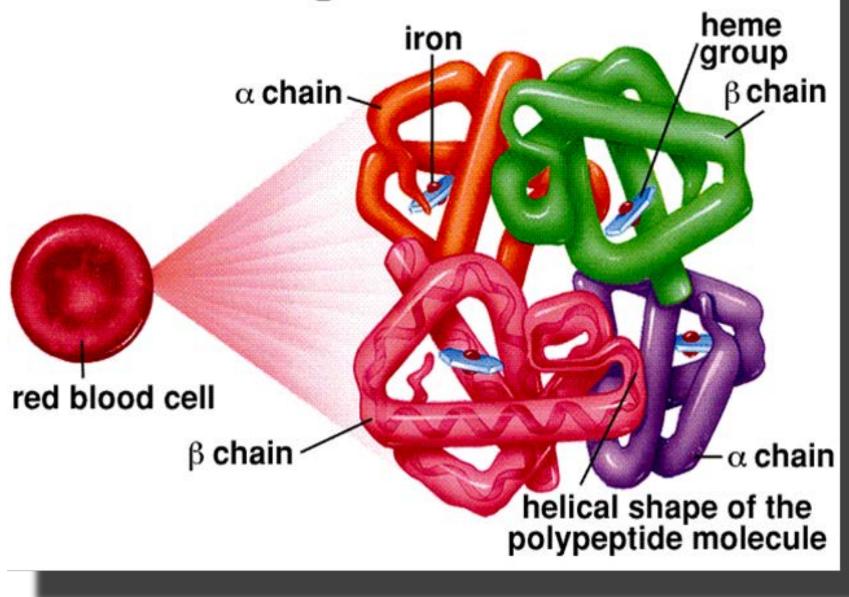


Fred Hutch · Seattle Children's · UW Medicine

Hemoglobin disorders

Kleber Y. Fertrin, MD, PhD Assistant Professor, University of Washington Director, Hemolytic Anemias and Iron Disorders Program kleber@uw.edu

DISCLOSURES


Agios Pharmaceuticals – Research funding, Advisory Board

ABIM Hematology exam blueprint

Red blood cell destruction disorders (15% of exam)

Thalassemias						
Alpha thalassemia	LF					
Beta thalassemia	LF					
Hemoglobin E disorders	LF			\bigotimes	\bigotimes	\bigotimes
Sickle cell disorders (4.5% of exam)						
Sickle cell trait						
Sickle cell anemia (hemoglobin SS disease)		\bigcirc	\bigcirc	\bigcirc	\bigcirc	
Hemoglobin SC disease	LF	\checkmark	\checkmark	\checkmark	\checkmark	
Sickle cell-beta zero and sickle cell-beta plus-thalassemias	LF					\bigcirc
Non-sickle hemoglobinopathies	LF	\bigcirc			\bigotimes	\bigotimes

Hemoglobin Molecule

Globin genes and hemoglobins

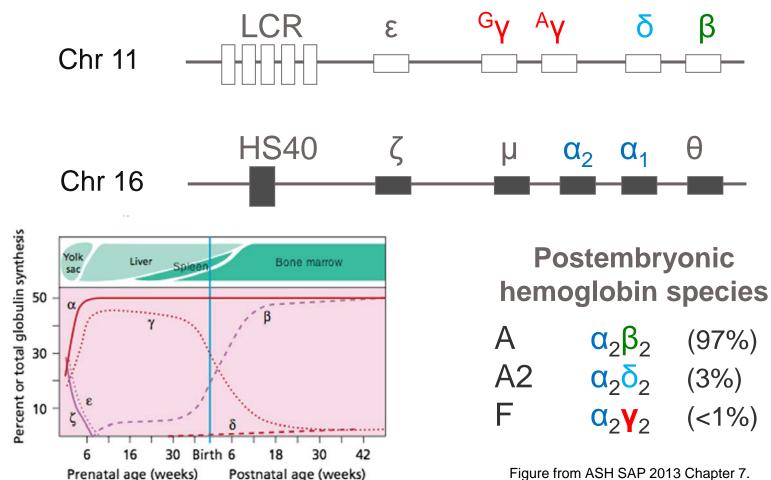


Figure from ASH SAP 2013 Chapter 7.

Hemoglobin disorders

<u>Thalassemias:</u>

- Named after the reduced/absent *structurally normal* globin chain
- α-thalassemia: excess β-chains
- β-thalassemia: excess α-chains

Hemoglobinopathies:

Amino acid substitution results in *structurally abnormal* hemoglobin → <u>Hb S</u>, Hb C, HbSC, Hb G-Philadelphia, Hb D, Hb O-Arab, etc.

