Esophageal and Gastric Cancer

SCCA Comprehensive Oncology Review September 2020

Veena Shankaran MD, MS
Associate Professor, Medical Oncology
University of Washington School of Medicine
Fred Hutchinson Cancer Research Center

Objectives

Epidemiology and Risk Factors

Pathology, Diagnosis, and Staging

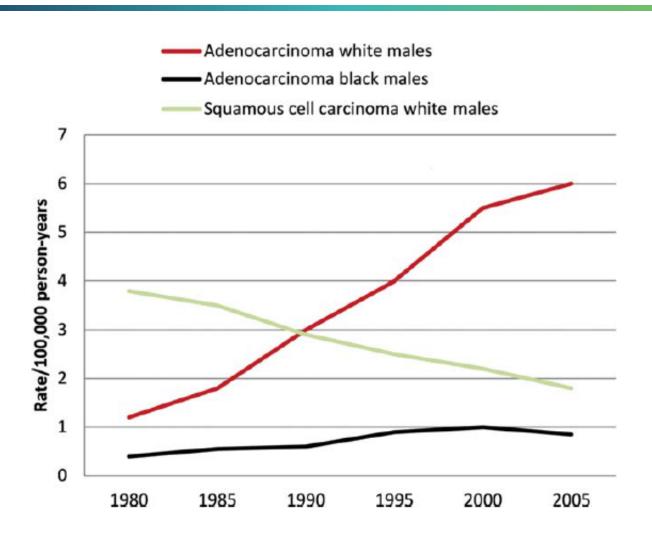
Stage I-III Esophageal Cancer

Stage I-III Gastric Cancer

Advanced Esophageal and Gastric Cancer

Epidemiology and Risk Factors

Incidence and Mortality - 2020


	Estimated new cases			Estimated deaths		
	Male	Female	TOTAL	Male	Female	TOTAL
Esophageal	14,350	4,090	18,440	13,100	3,070	16,170
Gastric	16,980	10,620	27,600	6,650	4,360	11,010

Esophageal Cancer: 6th most common cause of cancer death worldwide Gastric Cancer: 3rd most common cause of cancer death worldwide

American Cancer Society, Facts & Figures, 2020

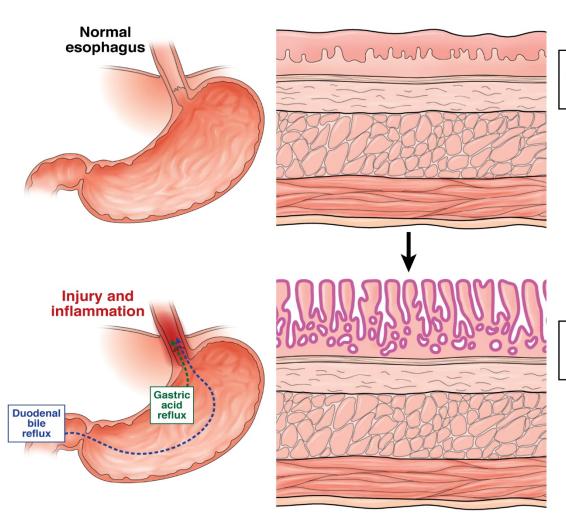
Esophageal Cancer Epidemiology

Esophageal Cancer: Risk Factors

Squamous Cell Carcinoma	Adenocarcinoma
•Tobacco (5-10 x risk)	•Tobacco (2 x risk)
•EtOH (3-7 x risk)	•EtOH (1.2 x risk)
•Betel nut	•GERD (7.7 x risk)
•Hot liquids – burns	•Obesity (3 x risk)
•Nitroso compounds	

Crew, KD and Neuget AI. World J Gastroenterology. 2006 Jan; 12(3): 354-62

Lagergren, J et al. *NEJM*. 1999; 340(11): 825. Lagergren, J et al. *Ann Intern Med*. 1999: 883-890


Symptomatic GERD

	Adjusted odds ratio (95% CI)			
	Esophageal adenocarcinoma	Gastric cardia adenocarcinoma	Esophageal squamous cell ca	
No symptoms	1.0	1.0	1.0	
Heartburn +/or regurgitation at least once a week	7.7 (5.3-11.4)	2.0 (1.4 – 2.9)	1.1 (0.7-1.9)	
Heartburn +/or regurgitation at night at least once a week	10.8 (7.0-16.7)	2.4 (1.5 – 3.8)	0.9 (0.4-2.0)	

Lagergren et al, N Eng J Med 340:825, 1999.

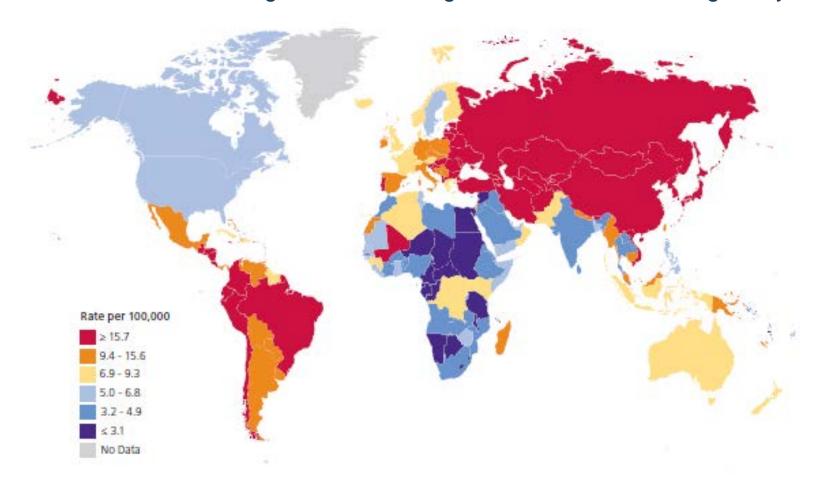
Barrett's Esophagus

A Normal squamous epithelium

6.6% Annual risk for adenocarcinoma with HIGH GRADE DYSPLASIA

B Metaplastic columnar tissue (BE)

Gastric Cancer: Risk Factors


Gastric Cancer

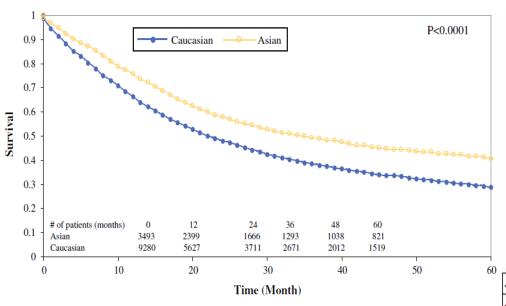
- Nitrite-containing, salt preserved foods
- Smoking (distal gastric cancers) (OR 2.1 vs. nonsmoker)
- •GERD (cardia tumors) (OR 2.0)
- Obesity (2-3x higher risk in obese vs. normal BMI)
- •H. pylori (intestinal subtype; body/distal) (1.2-16.7 fold increased risk, particularly CagA strain)
- •Familial (Hereditary diffuse gastric cancer (CDH1 mut; E. cadherin loss); HNPCC (Lynch); Peutz-Jehgers (STK11); Li-Fraumeni (p53); FAP (APC)

Gastric Cancer Trends

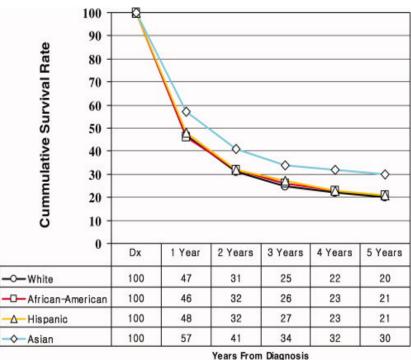
International variation in age-standardized gastric cancer incidence globally

Gastric Cancer: Asian vs. Western

In Asia:


- Younger age at diagnosis
- More localized disease at presentation (53% in Japan vs. 27% in US) – screening programs
- More common in distal stomach
- More aggressive surgical resection
- More lines of systemic therapy

Better Survival in Asia



Gastric Cancer: Outcomes by Ethnicity

SEER-Medicare

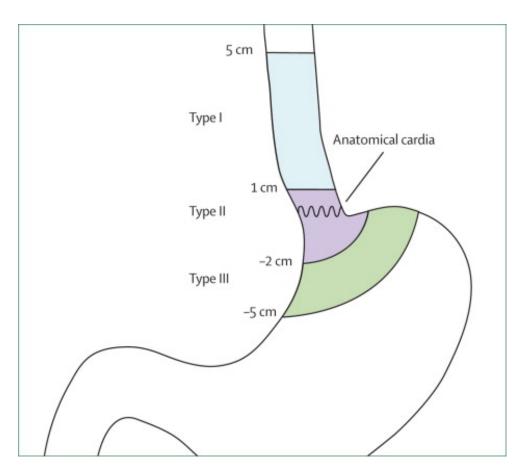
National Cancer Database

Wang J. et al. Ann Surg Oncol, 2015; 22: 2965-2971 Al-Refaie W. et al. Cancer, 2008; 113(3): 461-469

Diagnosis, Staging, and Pathology

Esophageal Cancer Staging Workup

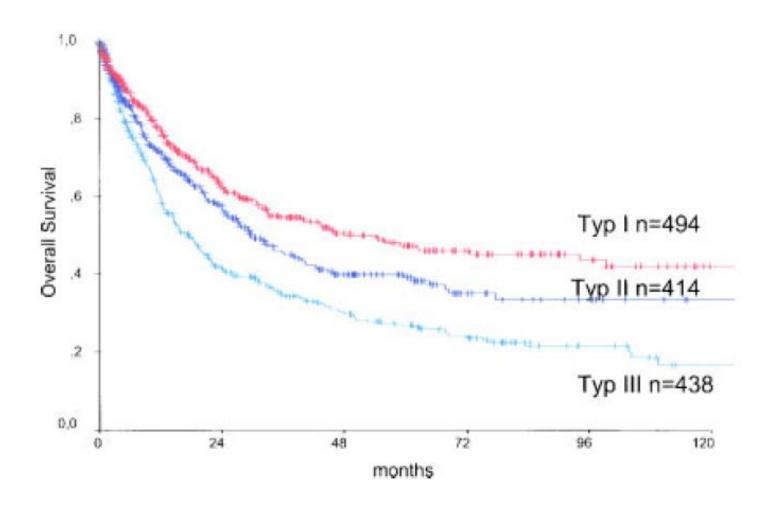
T-stage: EUS, Bronchoscopy (if above carina)


N-stage: EUS (FNA if possible), PET

M-stage: CT, PET, staging laparoscopy (GE jxn or

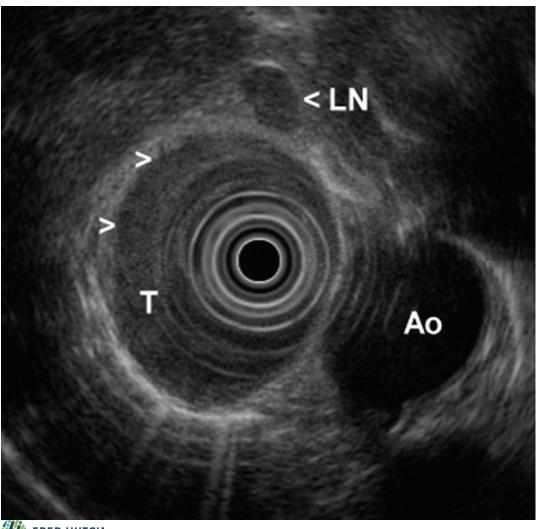
cardia)

