General Principles of Radiation Oncology

Jonathan Chen, MD, PhD Assistant Professor Department of Radiation Oncology University of Washington / SCCA

Overview

- Basics of radiation therapy
 - History
 - Mechanism
 - Particle types: photons, protons, neutrons, heavy ions
- Definition of common lingo
 - IGRT, IMRT, VMAT, SBRT, SABR, CyberKnife, Gamma Knife
- A few specific clinical points of interest
 - Palliative RT
 - Hypofractionation
 - Protons
- What's on the frontier
 - Metastatic cancer treatment
 - MR-guided RT
 - FLASH

•1895 – Röntgen discovers x-rays (Nobel Prize 1901)

•1896 – First patients with cancer treated with x-rays by Emil Grubbe in Chicago and Victor Despeignes in France

•1896 – Becquerel discovers natural radioactive decay. Marie and Pierre Curie further characterize radioactive compounds. (All three win Nobel Prize in 1903)

•1901 – First use of brachytherapy

•1952 – First "linear accelerator" used for treatment (USA in 1957)

•1967 - Invention of the Gamma Knife

•1970s – Computed Tomography (CT)

•1980s – Intensity modulated radiation treatment (IMRT), Proton therapy

•2000s - Image-guided RT (IGRT), MR-based RT

Marie Curie (1867-1934)

- Cyclotron (Ernest Lawrence, UC Berkeley)
- Linear Accelerator (Henry Kaplan, Stanford)

Copyright © 2010 Wolters Kluwer Health | Lippincott Williams & Wilkins

- Treatment of malignant and non-malignant conditions
 - Tinea capitis
 - Tonsillitis
 - Enlarged thymus
 - O Ankylosing spondylitis
 - o Acne
 - Peptic ulcers
 - Keloids
 - Heterotopic ossification prophylaxis
 - Graves opthalmopathy
 - Orbital pseudotumor
 - Dupuytren's disease
 - O Gynecomastia

- Radiation oncologists initially trained as diagnostic radiologists and then pursued "Therapeutic Radiology" afterwards
- Still under American Board of Radiology, American College of Radiology, etc.
- 1970's: dedicated radiation therapy residency programs began to proliferate

"Allied Disciplines"

One of the tines in the trident of oncology

"Allied Disciplines"

One of the tines in the trident of oncology

Radiation Biology 101

- Radiation treats cancer by directly killing tumor cells
- DNA damage → Mitotic catastrophe
- Preferentially affects rapidly proliferating cells
- Tumor Control Probability based on dose-dependent killing of all cells in a tumor

Radiation Oncology: Mechanism

Radiation Oncology: Mechanism

- Radiation's primary effects have been thought to be mediated by DNA damage leading directly to cell death
- However, other mechanisms may be more important than we originally realized as well...
 - Effects on vasculature, especially tumor vasculature
 - Very high dose or high LET radiation may affect cell membrane integrity and protein structures
 - Modulation of the immune response

Different RT Options and Definition of Common Lingo

Radiation Oncology: Brachytherapy

- Brachytherapy
 - Low dose rate = < 2 Gy/hr
 - High dose rate = > 12 Gy/hr
 - Pulsed dose rate (uncommon) = 2-12 Gy/hr

Copyright © 2010 Wolters Kluwer Health | Lippincott Williams & Wilkins

Copyright © 2010 Wolters Kluwer Health | Lippincott Williams & Wilkins

Brachytherapy: A Dying Art?

External Beam Radiation Treatment Options

• The linear accelerator or LINAC

Modality	Energies
Photons	6, 10, 15, 18
MV	
Electrons	6, 9, 12, 16
MeV	

- 3DCRT, IMRT, IGRT, VMAT, SBRT, SABR, SRS
- Gamma Knife
- Cyberknife
- Tomotherapy

Image courtesy of Varian Medical Systems, Inc. All rights reserved

- 3DCRT 3-D conformal RT
- IMRT intensity modulated RT
- VMAT volumetric modulated arc therapy
- IGRT image-guided RT
- SBRT stereotactic body RT
- SABR stereotactic ablative radiation
- SRS stereotactic radiosurgery

- 3DCRT 3-D conformal RT
- IMRT intensity modulated RT
- VMAT volumetric modulated arc therapy
- IGRT image-guided RT
- SBRT stereotactic body RT
- SABR stereotactic ablative radiation
- SRS stereotactic radiosurgery

3DCRT - 3-D conformal RT

IMRT - intensity modulated RT

VMAT - volumetric modulated arc therapy

IGRT - image-guided RT

SBRT - stereotactic body RT

SABR - stereotactic ablative radiation

SRS - stereotactic radiosurgery

- 3DCRT 3-D conformal RT
- **IMRT intensity modulated RT**
- VMAT volumetric modulated arc therapy
- IGRT image-guided RT
- SBRT stereotactic body RT
- SABR stereotactic ablative radiation
- SRS stereotactic radiosurgery