Thalassemia-hemoglobinopathy:

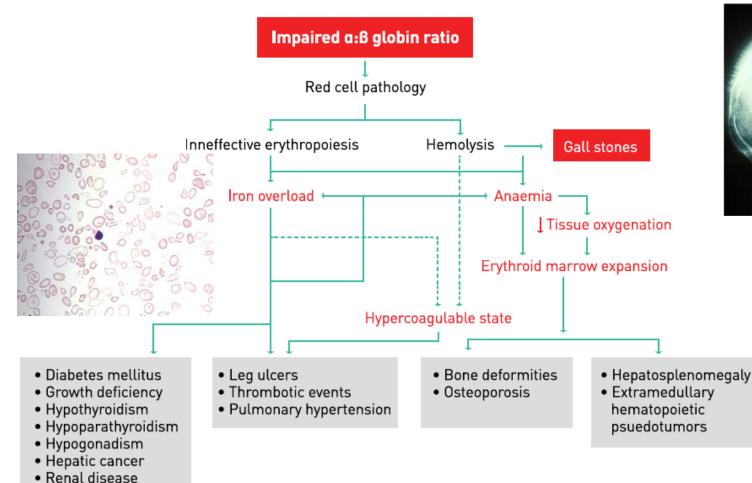
• HbS-β thalassemia, HbE-β thalassemia, etc.

Genetics of thalassemias

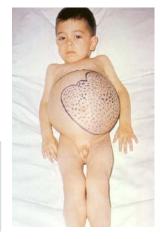
α-thalassemias

- expressed in fetus and at birth
- Predominantly gene deletion(s)

β-thalassemias


- expressed several months after birth (γ -globin $\rightarrow \beta$ -globin)
- Predominantly <u>point mutations</u>

β-thalassemias


Causative mutations

- β^0 (null) = No gene product
- β^+ = reduced production
- Excess α -globin chains \rightarrow INEFFECTIVE ERYTHROPOIESIS
 - α -globin aggregates in erythroid precursors \rightarrow intramedullary death
- Excess free intracellular iron:
 - membrane lipid oxidation
 - membrane protein damage
- Membrane damage → PS* exposure and hypercoagulability
 - decreased RBC deformability
 - increased clearance from circulation

Pathophysiology and complications of thalassemias

From Guidelines for the Managements of Nontransfusion dependent Thalassemia. Thalassemia International Federation publication 2013.

Clinical classification of β-thalassemias

Phenotype	Hb (g/dL)	Transf	Clinical features	Most common genotype
Thalassemia minor (trait)	10-12	Νο	No hemolysis or symptoms, RBC>5million , HbA₂>3.5%	βº/β or β⁺/β
Thalassemia intermedia	7-10	+/-	high Hb F, bone disease, transfusion and/or spontaneous iron overload, splenomegaly*, pulm HTN, leg ulcers	β ⁺ /β ⁺ or β ⁺ /β ⁰
Thalassemia major	<7	Age<2	>95% HbF, bone disease, transfusion iron overload, splenomegaly*	βº/βº or βº/β+

β-thalassemia major: current treatment

Referral to comprehensive medical center

Hematology, Genetics, Cardiology, Hepatology, Endocrinology, Ob/Gyn

Palliative care:

- **Transfusion:** typically 2-3 pRBCs q 3-4weeks
 - Goals:
 - pre-transfusion Hb: 9-10.5 g/dL
 - post-transfusion Hb: 12-15g/dL
- Iron chelation
 - Initiate after 10-20 pRBCs or ferritin>1000ug/L
 - Single chelator or combination therapy
 - Goals:
 - liver iron concentration (LIC) < 3mg/g
 - cardiac T2* >20ms
 - Cardiac iron \rightarrow consider combination therapy (e.g. DFO+DFP)

Iron chelators

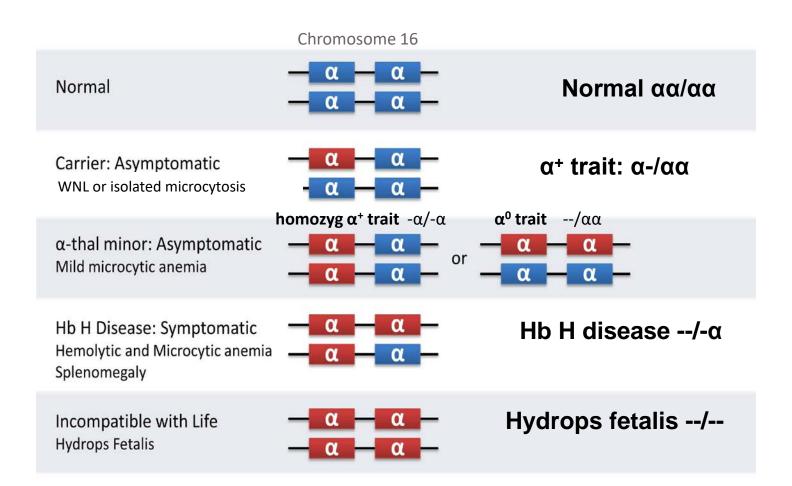
Medication	Brand name	Dose	Route/form	Comments
Deferoxamine (DFO)	Desferal®	50-60mg/kg/d 5-7 days per week	SQ/IV 8-24h	Local reaction, hearing loss, retinopathy, growth delay
Deferiprone (DFP)	Ferriprox®	25-33mg/kg/d q8h	PO tablets	Neutropenia, n/v/d, elevated LFTs, arthralgia
Deferasirox (DFX)	Exjade®	20-40mg/kg/d q24h	PO dispersible	elevated creat , rash, n/v/d
	Jadenu®	14-28mg/kg/d q24h	PO tablets or sprinkles	elevated creat, rash, n/v/d, less diarrhea (no lactose)