GE Junction– Siewert Classification



Type 1	Located between 1-5cm proximal to anatomic cardia
Type 2	Located between 1cm proximal and 2cm distal to anatomic cardia
Type 3	Located between 2 and 5cm distal to anatomic cardia

Gronnier C, et al. Journal of Visceral Surgery. 149:1, Feb 2012


Siewert Classification

Siewert R et al. *J Surg Onc.* 90; 139-46, 2005

Endoscopic Ultrasound

Malignant lymph nodes

- Round
- Hypoechoic
- Smooth borders
- 1cm or greater

Lennon A M , Penman I D Br Med Bull 2007;84:81- $98\,$

Esophageal Cancer Staging Principles

- Squamous cell and Adenocarcinoma = Different stage groupings
- TNM, Grade, Location (Squamous only)
- Clinical staging (u or c prefix)
- Pathologic staging after chemoRT (yp prefix)
- Example: uT3N1 (stage IIIB) distal esophageal adeno → chemoRT → surgery → ypT1N0

Esophageal Cancer Staging: AJCC 8th ed

AJCC 8 ^t	h Edition - Esophageal Cancer Staging
T stage	Tis = high grade dysplasia T1a = Tumor invades lamina propria or muscularis mucosae T1b = Tumor invades submucosa) T2 = Tumor invades muscularis propria T3 = Tumor invades adventitia T4a = Resectable tumor invading pleura, pericardium, or diaphragm T4b = Unresectable tumor invading other adjacent structures, such as aorta, vertebral body, trachea, etc.)
N stage	N0 = No lymph node metastases N1 = Metastases in 1-2 regional lymph nodes N2 = Metastases in 3-6 regional lymph nodes N3 = Metastases in 7 or more regional lymph nodes
M stage	M0 = no distant metastases M1 = distant metastases

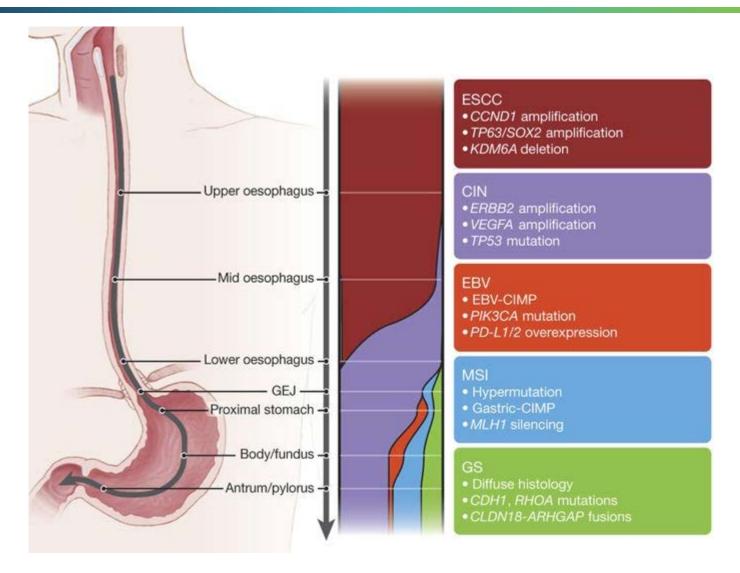
Squamous Cell Ca: AJCC 8th ed

Stage Groupings: Squamous Cell Carcinoma					
Stage	T	N	M	G	<u>Location</u>
Stage 0	Tis	N0	M0 [#]	N/A	Any
Stage IA	T1a	N0	M0	1 or X	Any
Stage IB	T1a	N0	M0	2 or 3	Any
	T1b	N0	M0	Any	Any
	T2	N0	M0	1	Any
Stage IIA	T2	N0	M0	2, 3, or X	Any
	T3	N0	M0	Any	Lower
	T3	N0	M0	1	Upper, middle
Stage IIB	T3	N0	M0	2 or 3	Upper, middle
	T3	N0	M0	X	Any
	Т3	N0	M0	Any	location X
	T1	N1	M0	Any	Any
Stage IIIA	T1	N2	M0	Any	Any
	T2	N1	M0	Any	Any
Stage IIIB	T2	N2	M0	Any	Any
	T3	N1-2	M0	Any	Any
	T4a	N0-1	M0	Any	Any
Stage IVA	T4a	N2	M0	Any	Any
_	T4b	N0-2	M0	Any	Any
	Any	N3	M0	Any	Any
Stage IVB	Any T	Any N	M1	Any	Any

Adenocarcinoma: AJCC 8th ed

Stage Grouping: Adenocarcinoma				
Stage	T	N	M	G
Stage 0	Tis (HGD [#])	N0	M0	N/A
Stage IA	T1	N0	MO	1 or X
Stage IB	T1a	N0	M0	2
	T1b	N0	MO	1, 2, or X
Stage IC	T1	N0	MO	3
	T2	N0	MO	1 or2
Stage IIA	T2	N0	MO	3 or X
Stage IIB	T1	N1	MO	Any
	T3	N0	MO	Any
Stage IIIA	T1	N2	MO	Any
	T2	N1	MO	Any
Stage IIIB	T2	N2	MO	Any
	T3	N1-2	MO	Any
	T4a	N0-1	MO	Any
Stage IVA	T4a	N2	MO	Any
	T4b	N0-2	MO	Any
	Any	N3	MO	Any
Stage IVB	Any T	Any N	M1	Any

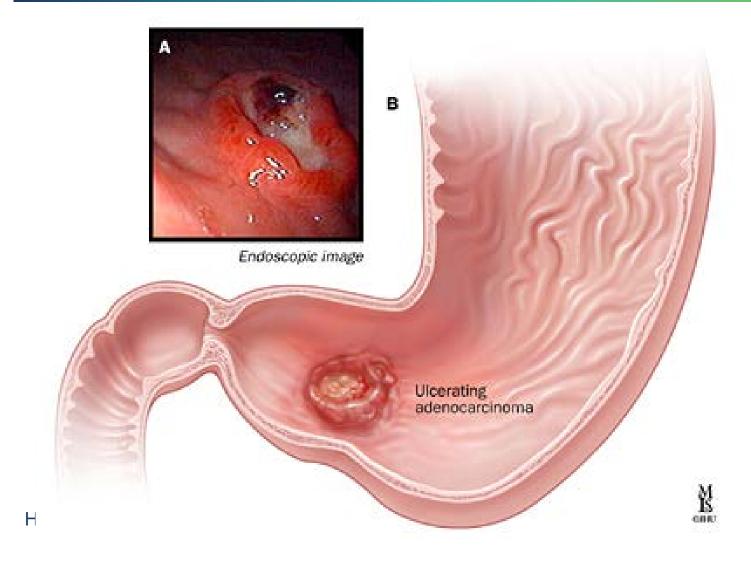
Gastric Cancer Staging


Incorporates diagnostic laparoscopy

- Evaluation of the peritoneum
- + cytology = pM1

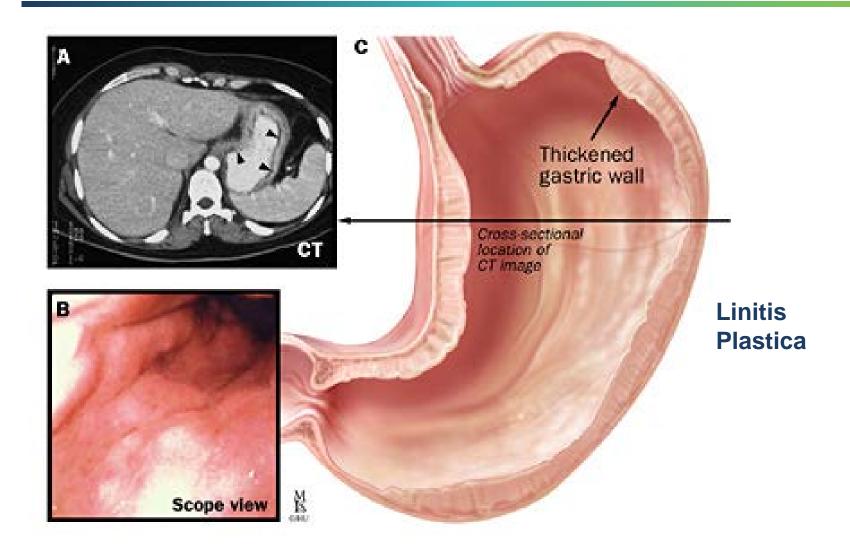
Stage Groupir	ngs for pTNM		
Stage 0	Tis	N0	M0
Stage IA	T1	N0	M0
Stage 1B	T1	N1	M0
	T2	N0	M0
Stage IIA	T1	N2	M0
	T2	N1	M0
	T3	N0	M0
Stage IIB	T1	N3a	M0
	T2	N2	M0
	T3	N1	M0
	T4a	N0	M0
Stage IIIA	T2	N3a	M0
	T3	N2	M0
	T4a	N1-2	M0
	T4b	N0	M0
Stage IIIB	T1-2	N3b	M0
	T3	N3a	M0
	T4a	N3a	M0
	T4b	N1-2	M0
Stage IIIC	T3	N3b	M0
	T4a	N3b	M0
	T4b	N3a or N3b	M0
Stage IV	Any T	Any N	M1

Upper GI Cancer Molecular Subtypes


Lauren Classification - Adenocarcinoma

Intestinal	Diffuse		
• Inflammation present (H. pylori, atrophic gastritis,	No inflammation		
glandular dysplasia)	 Loss of E-cadherin no clear precancerous lesion 		
'Cascade' of events:			
inflammation → intestinal metaplasia → dysplasia → invasive carcinoma	 No clear mucosal mass - Invades gastric wall (e.g. linitis plastica) 		
Mucosal mass	 Highly metastatic, invasive, poor prognosis 		
 Develop over years, better prognosis 			

Lauren, P. Acta Pathol Microbiol Scand. 1965; 64(31). Shah, M. et al. Clin Cancer Research. 2011; 17: 2693-2701



Intestinal Type Adenocarcinoma

Diffuse Type Adenocarcinoma

Hereditary Diffuse Gastric Cancer

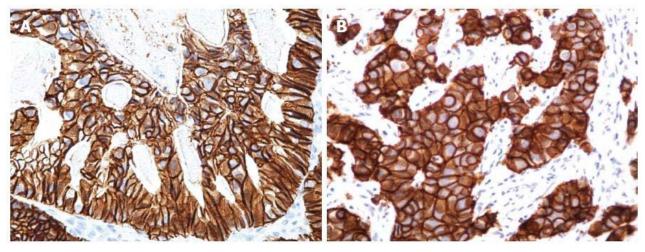
Germline mutations in CDH1 gene (leading to loss of E-cadherin)

- Autosomal dominant with > 70% penetrance
- Diffuse, signet ring type adenocarcinoma
- Increased incidence lobular breast cancer
- Prophylactic gastrectomy should be considered