Geometrical Field shaping

With intensity modulation

3DCRT - 3-D conformal RT

IMRT - intensity modulated RT

VMAT - volumetric modulated arc therapy

IGRT - image-guided RT

SBRT - stereotactic body RT

SABR - stereotactic ablative radiation

SRS - stereotactic radiosurgery

3DCRT - 3-D conformal RT

IMRT - intensity modulated RT

VMAT - volumetric modulated arc therapy

IGRT - image-guided RT

SBRT - stereotactic body RT

SABR - stereotactic ablative radiation

SRS - stereotactic radiosurgery

- **3DCRT 3-D conformal RT**
- **IMRT intensity modulated RT**
- VMAT volumetric modulated arc therapy
- IGRT image-guided RT
- SBRT stereotactic body RT
- SABR stereotactic ablative radiation
- SRS stereotactic radiosurgery

- 3DCRT 3-D conformal RT
- IMRT intensity modulated RT
- VMAT volumetric modulated arc therapy
- **IGRT image-guided RT**
- SBRT stereotactic body RT
- SABR stereotactic ablative radiation
- SRS stereotactic radiosurgery

3DCRT - 3-D conformal RT

IMRT - intensity modulated RT

VMAT - volumetric modulated arc therapy

IGRT - image-guided RT

SBRT - stereotactic body RT

SABR - stereotactic ablative radiation

SRS - stereotactic radiosurgery

Radiation Treatment Machines: Gamma Knife

- Radiosurgery
 - Single high-dose radiation fraction
 - Very conformal (i.e. tight margins)

Images courtesy of Elekta. All Rights Reserved.

Radiation Treatment Machines: CyberKnife

Image courtesy of Accuray, Inc. All rights reserved

Radiation Treatment Machines: Tomotherapy

Image courtesy of Accuray, Inc. All rights reserved

Radiation Oncology: Particle Options

- Particle therapy
 - Photons
 - Electrons
 - Protons
 - Neutrons
 - Heavy ions

Radiation Treatment Machines: Protons

Radiation Treatment Machines: Neutrons

- Potentially lower toxicities
- Better able to kill hypoxic tumor cells
- Cells less able to repair radiation damage
- Less variation in radiosensitivity across cell cycle
- Potentially greater non-traditional anti-cancer mechanisms

A Few Clinical Points of Interest

What is the Deal with Protons?

- Proton radiation is a type of radiation
- FDA approved technology 1988
- Delivers radiation to tumors while reducing radiation exposure to surrounding normal tissues
- Confers a clinical advantage for some patients compared to conventional X-ray (photon) treatment
- Another tool for the radiation oncologist
- Useful only when radiation therapy is indicated

What is the Deal with Protons?

- Unique dose depth profile due to the Bragg peak
- Spread-out Bragg peak used to treat a clinical volume (overlap individual proton beams of variable intensities)

Proton Therapy

Proton Therapy

Proton Therapy

Proton Therapy

Proton Therapy

ASTRO Group 1

- Ocular tumors
- Base of skull tumors
- CNS tumors, including spinal tumors near the cord
- HCC
- Pediatric tumors
- Patients with genetic syndromes with RT hypersensitivity (e.g. NF-1, Rb)
- T4 and/or unresectable H&N cancers
- Paranasal sinus tumors
- RP sarcomas
- Re-RT

ASTRO Group 2

- Other H&N cancers
- Thoracic malignancies
- Abdominal malignancies
- Pelvic malignancies
- Prostate cancer
- Breast cancer

Proton Therapy Centers

- Radiation therapy has traditionally been a "fractionated" treatment course spread over several weeks.
- Takes advantage of differential repair abilities of normal and malignant tissues.

Hall Figure 5.6a

- Regaud and The French Ram
 - A single dose of radiation that is sufficient to sterilize a ram also causes significant skin toxicity
 - If the same dose is delivered in several fractions, the ram is sterilized, but there is no skin toxicity
- 1920's 1930's
 - Regaud extended treatment time for uterine cancer improved outcomes
 - Coutard fractionated treatment for head and neck cancer reduced toxicity with better outcomes

Hall Figure 23.1

- Linear quadratic (α/β)
 model
 - Alpha = single hit kills
 - Beta = double hit kills

Hall Fig 3.5

- Different cell lines, tissues, and tumors have different α/β values
 - α/β defines the dose of radiation at which the number of cells killed by a single hit equals the number killed by two hits
 - High α/β = most tumors, early responding normal tissues
 - Low α/β = late responding tissues, some tumors (eg. prostate)

Hall Figure 23.6

- Radiation prescription can be modified to take advantage of different dose response curves.
 - Change number of fractions, keep same "biologically effective dose" (BED).
- BED = nd(1+d/[α/β])
 - n = number of fractions
 - d = dose/fraction