β-thalassemia major: current treatment

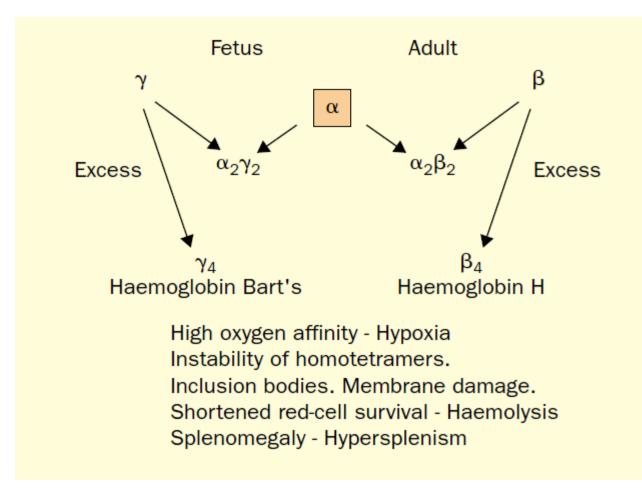
Splenectomy

- Indications: transfusion >200-220mL/kg/year; untransfusable due to alloimmunization, severe cytopenias, symptomatic splenomegaly
- less used than before due to complications
 - post-op pancreatitis, pleural effusion, portal vein thrombosis;
 - long term risk for sepsis and VTE; need for antibiotic ppx

• Luspatercept

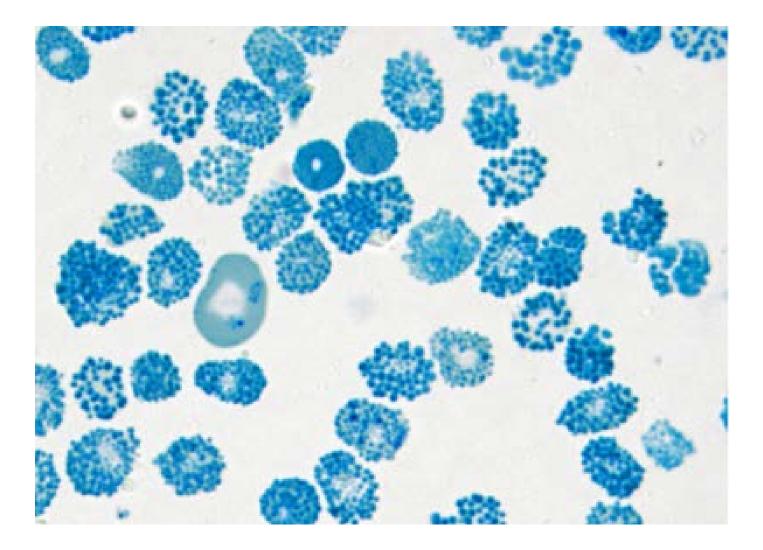

- FDA-approved for TD beta thal in April 2020
- Activin receptor ligand trap \rightarrow improves ineffective erythropoiesis
- Dose: 1-1.25mg/kg SQ q 3 weeks
- >33% reduction in transfusion burden in 72% patients
- AE: bone pain, headache, asthenia

β-thalassemia major: current treatment


Curative treatments:

- Allogeneic hematopoietic cell transplantation
 - Ideally: age<14; HLA-matched sibling donor; no significant iron overload.
 - Pesaro system: predicts post-BMT 3-year OS in children<16yo Adverse factors:
 - 1. Hepatomegaly >2cm from costal arch
 - 2. Liver fibrosis on biopsy
 - 3. Irregular iron chelation
 - > Class I: 0 adverse factors → 94%
 - > Class II: 1 or 2 adverse factors \rightarrow 80%
 - ➢ Class III: all adverse factors → 61%
- Investigational: LentiGlobin gene therapy
 - Thompson et al. N Engl J Med. 2018 Apr 19;378(16):1479-1493

α thalassemia genetics


Pathophysiology of α-thalassemias

- excess of γ-like globin chains Hb Bart's
- excess of β-like globin chains Hb H

Weatherall and Proven. Lancet 2000;355:1169-1175

RBC inclusions in Hb H disease

© Uptodate 2020; Dr. German Pihan, Pathology Department, Beth Israel Deaconess Medical Center, Boston.