Huntsman, et al. New England Journal of Medicine. 344;1904, 2001

Her2 + Esophageal and Gastric Cancers

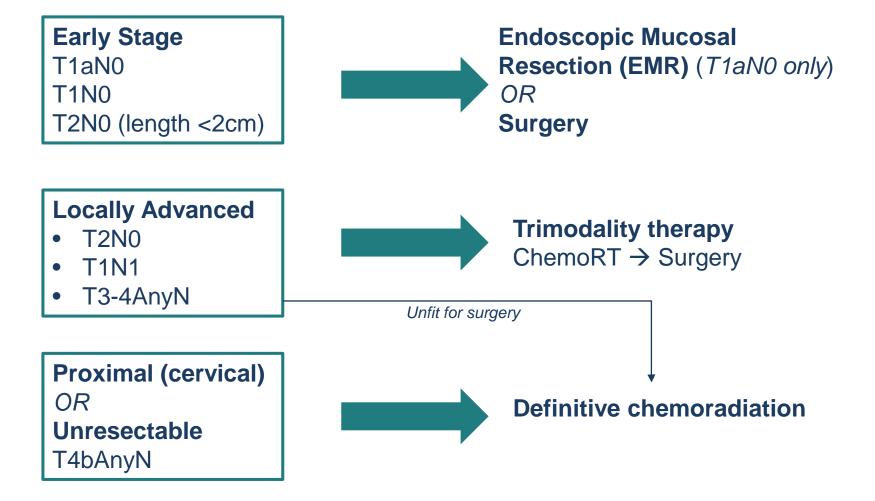
- 15-20% of all gastric/esophageal adenocarcinoma (distal esophageal, GE junction, intestinal-type)
- Her2 3+ OR FISH + (HER2/CEP17 ratio ≥2.0) considered eligible


Gastric / Eso	Breast		
Heterogeneous expression	Uniform expression		
Interpretation criteria differs between biopsy and resection	Same interpretation criteria regardless of specimen		
Apical membrane often does not stain - + result requires only lateral / basolateral staining	Complete circumferential staining required for positive result.		

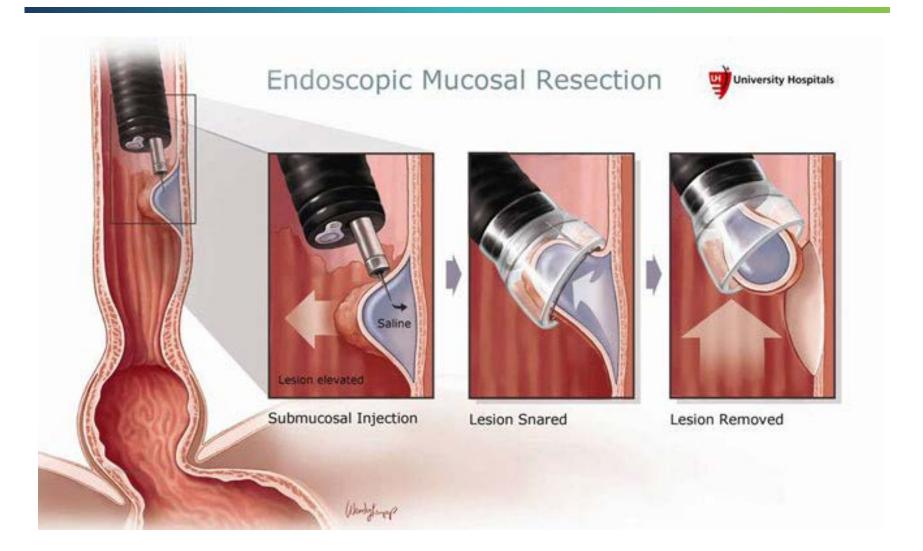
Her2 + Esophageal and Gastric Cancers

Heterogeneity

Basolateral vs. Circumferential and Apical staining


Abrahao-Machado, et al. World J Gastroenterol. 2016; 22(19): 4619-4625.

Stage I-III Esophageal Cancer



Esophageal Cancer Treatment Algorithm

Endoscopic Mucosal Resection – T1a lesions

Surgery (Esophagectomy)

Transhiatal approach	Transthoracic (Ivor Lewis)		
Blind dissection of tumor	Direct visualization of tumor		
Thoracotomy not required	Thoracotomy required		
 Anastomotic leak more common, but easier to manage 	 Anastomotic leak less common, but mediastinal leaks difficult to manage – higher morbidity 		
 Abdominal and cervical incisions Shorter ICU / hospital stay 	 Abdominal and thoracic incisions 		
Surgery should be done at a high volume center			

Neoadjuvant ChemoRT: Randomized Trials

Citation	# Pts	Preoperative Treatment	Path CR	Survival
Walsh, TN NEJM 1996	113 (adeno only)	Cis/5-FU/RT (40 Gy)	25%	16 vs. 11 months (p=0.01)
Bosset, JF NEJM 1997	282 (SCC only)	Cis/RT (37 Gy)	26%	18.6 months both groups
Urba, SG JCO 2001	100 (75% adeno)	Cis/5FU/ Vinblastine/RT (45 Gy)	28%	17.6 vs. 16.9 months (p=0.15)
Burmeister, BH Lancet Oncol 2005	256 (60% adeno)	Cis/5FU/RT (35 Gy)	16%	21.7 vs. 18.5 months (p=NS)
Tepper, J JCO 2008	56 (75% adeno)	Cis/5FU/RT (50.4 Gy)	40%	4.48 years vs 1.79 years (p=0.02)
Van Hagen, P NEJM 2012	363 (75% adeno)	Paclitaxel/Carbo/RT (41.4 Gy)	32.6%	49 vs. 24 months (p=0.011)

Neoadjuvant Chemoradiation: Meta-Analyses

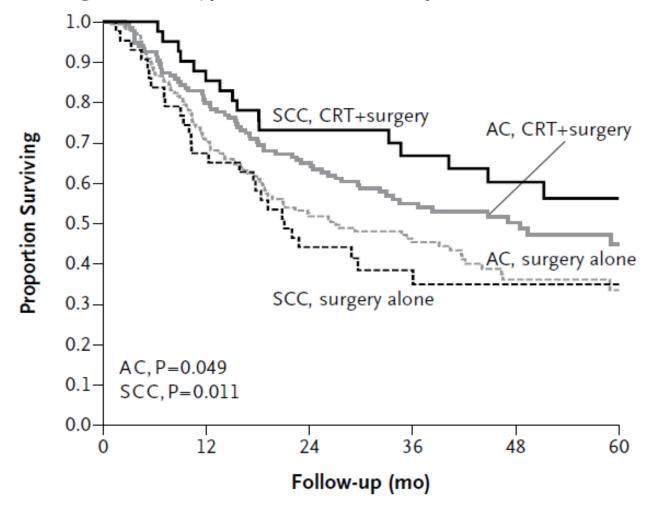
Citation	# Studies	# Pts	Result
Urschel, JD Am J Surg, 2003	9 RCTs	1,116 pts	3-year survival HR 0.66 (p=0.016)
Gebski, V Lancet Oncol 2007	10 RCTs	1,209 pts	HR 0.81, p=0.002 (benefit seen in both histologies)
Jin, HL World J Gastroenterol 2009	11 RCTs	1,208 pts	5-year survival OR 1.46 (p=0.02) (benefit seen only in adenocarcinoma)
Sjoquist, KM Lancet Oncol 2011	12 RCTs	1,854 pts	HR 0.78 (p<0.001) Adeno HR 0.75, p=0.02 SCC HR 0.80, p=0.004

Dutch CROSS Trial

ORIGINAL ARTICLE

Preoperative Chemoradiotherapy for Esophageal or Junctional Cancer

P. van Hagen, M.C.C.M. Hulshof, J.J.B. van Lanschot, E.W. Steyerberg, M.I. van Berge Henegouwen, B.P.L. Wijnhoven, D.J. Richel, G.A.P. Nieuwenhuijzen, G.A.P. Hospers, J.J. Bonenkamp, M.A. Cuesta, R.J.B. Blaisse, O.R.C. Busch, F.J.W. ten Kate, G.-J. Creemers, C.J.A. Punt, J.T.M. Plukker, H.M.W. Verheul, E.J. Spillenaar Bilgen, H. van Dekken, M.J.C. van der Sangen, T. Rozema, K. Biermann, J.C. Beukema, A.H.M. Piet, C.M. van Rij, J.G. Reinders, H.W. Tilanus, and A. van der Gaast, for the CROSS Group*


Dutch CROSS Trial

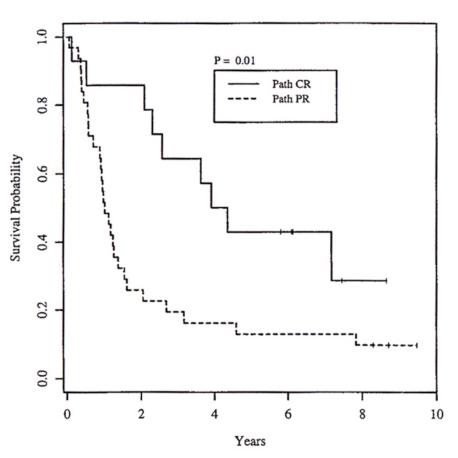
Rationale	Does preoperative chemoradiation add to benefit of surgery?
N = 368	188 surgery vs 180 chemoRT + surgery
Inclusion	 Adenocarcinoma or SCC Esophagus and GE Junction (Siewert 3 excluded); T1N1, T2-3N0-1
Treatment Arms	 Surgery alone (Transthoracic for mid-thoracic tumors, Transhiatal for distal tumors) Preoperative chemoRT→ surgery Total Radiation Dose = 41.4 Gy Weekly Carboplatin AUC 2 + Paclitaxel 50mg/m2

Histologic Subtype and Survival

B Survival According to Tumor Type and Treatment Group

Dutch CROSS Trial – Key Results

	Surgery alone	CRT + surgery
N	188	175
R0 resection rate	67%	92.3%
Path complete response	N/A	32%
Med survival	26 months	49 months
1-year survival	70%	82%
3-year survival	48%	59%
Anastomotic leakage	25%	22%
In-hospital mortality	3.8%	3.4%


Tumor Regression Grading

Modified Ryan Scheme	
Description	Tumor Regression Score
No viable cancer cells (complete response)	0
Single cells or rare small groups of cancer cells (near complete response)	1
Residual cancer with evident tumor regression, but more then single or rare groups of cancer cells (partial response)	2
Extensive residual cancer with no evident tumor regression (poor or no response)	3

Ryan, R. et al. *Histopathology*. 2005; 47(2): 141-146

Pathologic Response after Trimodality Therapy

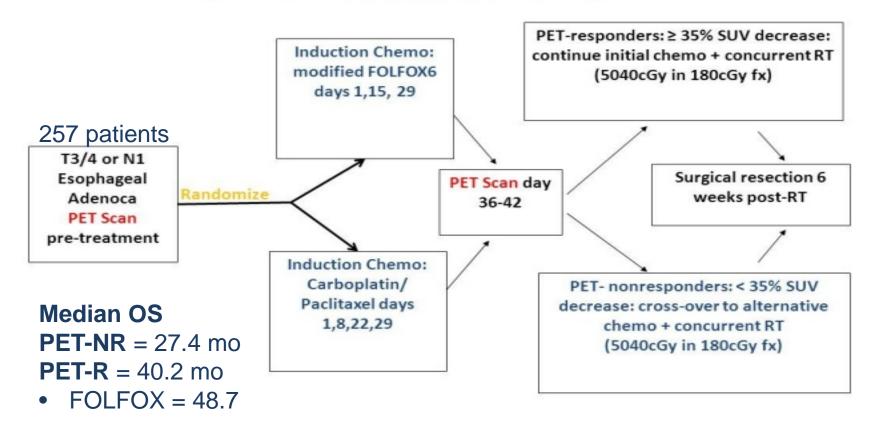
Path CR vs. Residual Disease

Median Survival (49.7 vs. 12 months)

3-yr survival (64% vs. 19%)

Urba S. J Clin Oncol. 19(2), 2001

Trimodality Therapy: Completed Trials


CALGB 80803: Randomized Phase II Trial of PET Scan-Directed Combined Modality Therapy in Esophageal Cancer

RTOG 1010: A Phase III Trial Evaluating the Addition of Trastuzumab to Trimodality Treatment of Her2-Overexpressing Esophageal Adenocarcinoma

CALGB 80803

CALGB 80803 Schema

RTOG 1010

Step 1: Registration

Mandatory Central Her2 Testing

Step 2: Randomization (stratification by celiac lymphadenopathy > or ≤ 2cm (n=571)

Arm 2

Arm 1

- 1. Radiation (50.4 Gy), paclitaxel, carboplatin, and **trastuzumab**
- 2. Surgery
- 3. Maintenance trastuzumab, q3 wks x 13

- 1. Radiation (50.4 Gy), paclitaxel, carboplatin
- 2. Surgery

ASCO 2020: Addition of trastuzumab does not improve DFS – HR 0.97, 95% CI 0.69, 1.36)

What to do after Trimodality therapy?