Hall Figure 5.8

Hypofractionation vs Hyperfractionation

Hypofractionation

- Convenience for patient
- Potentially more effective for tumors with low a/B
- E.g. prostate cancer, RCC
- Hyperfractionation / Accelerated
 - Potentially more favorable toxicity profile
 - May also be more effective for tumors with quick repopulation rates
 - E.g. head and neck cancers

Palliative RT

- 30 Gy in 10 fractions has been the standard for years
- 8 Gy in 1 fraction was directly compared to the standard in treating painful bone metastases
- No difference in rate of pain relief
- Higher rate of requiring re-treatment
- Other palliative situations
 - Bleeding
 - Radioresistant tumors
 - "Durable palliation"

Looking to the Future

RT in the Metastatic Cancer patient

- Radiation typically restricted to palliation
- Emphasis of treatment is on systemic therapy
- Theory that cancer cells have already spread throughout the entire body, so local ablation has no curative benefit

Oligometastatic Disease

- First popularized by Hellman and Weichselbaum in 1995
- A distinct state from non-metastatic and widely metastatic disease
- Also referred to as "low metastatic burden" or "low volume disease"
- Possible benefit of definitive therapy

Can RT Do More in Metastatic Cancer?

SABR-COMET

Palma et al. (IJROBP 2018)

- Phase II multi-national study w/ patients with 1-5 mets and controlled primary
- Palliative SOC vs SOC + SABR to all mets
- Trial designed with two-sided alpha of 0.20, 10 endpoint OS
- n=99 with breast, lung, CRC, and prostate cancer
- 92/99 had 1-3 mets
- At median f/u 27 mo, median OS was 28 vs 41 mo (p=0.09), PFS was 6 vs 12 mo (p=0.001)
- Grade 2+ AEs 9% vs 30% (p=0.02), mostly fatigue, dyspnea, pain
- Three treatment-related grade 5 AEs in SABR arm

STAMPEDE

Parker et al. (Lancet 2018)

- Phase III RCT in 117 hospitals across Switzerland and the UK
- n=2061 patients w/ newly diagnosed metastatic PCa
- Median PSA 97 ng/ml
- Randomized to lifelong ADT +/- RT to prostate
- Docetaxel allowed with ADT in 2016 (18% received)
- Randomization stratified for hospital, age, nodal involvement, WHO performance status, planned ADT, and regular aspirin or NSAID use, and later docetaxel use
- RT = 55 Gy/20 fx QD or 36 Gy/6 fx weekly
- 10 endpoint: Overall Survival

STAMPEDE

Definition of "high metastatic burden" = ≥4 bone mets w/ ≥1 outside the vertebral bodies/pelvis or visceral mets

Figure 4: Overall survival and failure-free survival by treatment and metastatic burden HR=hazard ratio. Solid lines show the Kaplan-Meier analysis and dotted lines show the flexible parametric model.

Why Does Local Therapy Help?

- Diminishes tumor burden
- Durable LC important as systemic control improves
 - Preventing morbidity/mortality from local growth
- Disrupts complex interplay between primary tumor and microenvironment of potential metastatic sites ("priming the premetastatic niche")
- Disrupts metastasis-to-metastasis communication and spread
- SBRT may have different effects on cancer biology
- Enhances immune response

MR-Guided Radiation Therapy

- The best soft-tissue contrast
- Real-time imaging
- Automated gating
- Adapting planning

- First system launched commercially in 2014, the ViewRay MRIdian
- Other systems currently in early stages of use and testing

MR-Guided Radiation Therapy

- The best soft-tissue contrast
- Real-time imaging
- Automated gating
- Adapting planning

- First system launched commercially in 2014, the ViewRay MRIdian
- Other systems currently in early stages of use and testing

FLASH-RT

- Ultrahigh dose rate (>40 Gy/s)
 - Regular radiation treatments are typically 1-5 Gy/minute
 - Total body radiation is given 0.06-0.25
 Gy/min
- Whole lung radiation in mice
 - Less pulmonary fibrosis
 - Hair depigmentation, no epilation or ulceration 36 weeks post FLASH RT

Favaudon V et al. Sci Transl Med 2014;6:245ra93.

FLASH-RT

• Potentially the same or better tumor control but less toxicity

Favaudon V et al. Sci Transl Med 2014;6:245ra93.

FLASH-RT

- Similar results seen with whole brain radiation (10 Gy CONV dose rate or FLASH rate)
- Blinded assessment of mice videotaped performing Novel
 Object Recognition tests showed better memory skills post FLASH RT
 - Better preservation of cellular division in the hippocampus subgranular zone
 - Less astrogliosis

Montay-Gruel P et al. Radiother Oncol. 2018 Dec;129(3):582-588.

FLASH-RT at UW

- Small animal x-ray and proton radiator, beam sizes 1-40 mm, on board CT scan for positioning
- In process of being adapted to deliver proton FLASH-RT
- Existing linear accelerators cannot deliver FLASH-RT to patients, but proton centers could!

Ford E et al. Phys Med Biol. 2017 Jan 7;62(1):43-58.

Thank you for your attention!