Additional information on α thalassemia

- If suspecting α thalassemia carrier state or trait:
 - Consider compatible ethnicity and clinical picture (no hemolysis, family history of HbH or hydrops)
 - Rule out the following conditions:
 - Iron deficiency
 - \triangleright β thalassemia trait
 - Newborn screening: may show Hb Bart's or HbH
 - Adults: confirmed if positive for HbH inclusions in peripheral blood or confirm with genetic testing for deletions
- Unusual α thalassemias:

<u>α thalassemia-intellectual disability syndromes</u>

- > ATR-16 syndrome : large deletions in α -globin genes on chromosome 16
- > ATR-X syndrome: mutations in ATRX gene (chromatin-associated protein)

α thalassemia associated with myeloid malignancy (ATMDS)

- \blacktriangleright acquired α thalassemia mostly in MDS, very rarely MPN or AML
- > ATRX mutation with low MCV/MCH; HbH inclusions can be present

Treatment for α thalassemias

- Hb Bart's hydrops fetalis (--/--)
 - Intrauterine transfusions followed by chronic transfusions and chelation
 - screening, genetic counseling in high risk populations
 - hematopoietic cell transplantation has been done

HbH disease (α-/--)

- Splenomegaly may lead to hypersplenism
- \succ Hemolytic crises \rightarrow RBC transfusions +/-iron chelation
- Complications: gallstones, leg ulcers

Milder α thalassemias (α-/α- or αα/--)

- genetic counseling
- avoid unnecessary iron supplementation

ABIM Hematology exam blueprint

Thalassemias

- β-thalassemia
- α-thalassemia
- Hemoglobin E disorders
- Sickle cell disorders
 - Sickle cell trait
 - Sickle cell anemia (hemoglobin SS disease)
 - Hemoglobin SC disease and C hemoglobinopathy
 - > Sickle cell- β^0 and sickle cell- β^+ thalassemias
- Non-sickle hemoglobinopathies
- Educational resources

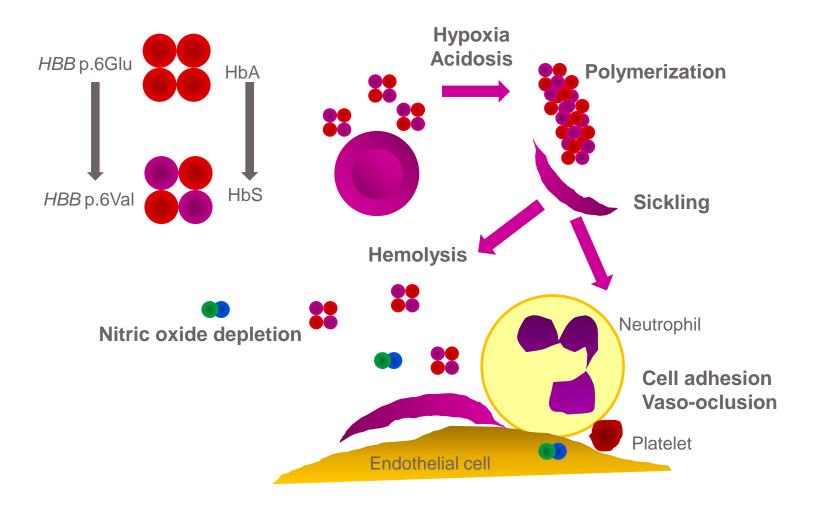
Hemoglobin E

- Thalassemic hemoglobinopathy
 - amino acid substitution HBB p.Glu26Lys
 - \blacktriangleright decreased β^{E} -mRNA production
 - precipitation of α-globin chains in cytoplasm of erythroid precursors and RBCs
 - increased oxidant stress
- 2nd most prevalent Hb variant in the world
 30 million worldwide with > 80% in Southeast Asia

Hemoglobin E disorders

Condition	Genotype	Hb EP	Clinical features
Hb E trait	β ^Α /β ^Ε	HbE 30%	Normal or low MCV
Hb E disease	β ^ε /β ^ε	HbE 90%	Mild microcytic anemia
Hb E/β thal (Very common in SE Asia)	β^{E}/β^{0} or β^{E}/β^{+}	HbE 40-85%, HbF 10-60%	Moderate to severe microcytic anemia, ineffective erythropoiesis, iron overload
Hb SE disease	β ^s /β ^e	HBE 30% HbS 65%	Mild sickling disorder , similar to HbS/β ⁺ thalassemia

ABIM Hematology exam blueprint

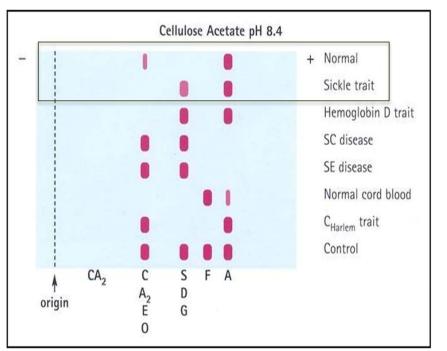

• Thalassemias

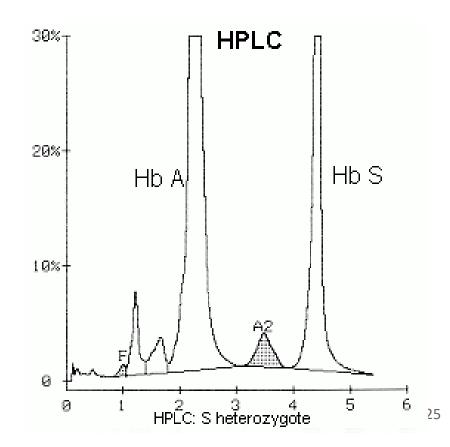
- β-thalassemia
- α-thalassemia
- Hemoglobin E disorders