Routine Surveillance

NCCN Guidelines

- Years 1-2: q3-4 month clinical assessment and labs
- Years 3-5: q6 month clinical assessment and labs
- Years 1-5: Annual CT imaging

Poor Responders (Extensive residual disease – tumor regression scores 2-3)

- Adjuvant chemotherapy?
- Immune checkpoint inhibition being studied

Nutrition / Dietary Counseling – Learning how and what to eat!

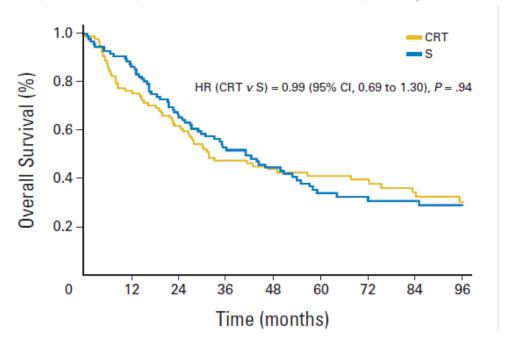
Do we need all 3 components of trimodality therapy?

Maybe not in certain scenarios ...

Definitive Chemoradiation: RTOG 8501

Survival Estimates by Histologic Type after Combined Modality Therapy

Year	Adenoca (% alive)	Squamous Cell (% alive)
0	100%	100%
1	52%	59%
2	22%	38%
3	17%	30%
4	13%	26%
5	13%	21%


Is ChemoRT Mandatory?

JOURNAL OF CLINICAL ONCOLOGY

ORIGINAL REPORT

Surgery Alone Versus Chemoradiotherapy Followed by Surgery for Stage I and II Esophageal Cancer: Final Analysis of Randomized Controlled Phase III Trial FFCD 9901

Christophe Mariette, Laetitia Dahan, Françoise Mornex, Emilie Maillard, Pascal-Alexandre Thomas, Bernard Meunier, Valérie Boige, Denis Pezet, William B. Robb, Valérie Le Brun-Ly, Jean-François Bosset, Jean-Yves Mabrut, Jean-Pierre Triboulet, Laurent Bedenne, and Jean-François Seitz

Radiation Esophagitis

- Topical anesthetics (e.g. viscous lidocaine)
- Analgesics and antiinflammatories (narcotics, dex elixir, carafate)
- Dietary modification (bland, soft, pureed, less acidic, room temp, converting to liquid medication when possible
- Supplementary nutrition
 - Avoid PEG/G tubes in surgical candidates; NG / Dobhoff tube feedings preferred in the short term preoperatively

Take-home points: Esophageal Cancer

- Endoscopic resection for T1a lesions
- For T2+ or N1+ tumors, trimodality therapy is still the standard of care
- How can we improve path response to chemoRT?
- PET response may be prognostically useful and may guide treatment
- No additional therapy after trimodality, regardless of pathologic response

Stage I-III Gastric Cancer

Gastric Cancer Treatment Algorithm

Early Stage

T1-T2N0

Locally Advanced

- T1-2N1
- T3-4AnyN

Peritoneal washings positive AnyTAnyNpM+

(cytology)

Perioperative chemo

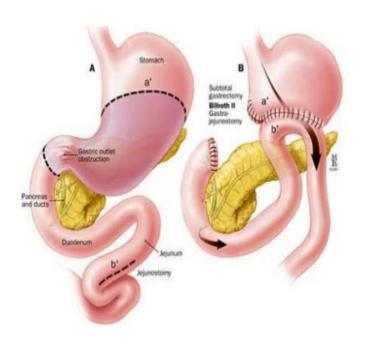
OR

Postoperative chemo (Asia)

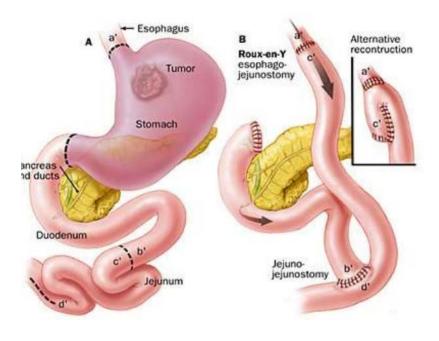
OR

Postoperative chemoRT

(margin positive)


Chemotherapy alone

(consider surgery in very fit patients who clear peritoneal cytology after upfront chemo)



Gastric Resection

Distal Gastrectomy

Total Gastrectomy

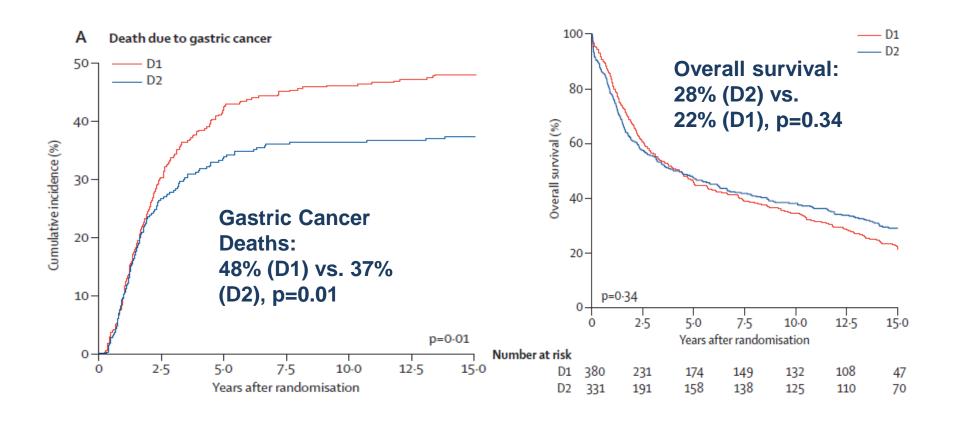
Post-Gastrectomy Considerations

- Inability to store and break down food frequent SMALL meals
- Vitamin B12 deficiency lack of instrinsic factor production (cardia)
- Iron deficiency decreased gastric acid
- Dumping syndrome rapid emptying into small bowel – lightheadedness, nausea, diarrhea

Gastric Cancer Lymph Node Dissection

Lymph Node Dissection	Description
D1	lesser and greater curvature, paracardial
D2	Left gastric, hepatic, celiac, splenic (could require pancreatectomy or splenectomy to access these nodes)
D3	D2 + portahepatic, hepatoduodenal
D4	retropancreatic, root of mesentery, transverse mesocolon, paraaortic

The Dutch Gastric Cancer Group: D1 vs. D2


711 patients undergoing curative resection of gastric cancer

	Peri operative morbidity	Peri operative mortality	5-yr survival
D1	25%	4%	45%
D2	43%	10%	47%

Bonenkamp JJ et al, NEJM 1999; 340:908-914

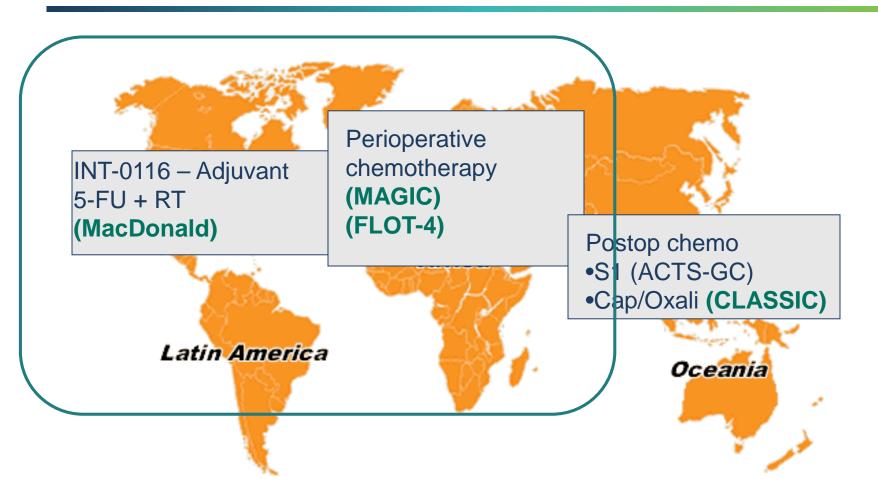
15 Year Follow Up

Songun, I et al. Lancet Oncology. 2010; 11:439-49.

