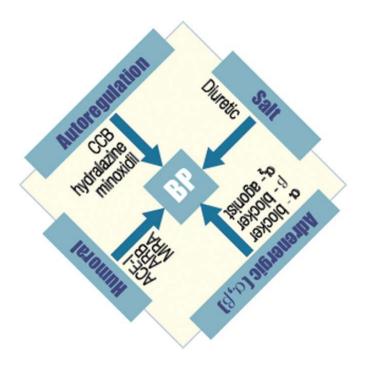
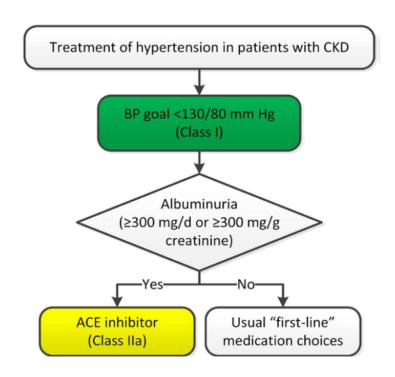

• Beta-blockers should NOT be used as first- (or even 4th) line antihypertensive therapy unless there is a specific indication for their use

Table 3. Hazard Ratios of Incident CVD by Time-Updated Antihypertensive Class

		β-Blocker	CCB*
Outcome	ACE inhibitor/ARB	HR (95% CI)	HR (95% CI)
Incident CVD or death	Ref	1.71 (1.42-2.05)	0.88 (0.72-1.08)
Incident CVD	Ref	1.76 (1.45-2.14)	0.85 (0.67-1.08)
Incident HF	Ref	1.47 (1.12-1.92)	0.73 (0.52-1.03)


Adding fourth through n_{th} line therapy

- Aim for simplicity
 - Things to consider:
 - Fixed-dose combinations
 - Long-acting medications (e.g., chlorthalidone, torsemide; if absolutely needed, consider clonidine patch or guanfacine over clonidine PO)
 - Only use minoxidil as a last resort; must be given with a loop diuretic


Adding fourth through n_{th} line therapy

- · Aim for simplicity
 - Things to avoid:
 - Short-acting medications like hydralazine and PO clonidine
 - Less frequent dosing of short-acting medications (e.g. QD furosemide, BID hydralazine)
 - Once-daily short-acting diuretics can increase sodium avidity later in the day
 - Even "appropriate" dosing of and adherence to hydralazine and clonidine can exacerbate labile hypertension due to short duration of action and rebound effects

Additional considerations in CKD

- Optimize diuretic therapy
 - Hypertension is often more volume-mediated in CKD than in the general population
 - Long-acting diuretics like chlorthalidone and torsemide
 - Loop AND thiazide/thiazide-like diuretic or MRA
 - Kaliuresis is a great way to help patients bettertolerate ACE-Is/ARBs
- MRAs and SGLT-2 inhibitors have anti-proteinuric properties

Summary of challenges in hypertension management

- Therapeutic inertia is a major driver of inadequate management of hypertension and low (and declining) rates of blood pressure control in the US
- Greater trust in the accuracy of our blood pressure readings and use of out-of-office blood pressure monitoring can help to overcome inertia
 - Accurate blood pressure measurement with validated devices is critical
- · We as clinicians need to do a better job of implementing best evidence
 - β -blockers should be considered 5th-line therapy for hypertension unless there is another indication
 - Avoid short-acting PO medications whenever possible

Thank you!

• jco@pennmedicine.upenn.edu