• Sickle cell disorders

- Sickle cell trait
- Sickle cell anemia (hemoglobin SS disease)
- Hemoglobin SC disease and C hemoglobinopathy
- > Sickle cell- β^0 and sickle cell- β^+ thalassemias
- Non-sickle hemoglobinopathies
- Educational resources

Pathophysiology of sickle cell disease (SCD)


Laboratory diagnosis


Hemoglobin electrophoresis

- cellulose acetate (alkaline)
- citrate agar (acidic)

High performance liquid chromatography (HPLC)

- currently most common test
- Molecular biology
 - PCR, gene sequencing

Sickling syndromes

Table I. Genotypes of Sickling Syndromes and Their Relative Severities

Genotype	Severity	Characteristics
HbSS	Severe	Most common form
ньѕβ⁰	Severe	Clinically indistinguishable from HbSS ⁶
HbSO-Arab	Severe	Relatively rare ⁶
HbSD-Punjab	Severe	Mostly in northern India ⁶
HbSC-Harlem	Severe	Migrates like HbSC, but rare double β-globin mutation ⁷
HbCS-Antilles	Severe	Rare double β-globin mutation ⁸
HbSC	Moderate	25% of SCD ⁹
HbSβ+, Mediterranean	Moderate	5%–16% HbA ⁶
HbAS-Oman	Moderate	Dominant rare double β-globin mutation ¹⁰
HbSβ+, African	Mild	16%–30% HbA ⁶
HbSE	Mild	HbE found mostly in Southeast Asia ¹¹
HbS-HPFH	Very mild	Large deletions in β -globin gene complex; > 30% HbF ⁶

HbA = hemoglobin A; HbE = hemoglobin E; HbF = fetal hemoglobin; HbS-HPFH = HbS and gene deletion HPFH; HbSC = heterozygous hemoglobin SC; HbSS = homozygous hemoglobin SS; HbS β^0 = hemoglobin S- β thalassemia⁰; HbS β^+ = hemoglobin S- β thalassemia⁺; SCD = sickle cell disease.

Vivien A. Sheehan. Hematology-Oncology 12:1, 2-15

Sickle cell trait

• HbAS \rightarrow 35-40% HbS and 55-60% HbA, <u>no anemia</u>

Clinical manifestations

Renal disease:

≻Hematuria due to renal papillary necrosis

≻Hyposthenuria

≻CKD

≻UTI

► Renal medullary carcinoma

➢Splenic infarction or sequestration

(high altitude / scuba diving / dehydration)

Exertional sudden death / rhabdomyolysis

≻Higher risk of PE (OR 3.9)

➤Traumatic hyphema may lead to acute glaucoma

Tsaras et al. Am J Med. 2009;122(6):507-512.

Hemoglobin SC disease

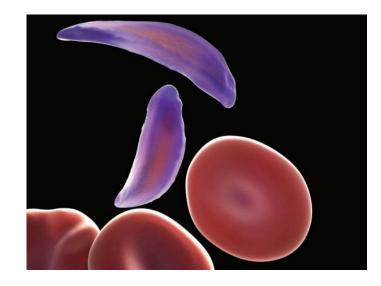
Clinical manifestations

- CBC:
 - Hemolytic anemia or compensated hemolytic state
 - Sickled cells and HbC crystals
- Milder disease; 30% may have frequent VOC
- Splenomegaly frequent may have mild thrombocytopenia due to hypersplenism
- Higher incidence of <u>AVN and retinopathy</u>

Question

A healthy African immigrant woman with sickle cell trait brings her 19 and 21-year old sons by the same father for evaluation. Neither has ever had a blood transfusion. You find on hemoglobin HPLC that the younger son has a report of ASFA₂ and the older SAFA₂. You suspect:

- A. Both sons have sickle cell trait
- B. One son has sickle cell trait and the other has sickle cell anemia with α -thalassemia
- C. One has sickle cell trait and the other has sickle- β -thalassemia
- D. Lab error in reporting S and A out of order for in the older son
- E. Incongruent paternity


Sickle cell disease (SCD)

- Acute manifestations
 - Vaso-occlusive crisis
 - Acute chest syndrome
 - Stroke (isch/hemorrh)
 - Sequestration (hepatic/splenic)
 - Acute intrahepatic cholestasis
 - Aplastic crisis
 - Priapism

Sickle cell disease (SCD)

- Chronic complications and end-organ damage
 - Retinopathy
 - Heart failure
 - Pulmonary hypertension
 - Gallstones
 - Hypersplenism/Asplenia
 - Avascular necrosis
 - Osteopenia/osteoporosis
 - CKD
 - Recurrent or stuttering priapism Leg ulcers / osteomyelitis

Question

A 22-yo F with history of sickle cell anemia (HbSS) presents to the ED with severe chest pain and shortness of breath. She has copious sputum production, severe pain and low-grade fever. CXR reveals a RLL infiltrate. She is also hypoxic. She is started on broad spectrum antibiotics, IVF and a morphine PCA. She receives 2 units of packed RBCs. Despite these interventions, she remains in respiratory distress.