The Dutch Gastric Cancer Group: D1 vs. D2

	D2	D1			
N stage	N stage				
N0	144 (44%)	171 (45%)			
N1	113 (34%)	138 (36%)			
N2	47 (14%)	50 (13%)			
N3	27 (8%)	21 (6%)			

- High rates of over and under dissection
- Higher than anticipated number of node negative cases


D1 vs. D2 Lymph Node Dissection

D2 lymph node dissection is preferred over D1 dissection, only when the surgery can be performed without increasing morbidity

Pancreas and spleen – preserving D2 dissection is generally preferred

Adjuvant and Neoadjuvant Treatment

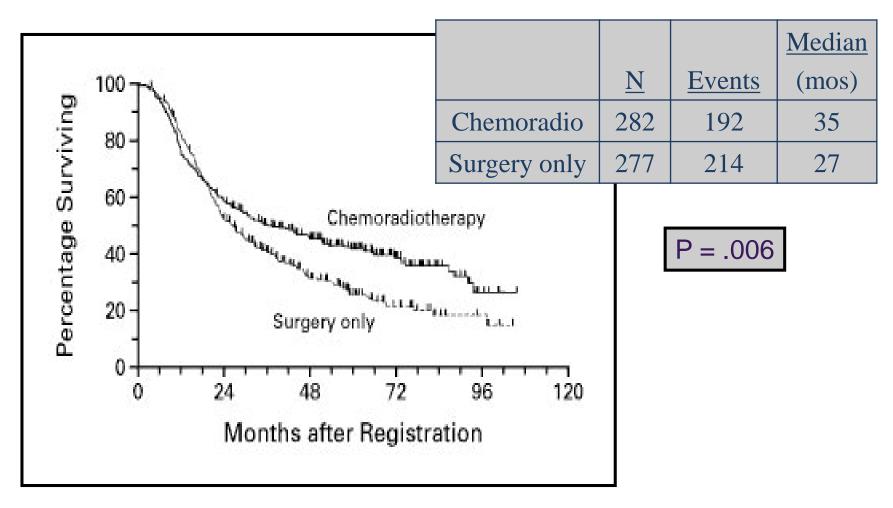
Sasako, M. et al. *J Clin Oncol*. 2011; 29(33): 4387 Cunningham, D et al. *NEJM*. 2006; 355(1): 11 MacDonald, JS et al. *NEJM*. 2001; 345(10): 725

Adjuvant ChemoRT: INT 0116/SWOG 9008

SCHEMA

20% GE Junction

Resected
Stage IB-IV (M0)
Gastric
Adenocarcinoma
N=603


Stratified T stage N 0, 1-3, ≥4 R
A
N
D
S-FU/LV
S-FU/LV
RADIATION
X2

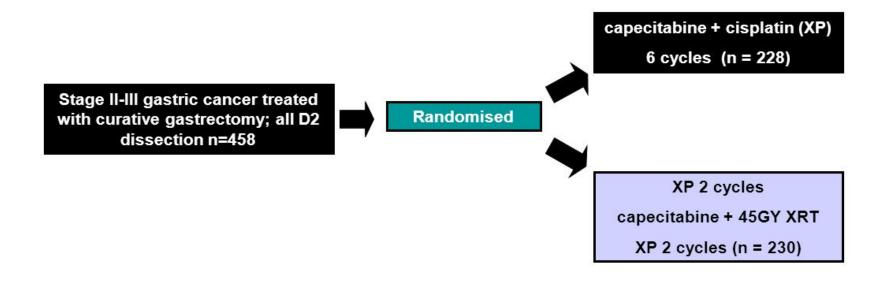
4,500 cGy

Macdonald NEJM 2003; 345: 725-730

Adjuvant ChemoRT: INT 0116/SWOG 9008

Macdonald *NEJM* 2003; 345: 725-730

Adjuvant ChemoRT: INT 0116/SWOG 9008


Level of lymph node dissection	%
< D1	54%
D1	36%
D2	10%

Macdonald NEJM 2003; 345: 725-730

ARTIST Trial: Adjuvant Chemo vs. RT

Adjuvant Chemotherapy vs. CRT ARTIST Trial

Park, S. et al. J Clin Oncol. 2015; 33(28)

ARTIST: Adjuvant Chemo vs. chemoRT

		HR	95% CI
	All	0.740	0.520 to 1.050
	ECOG PS 0 1	0.665 0.835	0.392 to 1.129 0.544 to 1.280
	Gastrectomy Subtotal Total	0.793 0.701	0.495 to 1.271 0.438 to 1.121
	LN Negative Positive	1.359 0.700	0.477 to 3.876 0.493 to 0.994
	LN ratio < 0.083 ≥ 0.083	0.714 0.708	0.407 to 1.252 0.466 to 1.019
	Stage IB/II III/IV (M0)	0.676 0.703	0.387 to 1.181 0.530 to 1.017
	Intestinal Diffuse	0.442 0.826	0.231 to 0.845 0.543 to 1.255
	HER2 0-2+ ≥ 3	0.749 0.976	0.533 to 1.053 0.197 to 4.842
	MET 0-2+ ≥ 3	0.749 1.414	0.534 to 1.050 0.196 to 10.197
	MLH1 MLH1 loss	1.167 0.788	0.313 to 4.347 0.544 to 1.143
	E-cadherin E-cadherin loss	0.566 0.859	0.160 to 2.007 0.591 to 1.247

0.1 **Favors XPRT** Favors XP

Park, S. et al. J Clin Oncol. 2015; 33(28)

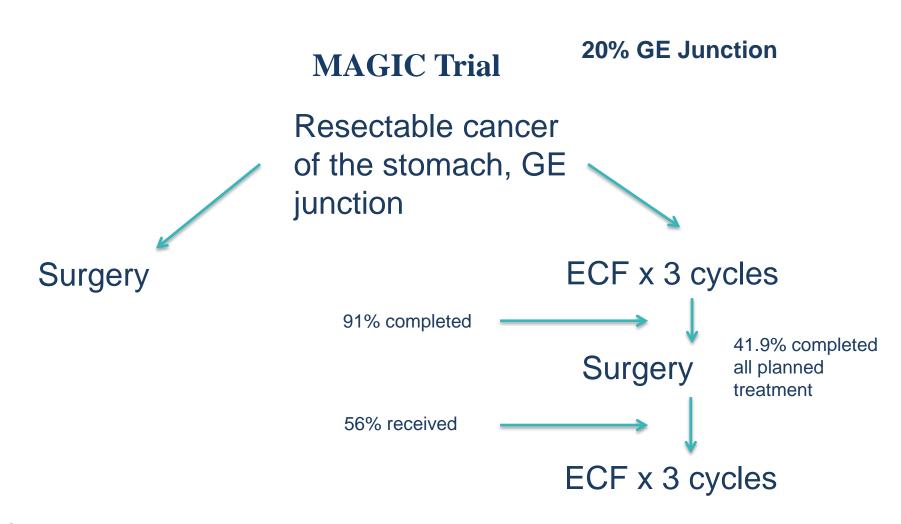
ARTIST-II: Adjuvant chemo vs. chemoRT (Node+)

Randomize 900 patients with D2 resected NODE POSITIVE Gastric Cancrer

Key Results

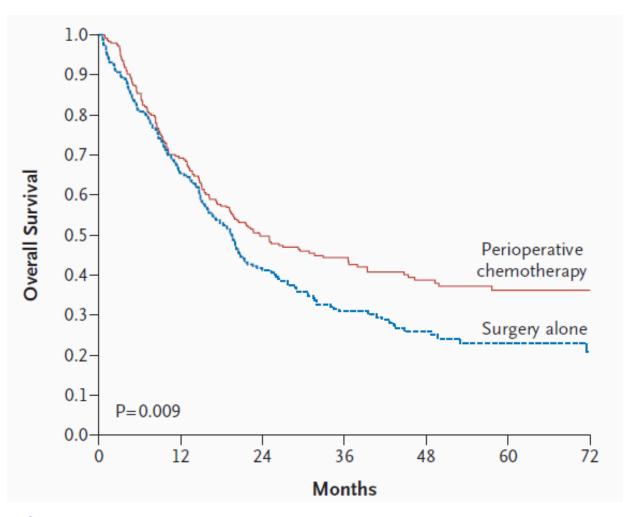
- SOX and SOXRT >> S1 alone
- No difference in DFS between SOX and SOXRT (HR 0.91, p=0.67)

Is there a role for Postoperative Radiation?


NO, except ...

Inadequate resections / lymph node dissection

Positive margin (R1 resection)


Perioperative Chemotherapy: MAGIC Trial

Cunningham D, et al. NEJM July 2006

Perioperative Chemotherapy: MAGIC Trial

5-year survival

- 36.3% (Chemo)
- 23.0% (Surgery)

Median Survival

- 24 months (Chemo)
- 20 months (Surgery)

Cunningham D, et al. NEJM July 2006

Perioperative Chemotherapy: FLOT-4

FLOT x 4 \rightarrow surgery \rightarrow FLOT x 4

Resectable gastric cancer (n=716)
Stratification factors:
Age, nodal status,
GEJ vs. gastric

FLOT = docetaxel 50mg/m2 + oxaliplatin 85mg/m2 + LV 200mg/m2 + 5FU 2600mg/m2 24h infusion D1 q2 weeks

 $ECF/ECX \times 3 \rightarrow surgery \rightarrow ECF/ECX \times 3$

Al-Batran S, et al. ASCO 2017 Annual Meeting.

Perioperative Chemotherapy: FLOT-4

Key Results:

- 50% FLOT vs. 37% ECF/X completed post-operative chemotherapy
- Median OS 50 months vs. 35 months (HR 0.77, p=0.012)
- 3yr OS 57% FLOT vs. 48% ECF/X
- Postop complications and 30/90 day mortality were similar

Al-Batran S, et al. ASCO 2017 Annual Meeting.

FLOT-4 – ASCO 2020 Updates

PETRARCA study (phase II/III)

- 81 patients randomized
- No benefit with addition of trastuzumab to FLOT path CR, R0 resection rate, DFS, OS
- Study ended early and did not proceed to phase III

FLOT-4 +/- Ramucirumab (phase II/III)

- 180 patients randomized
- Endpoints: Path response, R0 resection rate, safety
- Findings: Increased AEs, Improved R0 resection rate (97% vs. 83%, p=0.0049), similar path response

Hofheinz, RD et al. ASCO 2020 Al Batran, SE et al. ASCO 2020

Take Home Points: Localized and Locally Advanced Gastric Cancer

Post-gastrectomy B12 and iron supplementation

D2 gastrectomy should be performed when possible

Perioperative chemotherapy – general approach for Western patient

Vanishing role of radiation therapy in gastric cancer treated with D2 lymph node dissection

Metastatic Esophageal and Gastric Cancer

Initial Diagnostic Evaluation

Clinical Assessment

- ECOG PS
- Comorbidities
- Nutritional status
 - o Stent
 - o G or J tube

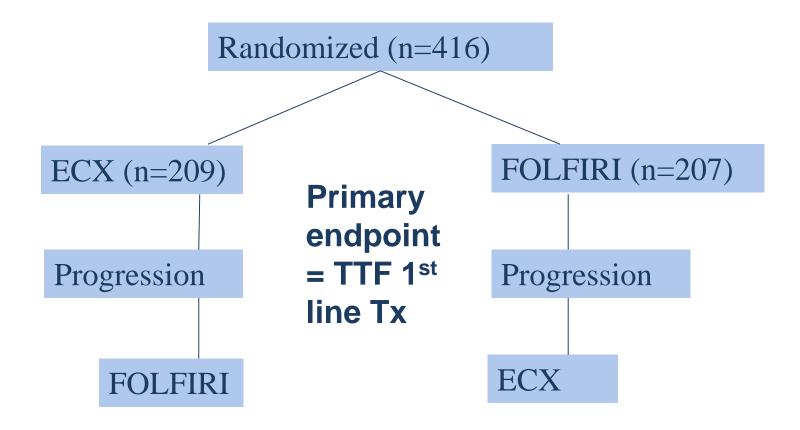
Labs and Imaging

- CT C/A/P w/ IV contrast (peritoneal dz)
- CEA
- CA 19-9

Molecular testing

- Her2 IHC and FISH (3+ or FISH+)
- PDL1 (CPS score)
- MSI
- EBV (Gastric)
- NGS for most tumor mutational burden (Pembro for TMB-high)

Initial Treatment Algorithm



First-Line Chemotherapy Backbones

Author	Regimen	RR	Median OS (months)
Van Cutsem, 2006	DCF	37%	9.2
Cunningham, 2008	ECF	40.7%	9.9
	ECX	46.4%	9.9
	EOF	42.4%	9.3
	EOX	47.9%	11.2
Al Batran, 2008	FLO	41.3%	10.7
Shah, 2010	Modified DCF	50%	14.9
Boku, 2009	Cisplatin/Irinotecan	38%	12.3
Narahara, 2011	Irinotecan/S-1	41.5%	12.8

2 Drugs vs. 3 Drugs

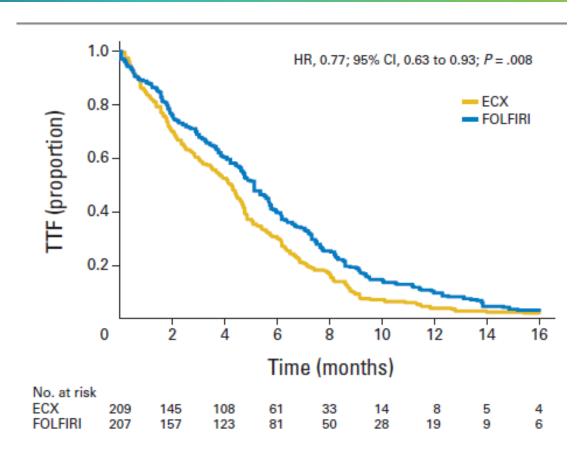
TTF = Time between randomization and treatment d/c, progression, death

Guimbaud, R et al. J Clin Oncol. 2014, Nov 1; 32(21): 3250-6.

2 Drugs vs. 3 Drugs

	EC>	(Arm	FOLFI	RI Arm	
Toxicity and Grade	No.	%	No.	%	P*
First-line	200		203		
Nonhematologic					.81
Grade 0 to 2	85	42.5	90	44.3	
Grade 3 to 4	107	53.5	108	53.2	
Missing	8	4.0	5	2.5	
Hematologic					< .001
Grade 0 to 2	60	30.0	120	59.1	
Grade 3 to 4	129	64.5	78	38.4	
Missing	11	5.5	5	2.5	
Overall					< .001
Grade 0 to 2	25	12.5	58	28.6	
Grade 3 to 4	167	83.5	140	69.0	
Missing	11	5.5	5	2.5	

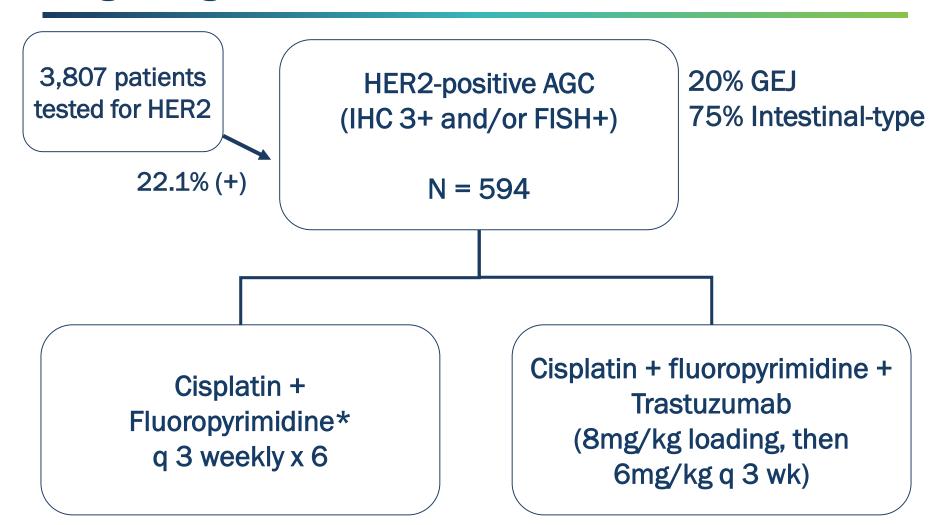
Guimbaud, R et al. J Clin Oncol. 2014, Nov 1; 32(21): 3250-6.



2 Drugs vs. 3 Drugs

TTF: 4.24 mo (ECX) 5.08 mo (FOLFIRI) P=0.008

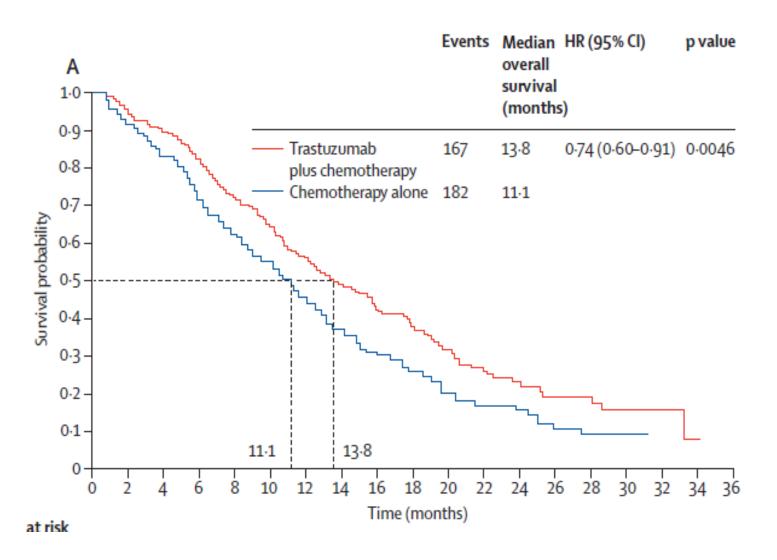
PFS: 5.29 mo (ECX) 5.75 mo (FOLFIRI) P=0.96


OS: 9.49 mo (ECX) 9.72 mo (FOLFIRI) P=0.95

In U.S., most typical 2-drug firstline regimen is FOLFOX

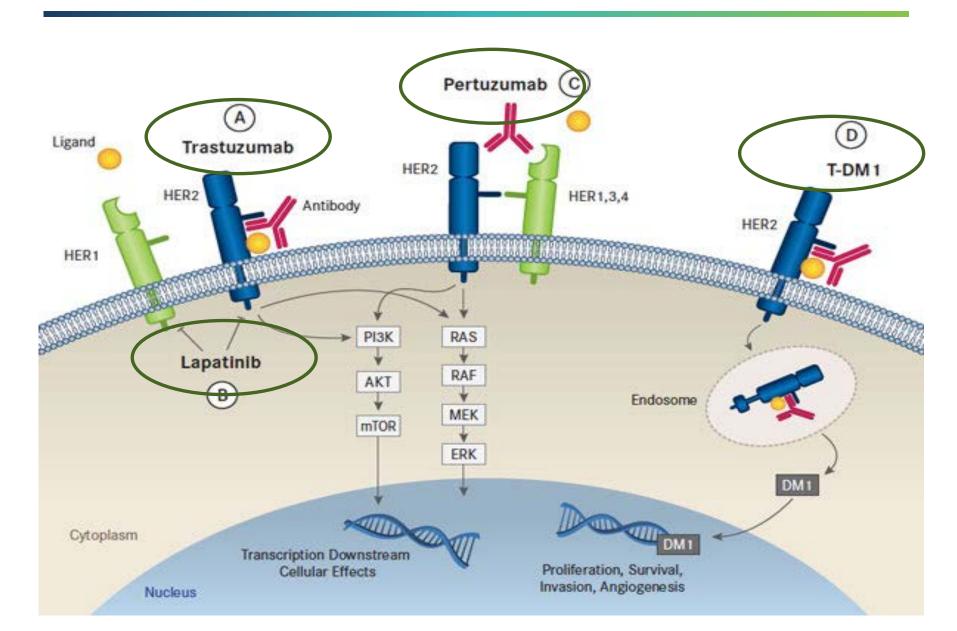
Targeting Her2 – TOGA Trial

Bang, YJ et al. Lancet 2010; 376: 698-97


TOGA Trial - Results

	Chemo alone	Chemo + trastuzumab	P value
ORR	34.5%	47.3%	P=0.0017
Median PFS	5.5 months	6.7 months	P=0.0002, HR 0.71
Median survival	11.1 months	13.8 months	P=0.0048, HR 0.74

Bang, YJ et al. Lancet 2010; 376: 698-97



TOGA Trial - Results

Anti-Her2 agents – Mechanism of Action

Her2 Agents in Gastric Cancer

TRIO-013/LOGiC 1st line: CapOx +/- Lapatinib

JACOB Trial 1st line: FU+Cis+Trastuzumab +/-

Pertuzumab

TyTAN study 2nd line: Paclitaxel +/- Lapatinib

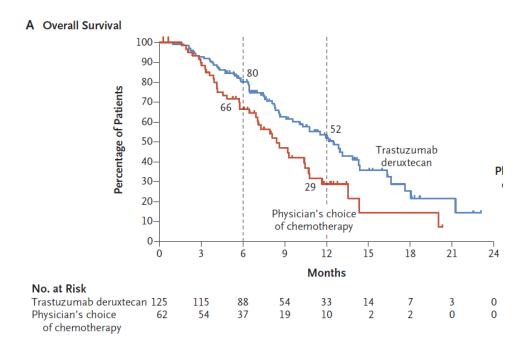
GATSBY trial 2nd line: Taxane vs. TDM-1

Hecht, R et al. J Clin Oncol. 2016, 34(5): 443-451. Satoh, T et al. J Clin Oncol. 2014, 32(19): 2039-49 Thuss-Patience, PC et al. Lancet Oncol. 2017, 18(5): 640-53 Tabernero, J et al. ESMO 2017.

Trastuzumab Deruxtecan

- Randomized phase II study in Japan and Korea
- Patient population: Her2 positive gastric and GE jxn cancer patients who received at least 2 prior lines of therapy (including prior trastuzumab)
- 188 patients randomized (2:1) to trastuzumab deruxtecan versus physician's choice (irinotecan or paclitaxel)
- Primary endpoint = objective response

Shitara, K. et al. NEJM 2020; 382:2419-30.



Trastuzumab Deruxtecan

OR: 51% vs. 14%

PFS: 5.6 vs. 3.5 months (HR 0.47, 95% CI 0.31, 0.71)

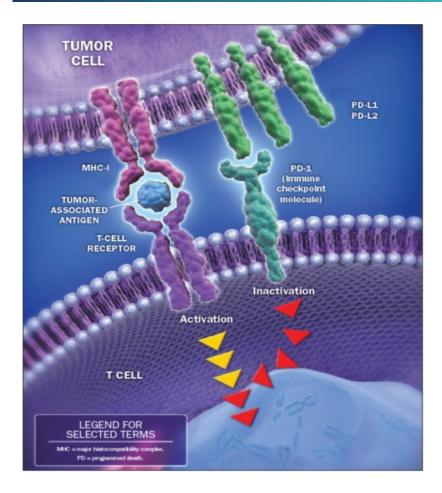
Safety: neutropenia (51% vs. 24%) and ILD or pneumonitis (10%)

Median OS: 12.5 vs. 8.4 months

HR 0.59, 95% CI 0.39-0.88)

Shitara, K. et al. NEJM 2020; 382:2419-30.

Trastuzumab "Beyond Progression"


WJOG Study: 2nd line paclitaxel +/- trastuzumab (in Her2+ pts who progressed on 5-FU/platinum + trastuzumab)

- No PFS benefit with trastuzumab
- In cases where pre-treatment biopsies could be performed, only 1/3 retained Her2 positivity (IHC 2/3+)

Sukawa, Y. et al. ASCO 2018

First-Line Checkpoint Inhibitor?

Keir ME, et al. *Annu Rev Immunol.* 2008;26:677-704. Pardoll DM, et al. *Nat Rev Cancer.* 2012;12:252-64.