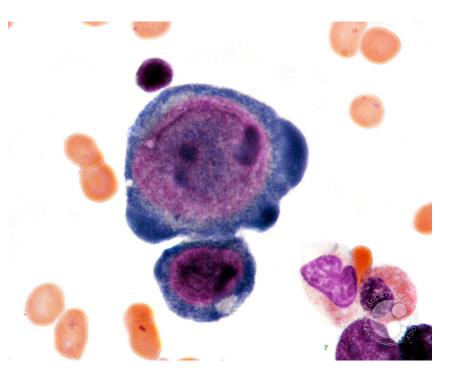
What additional therapy should be initiated at this time?

A. Bipap

- B. Albuterol
- C. Hydroxyurea
- D. RBC exchange

E. Sildenafil

Acute chest syndrome (ACS)


- Leading cause of death and 2nd most common cause of admission in adult SCD patients
- Diagnosis:
 - Fever,
 - Respiratory sx (dyspnea/cough/sputum)
 - New infiltrate on CXR
 - ±Hypoxia
- Triggers:
 - Infection (mostly children)
 - in-situ thrombosis
 - fat emboli (more frequent in adults)

VOC and ACS management

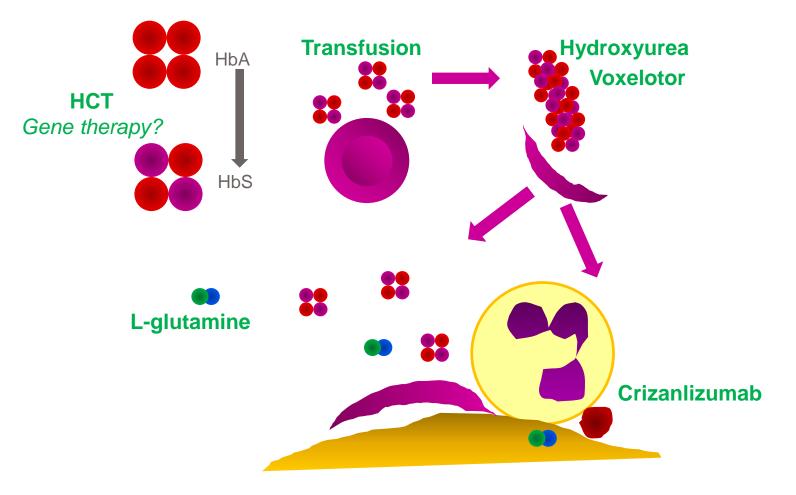
- VOC:
 - Aggressive analgesia
 - Appropriate hydration
 - Check for triggers (infection, dehydration, acidosis)
- ACS \rightarrow also add:
 - Empiric broad-spectrum antibiotics
 - Supplemental <u>oxygen</u> if SpO2<92%
 - Incentive spirometer, bronchodilators PRN
 - Simple or exchange red cell transfusions
- DISCUSS STARTING HYDROXYUREA!

Question

A 17 yo F with sickle cell anemia presents with profound fatigue and weakness. Her labs show Hb 4.3 g/dl (baseline 7.5 g/dl), MCV 84fL, and retic 1%. Her bone marrow core biopsy shows:

Copyright © 2017 American Society of Hematology.

What is the most likely cause of her severe anemia?


- A. Splenic sequestration
- B. Hyperhemolysis syndrome
- C. Iron deficiency
- D. Parvovirus infection
- E. Folate deficiency

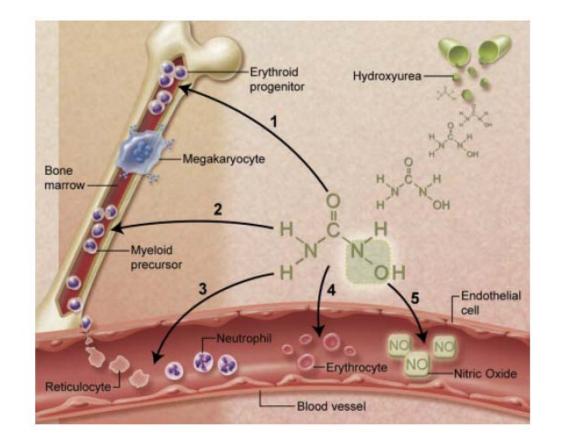
Aplastic crisis

- Cause: parvovirus B19 infection
- May happen in ANY chronic hemolytic anemia
- Diagnosis:
 - Anemia with reticulocytopenia
 - Marrow: giant **proerythroblasts** with viral inclusions
 - **PCR+ for parvovirus** (serology is not useful)
- Management: transfusions for support; avoid Hb overcorrection

Treatment of sickle cell disease (SCD)

<u>Children<5y: penicillin;</u> All: folate supplementation

Hydroxyurea


Mechanisms of action:

- 1. HbF induction
- 2. Lower WBC, plt, retic
- 3. Decrease adhesion
- 4. Reduce hemolysis, improve RBC hydration, increase MCV
- 5. Nitric oxide donor

Decreases:

- Mortality
- Frequency of VOC
- Frequency of ACS
- Red cell transfusion

Dose: 15-35mg/kg/day

When should you consider hydroxyurea?