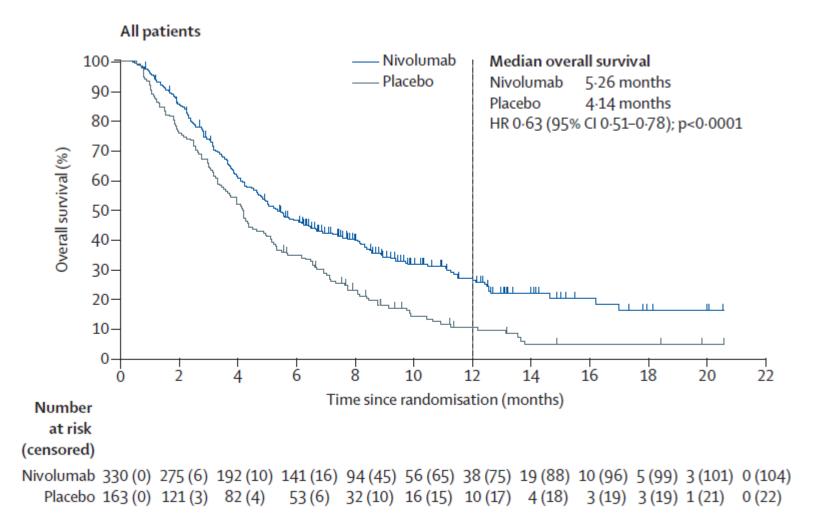
- Pembrolizumab was approved by the FDA in Sept 2017 for PDL1 overexpressing (CPS ≥ 1) gastric and esophagogastric cancers progressed on 2 or more prior lines of therapy
- In Japan, Nivolumab approved for refractory gastric cancer (3rd line and beyond) in October 2017

Immune Checkpoint Inhibitors

Study	Drug	Population	N	RR	os
Keynote 012	Pembro 10mg/kg q2 wks	Refractory PDL1+	39	22%	11.4 mo
Attraction-2	Nivolumab 3mg/kg q2 wks vs. Placebo	Refractory any PDL1	493	11.2%	5.32 vs. 4.14 mo (HR 0.63, p<0.0001)
Keynote 059 (cohort 1)	Pembro 200mg q3 wk	Refractory any PDL1	259	11.2% PDL1+ 15.5% PDL1- 5.5%	NR
Checkmate 032	 Nivo 3mg/kg q2 Nivo 1mg/kg + Ipi 3mg/kg Nivo 3mg/kg + Ipi 1mg/kg 	Refractory any PDL1	160	16% Overall 14% N3 26% N1+I3 10% N3+I1	5.0 mo 6.9 mo 4.8 mo

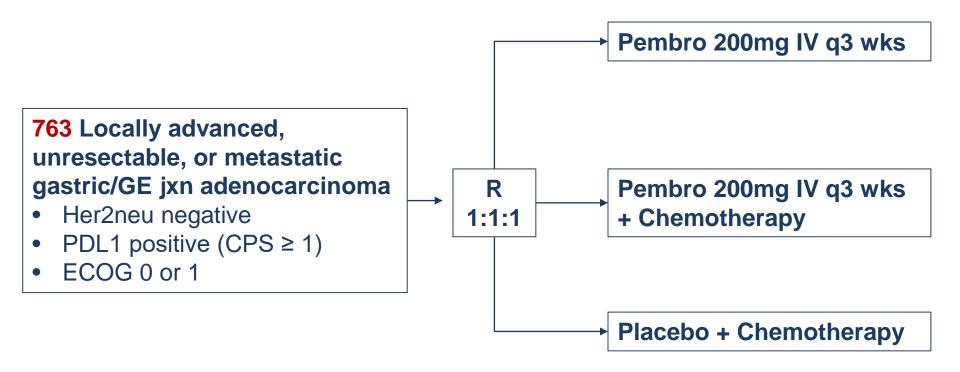
Pembrolizumab – Keynote 059

Advanced gastric cancer, progressed after 2 or more prior therapies


Table 1. Objective Tumor Response

	Partici	pants (n = 259)	
Best Overall Response ^a	No.	% (95% CI)	/ 15.5% PDL1
Objective response (CR+PR)	30	11.6 (8.0-16.1)	
Disease control (CR+PR+SD ≥2 mo)	70	27.0 (21.7-32.9)	6.4% PDL1
CR	6	2.3 (0.9-5.0)	
PR	24	9.3 (6.0-13.5)	
SD	42	16.2 (11.9-21.3)	
Progressive disease	145	56.0 (49.7-62.1)	
Nonevaluable	7	2.7 (1.1-5.5)	
No assessment ^b	35	13.5 (9.6-18.3)	
Duration of response, median (range), mo	8.4	(1.6+ to 17.3+) ^c	

Fuchs, C et al. JAMA Oncology. 2018, 4(5): e180013



Nivolumab vs. BSC: ATTRACTION 2 Trial

First-line pembrolizumab – Keynote 062

Primary endpoints = noninferiority OS (pembro vs. chemo); superiority OS (pembro+chemo vs. chemo)
Chemotherapy = 5-FU or capecitabine + cisplatin

First-line pembrolizumab – Keynote 062

Pembro versus Chemotherapy

- Noninferior OS Pembro vs.
 Chemo (10.6 months vs. 11.1 months) HR 0.91, p=NS
- Superior OS in CPS ≥ 10 subgroup (17.4 vs. 10.8 months) HR = 0.69
- Lower Grade 3 or higher AEs (17% P, 71% pembro +chemo, 68% chemo)

Pembro + Chemo versus Chemo

- OS *not* superior Pembro + chemo vs. chemo (12.5 mo vs. 11.1 mo) HR 0.85
- ORR slightly better in pembro + chemo vs. chemo alone (48.6% vs. 36.8%
- OS not superior in CPS ≥ 10 subgroup (12.3 mo vs. 10.8 mo) HR 0.85

When to use first-line pembrolizumab?

Monotherapy in CPS ≥ 10 (if you can get this information quickly and if covered by insurance

Lower burden of disease, lower symptom burden

Elderly or frail patients with CPS ≥ 10 who cannot tolerate chemo

Second Line Therapy

For patients who retain good PS

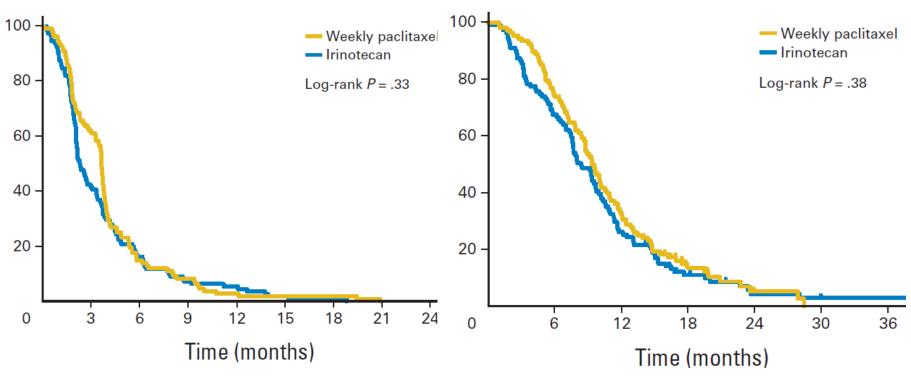
- Paclitaxel (+ Ramucirumab)
- Docetaxel
- Irinotecan
- Ramucirumab
- Pembrolizumab (CPS ≥ 10)

??????

- Neuropathy
- Bleeding from primary tumor
- Pace and extent of disease progression

WJOG 4007: 2nd Line Irinotecan vs. Paclitaxel

Advanced Gastric Cancer without Severe Peritoneal Metastases – After Progression through 5-FU + Platinum (n=223)

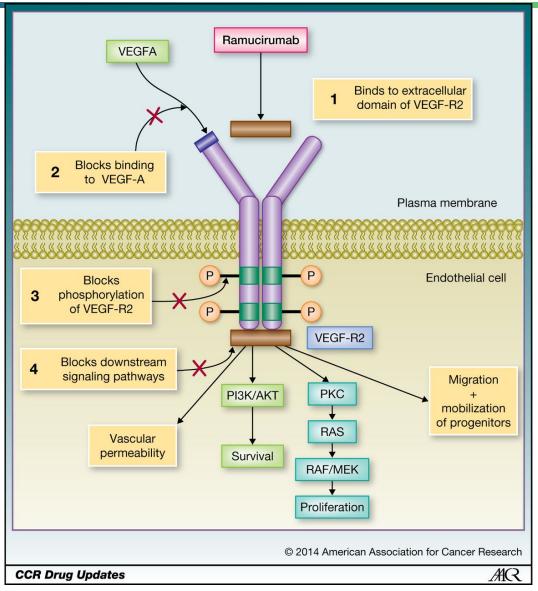


Weekly Paclitaxel 80mg/m2 Days 1, 8, 15 q28 days (n=111) Irinotecan 150 mg/m2 Days 1,15 q28 days (n=112)

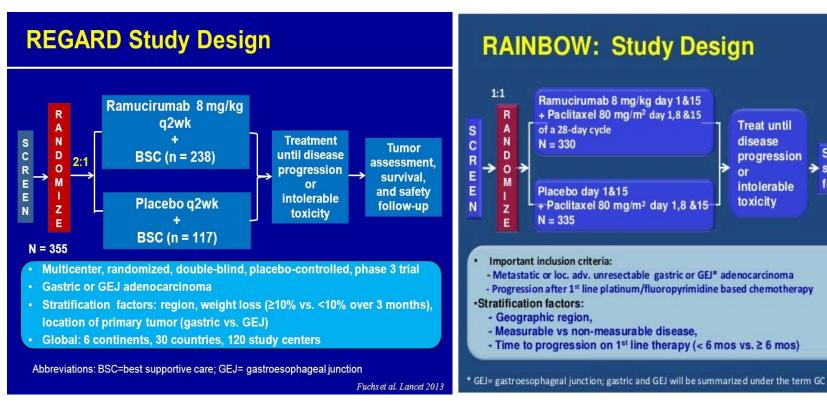
Hironaka S et al. J Clin Oncol, 2013; 31: 4438-4444.

WJOG 4007: 2nd Line Irinotecan vs. Paclitaxel

PFS: 3.6 mo (paclitaxel) vs. 2.3 mo (irinotecan)


Hironaka S et al. J Clin Oncol, 2013; 31: 4438-4444.

OS: 9.5 mo (paclitaxel) vs. 8.4 mo (irinotecan)


Versus 5.2 mo in docetaxel arm of Cougar-2 study

Ramucirumab and VEGF Pathway

REGARD and RAINBOW

Wilke, H et al. Lancet Oncology. 2014, 15(11): 1224-35.