Table 4. Indications for Hydroxyurea in Adult Patients with Sickle Cell Disease

Indication	Strength of Recommendation
SCA with \ge 3 pain crises per year	Strong
SCA with pain that interferes with ADL and QoL	Strong
History of severe or recurrent ACS	Strong
Chronic kidney disease on epoetin	Weak
HbS β + and HbSC with pain that interferes with ADL and QoL; consult sickle cell disease expert	Moderate

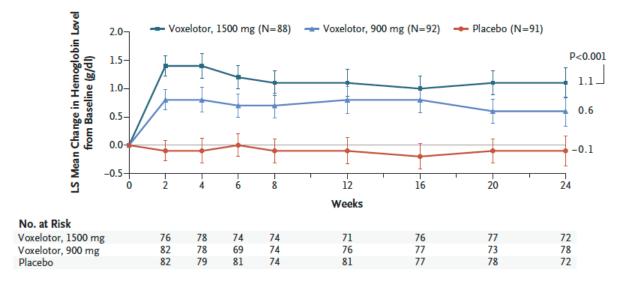
ACS = acute chest syndrome; ADL = activities of daily living; QoL = quality of life; SCA = sickle cell anemia.

A 16-yo F with sickle cell anemia (HbSS) is admitted to the hospital for an <u>acute ischemic stroke.</u> Her baseline hemoglobin is 9 g/dL (Hb S 85-90%). What should be recommended to prevent further cerebral ischemia?

- A. Simple transfusion to Hb>10g/dL
- B. Simple transfusion to Hb>10g/dL and heparin drip
- C. Red cell exchange transfusion to Hb>10g/dL
- D. Red cell exchange transfusion to HbS<30%
- E. Red cell exchange transfusion to HbS<20%

She receives the RBC exchange transfusion and makes a full neurologic recovery from her acute cerebrovascular infarct.

Which of the following interventions should be recommended upon discharge?

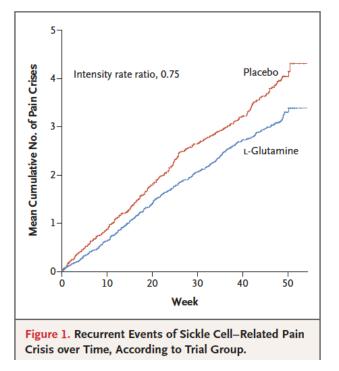

- A. Continue red cell exchange
- B. Initiate hydroxyurea
- C. High dose folic acid (5 mg daily)
- D. Simples transfusion to keep Hb>10g/dL
- E. Erythropoietin to keep Hb > 10 g/dL

Novel agent to improve anemia in SCD

Voxelotor (Oxbryta[®], previously GBT440)

Vichinsky et al. *N Engl J Med*. 2019 381(6):509-519. doi:10.1056/NEJMoa1903212 - small molecule that stabilizes R state binding to amino-terminus of alpha chain of Hb

B LS Mean Change in Hemoglobin Level from Baseline to Wk 24

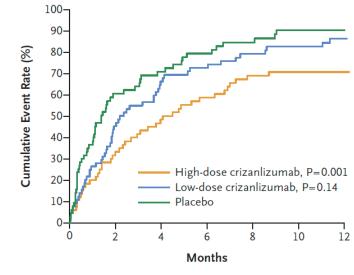


Novel agents to decrease VOC in SCD

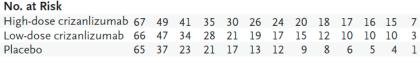
L-glutamine (Endari[®])

Niihara et al. N Engl J Med 379;3 July 19, 2018

- Increases NADH and improves anti-oxidative defense
- No change in Hb or hemolysis
- Decrease in VOC frequency



Novel agents to decrease VOC in SCD


Crizanlizumab (Adakveo®, previously SelG1)

Ataga et al. N Engl J Med 376;5 Feb 2, 2017

 Humanized monoclonal anti-P-selectin antibody that reduces cell adhesion

A First Sickle Cell–Related Pain Crisis

A 32-yo male with sickle cell anemia (HbSS) is diagnosed with acute cholecystitis. He has not been compliant with his daily folic acid and hydroxyurea. He is slated for a cholecystectomy under general anesthesia. CBC shows his baseline hemoglobin level of 8.2 g/dL.

Which of the following should be done preoperatively?

- A. Simple RBC transfusion
- B. Folic acid
- C. Hydroxyurea
- D. Enoxaparin
- E. RBC exchange transfusion

An 18-year-old woman with HbSS on chronic transfusion therapy for primary stroke prevention develops back pain and fever 6 days after a routine pRBC transfusion. Her pre-transfusion Hb was 8.3 g/dL; current Hb is 5.7 g/dL. Her electrophoresis shows HbA 40%, HbS 60%, HbF 5%, and HbA₂ 5%. Direct antiglobulin test (DAT) and screen are negative; LDH level is elevated at 1200 U/L. Absolute reticulocyte count (ARC) is high at 450,000/ μ L.

What is the most likely diagnosis?

- a. Aplastic crisis
- b. New alloantibodies
- c. Delayed hemolytic transfusion reaction (DHTR)
- d. Hyperhemolysis syndrome
- e. Splenic sequestration

Novel therapies for sickle cell disease

Gene therapy - investigational

Ribeil et al. N Engl J Med 2017;376:848-55

- Gene addition

e.g. anti-sickling Hb (HbA^{T87Q})

- Gene editing (zinc-finger nucleases, CRISPR-Cas9)
 e.g. Disruption of BCL11A
- Gene editing and addition
- Base pair editing

ABIM Hematology exam blueprint

• Thalassemias

- β-thalassemia
- α-thalassemia
- Hemoglobin E disorders
- Sickle cell disorders
 - Sickle cell trait
 - Sickle cell anemia (hemoglobin SS disease)
 - Hemoglobin SC disease and C hemoglobinopathy
 - > Sickle cell- β^0 and sickle cell- β^+ thalassemias

Non-sickle hemoglobinopathies

• Educational resources

Hemoglobin Lepore

- **Fusion** of β and δ globin genes
- Decreased synthesis of β-like globins
- Homozygote: β-thal major phenotype
 - > 8-30% Hb Lepore
 - > 70-92% Hb F
- Heterozygote: β-thal minor (trait) phenotype

Hemoglobin Constant Spring

- Non-deletional form of α-thalassemia
- Mutation in stop codon of α_2 -globin adds 31 additional aminoacids \rightarrow 1% normal α -globin
- Homozygotes: more severe Hb H disease, but ~normal MCV

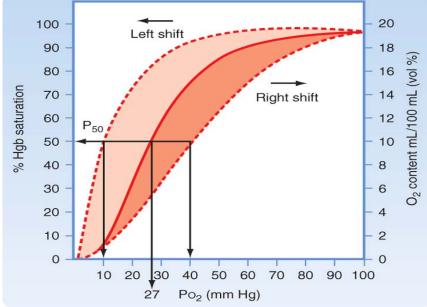
Hereditary persistence of HbF (HPFH)

- Clinically silent (e.g. found in blood donation)
- Up-regulation of γ chain synthesis
- Caused by:
 - \succ deletions involving β and δ genes (nearly 100% HbF);
 - \succ point mutations in γ chain promoter (variable HbF);
 - decreased expression of KLF1, transcription factor that activates HbF suppressor gene BCL11A
- Significantly modifies clinical outcomes when coinherited with Hb S

Unstable hemoglobin disease

- Congenital chronic non-spherocytic anemia
 - variable severity
 - ± low MCV
- Rare, AD mutations \rightarrow defective heme binding by globin chains
- Diagnosis:
 - Heinz bodies precipitation in RBCs on isopropanol test
 - About 200 "unstable" Hb variants \rightarrow DNA sequencing
- Hb Köln most common: anemia, retics (10-25%), splenomegaly
- Treatment: avoid oxidant drugs, RBC transfusions as needed, splenectomy

Hemoglobin M disorders


Hereditary <u>methemoglobinemias</u>:

- Asymptomatic cyanosis, slate grey/brownish skin, no dyspnea or hypoxia
- Autosomal dominant
- Amino acid substitution in heme pocket: $Fe^{2+} \rightarrow Fe^{3+}$, cyanosis
- Diagnosis: abnormal SpO2, Hb electrophoresis/spectra, metHb < 30%
- No tx needed, cyanosis *not* reversible with methylene blue or vitamin C
- Distinguish from other metHbemias (treat with <u>methylene blue</u>)
 - **Toxins:** nitrites, sulfanilamide, dapsone, primaquine, etc.
 - Symptomatic with metHb> 30% (> 50% is lethal!)
 - Congenital deficiency in cytochrome b5 reductase: Fe³⁺ → Fe²⁺
 - cyanosis improves with methylene blue or vitamin C

Other hemoglobin disorders

• Hb with high O₂ affinity:

- AD, familial erythrocytosis,
- \succ α or β -chains can be affected
- Diagnosis: low P₅₀ (left shifted on O₂ dissociation curve), variant Hb in electrophoresis, DNA sequencing
- No phlebotomy unless Ht>60%
- Differential dx: polycythemia vera, secondary polycythemias

Koeppen & Stanton: Berne and Levy Physiology, 6th Edition. Copyright @ 2008 by Mosby, an imprint of Elsevier, Inc. All rights reserved

• Hb with low O₂ affinity:

- Right shift on O₂ dissociation curve (high P₅₀ ~ 30-40 mmHg)
- Cyanosis, but otherwise asymptomatic (depending on degree of right shift)

```
> No treatment required
```

Educational resources

- NHBLI Evidence-based Management of Sickle Cell Disease- Expert Panel Report (2014)
- Thalassemia International Foundation (TIF) publications <u>www.thalassaemia.org.cy</u>
- American Society of Hematology Self-Assessment Program 6th Ed. (ASH SAP)
- ASH Pocket Guides (download from App store)
- Hematology/Oncology question bank <u>hemeoncquestions.com/</u>
- Hematology-Oncology board review questions <u>www.turner-white.com/brm/bonco.htm</u>
- Special thanks: Drs. Oyebimpe Adesina, Victor Gordeuk, Ravin Garg, and Vivien Sheehan

THANK YOU