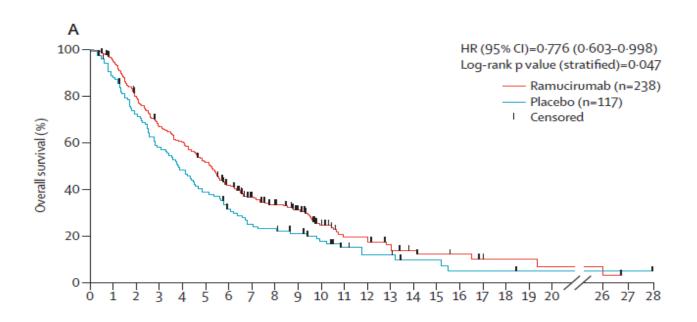
Treat until

progression

intolerable

toxicity

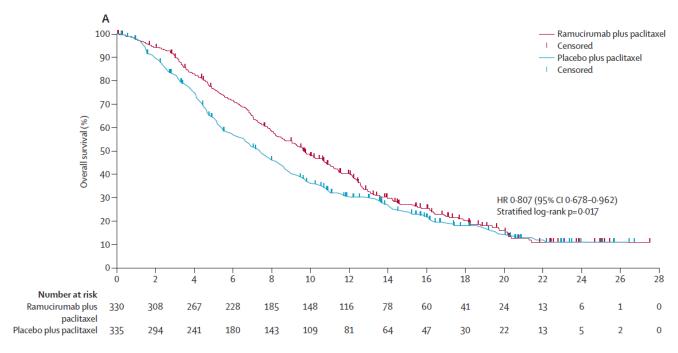
Survival and


follow-up

→ safety

disease

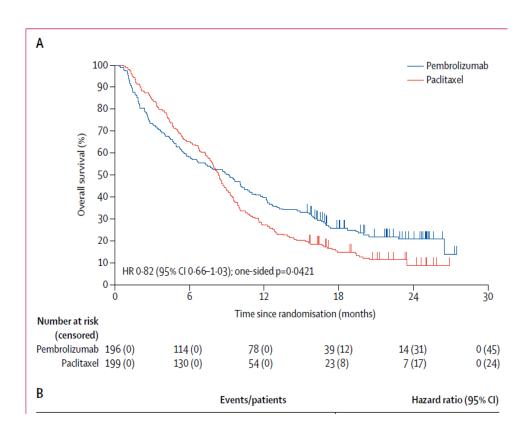
Fuchs, C et al. Lancet, Oct 3, 2013


Ramucirumab: REGARD Study

	Ram	Placebo	Р
PFS	2.1 mo	1.3 mo	<0.001
os	5.2 mo	3.8 mo	0.047

Ramucirumab: RAINBOW

Endpoint	Ram + Paclitaxel	Placebo + Paclitaxel	Δ	p value
RR	28%	16%	12%	0.0001
DCR	80%	64%	16%	<0.0001
PFS	4.4 mo	2.86 mo	1.5	<0.0001
OS	9.63 mo	7.36 mo	2.3	0.0169

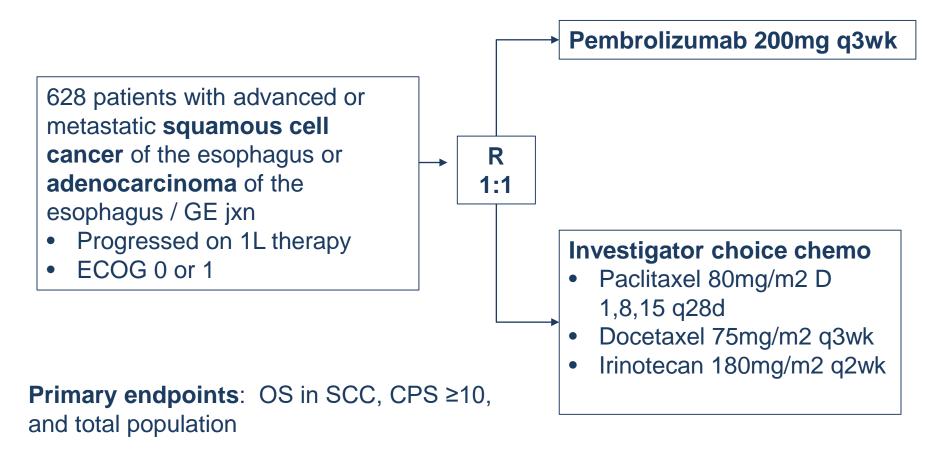

Ramucirumab Adverse Events

	Ramucirum (n=327)	ab plus pac	litaxel		Placebo plu (n=329)	s paclitaxel		
	Grades 1-2	Grade 3	Grade 4	Grade 5	Grades 1–2	Grade 3	Grade 4	Grade 5
Bleeding or haemorrhage	123 (38%)	12 (4%)	1 (<1%)	1(<1%)	51 (16%)	4 (1%)	2 (<1%)	2 (<1%)
Proteinuria	51 (16%)	4 (1%)	0	0	20 (6%)	0	0	0
Liver injury or failure	39 (12%)	12 (4%)	3 (<1%)	0	28 (9%)	11 (3%)	2 (<1%)	0
Hypertension	34 (10%)	48 (15%)	0	0	10 (3%)	9 (3%)	0	0
Gastrointestinal haemorrhage†	21 (6%)	10 (3%)	1 (<1%)	1(<1%)	15 (5%)	3 (<1%)	1 (<1%)	1 (<1%)
Infusion-related reaction	17 (5%)	2 (<1%)	0	0	12 (4%)	0	0	0
Renal failure	16 (5%)	4 (1%)	2 (<1%)	0	11 (3%)	0	1 (<1%)	2 (<1%)
Congestive heart failure	6 (2%)	2 (<1%)	0	0	2 (<1%)	1 (<1%)	0	1 (<1%)
Venous thromboembolic events	5 (2%)	7 (2%)	0	1(<1%)	7 (2%)	8 (2%)	1(<1%)	2 (<1%)
Arterial thromboembolic events	3 (<1%)	1 (<1%)	2 (<1%)	0	2 (<1%)	2 (<1%)	0	1 (<1%)
Gastrointestinal perforation	0	1 (<1%)	2 (<1%)	1(<1%)	1 (<1%)	0	0	0

Second-line Pembrolizumab: Keynote 061

592 pts with advanced gastric cancer randomized to paclitaxel weekly versus pembro 200mg IV q3 wks. Trial amended to include only PDL1 CPS ≥1 pts.

- Pembro did not significantly prolong OS (9.1 vs 8.3 mo, HR 0.82, 95% CI 0.66-1.03). ORR was similar (16 versus 14 %)
- P threshold 0.0135 for superiority
- Pembro toxicity profile favorable (14% vs. 35% grade ≥ 3 AE)
- Potentially greater effect in CPS
 ≥10 and MSI-h

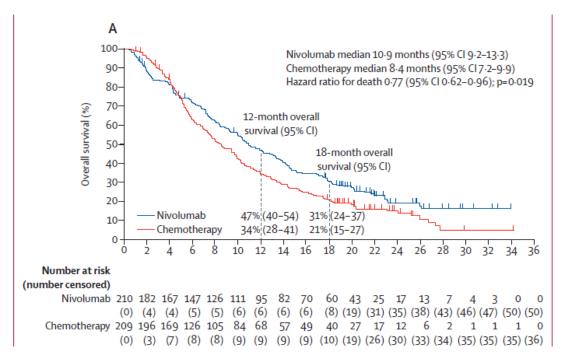

Second-line Pembrolizumab: Keynote 061

Efficacy Outcome	es.					
	Pembrolizumab CPS ≥1 n = 196	Paclitaxel CPS ≥1 n = 199	Pembrolizumab CPS ≥5 n = 95	Paclitaxel CPS ≥5 n = 91	Pembrolizumab CPS ≥10 n = 53	Paclitaxel CPS ≥10 n = 55
OS, deaths, n (%)	176 (89.8)	190 (95.5)	84 (88.4)	86 (94.5)	44 (83.0)	51 (92.7)
OS, months, median (95% CI)	9.1 (6.2-10.7)	8.3 (7.6-9.0)	10.4 (6.7-15.5)	8.3 (6.8-9.4)	10.4 (5.9-18.3)	8.0 (5.1-9.9)
HR (95% CI)	0.81 (0.66-1.00)	_	0.72 (0.53-0.99)	_	0.69 (0.46-1.05)	_
P	0.03	_	0.02	_	0.04	_
PFS, months, median (95% CI)	1.5 (1.4-2.0)	4.1 (3.2-4.3)	1.6 (1.4-2.8)	4.0 (2.8-4.4)	2.7 (1.4-4.3)	4.0 (2.7-4.4)
HR (95% CI)	1.25 (1.02-1.54)	_	0.98 (0.71-1.34)	_	0.79 (0.51-1.21)	_
ORR, % (n)	16.3 (32)	13.6 (27)	20.0 (19)	14.3 (13)	24.5 (13)	9.1 (5)
DOR, months, (range)	19.1 (1.4+ to 47.1+)	5.2 (1.3+ to 16.8)	32.7 (4.1 to 47.1+)	4.8 (1.3+ to 15.3)	NR (4.1 to 47.1+)	6.9 (2.6 to 6.9)

Second-line Pembrolizumab: Keynote 181

401 pts with SCC and 222 pts with CPS ≥10

Pembro approved in July 2019 for 2nd line treatment of SCC esophagus with CPS ≥ 10 based on results from Keynote 181


Key Results

- Pembrolizumab was superior to chemo for OS in CPS ≥10 (9.3 vs. 6.7 mo; HR 0.69; 95% CI 0.52-0.93; P=0.0074).
- SCC subgroup: Improvement in OS with pembrolizumab vs chemo, (8.2 mo vs 7.1 mo; HR 0.78; 95% CI 0.63, 0.96; P=0.0095).
- Fewer any-grade (64% vs 86%) or grade 3-5 (18% vs 41%) drugrelated AEs with pembrolizumab vs chemo.

Nivolumab 2nd line – ATTRACTION 3

- Open-label phase 3 randomized trial Nivolumab vs. Chemotherapy
- Patient population: Advanced squamous cell carcinoma; 1 prior line of therapy
- Primary endpoint: Overall survival

What didn't work?

CMET Inhibitors -- (RILOMET 1 – worse survival in Txarm)

EGFR Inhibitors – Cetuximab, Panitumumab (REAL3, E1206/CALGB 80403)

mTOR inhibitors – Everolimus vs. BSC

Napabucasin (BRIGHTER trial)

Take-home points: Metastatic Gastric/Eso

- 2 drug combinations rather than 3 drug combinations (5-FU+platinum) represents a standard of care worldwide in 1st line therapy
- Trastuzumab in 1st line for Her2 positive tumors
- In 2nd line, irinotecan, paclitaxel, docetaxel all viable standard chemotherapeutic options
- Ramucirumab in 2nd line therapy (alone or with Paclitaxel)
- Pembrolizumab in PDL1 + or MSI-high tumors (3rd line)
 - First line monotherapy, particularly in CPS ≥10
 - Second line, in CPS ≥10 (SCC) and MSI-H

THANK YOU

Extra Slides

Siewert Classification

	Type 1 (n= 494)	Type II (n= 414)	Type III (n= 438)
Mean age at presentation	60.1 ± 10.3	60.7 ± 11.4	62.7 ± 12.0
Male: Female Ratio	9.9 : 1	4.8 : 1	2.1 : 1
Associated Barrett's	76.9%	9.8%	2.0%
Prevalence of Grade 3/4 tumors	52.6%	58.7%	72.6%
Intestinal type histology	81.1%	41.3%	39.1%

Siewert R et al. *J Surg Onc.* 90; 139-46, 2005

Chemo (PeriOp vs. PostOp) vs. ChemoRT

Citation	# Pts	Treatment	3 or 5 year OS in Treatment Arm
MacDonald, JS 2001 (INT-0116)	556	Arm A: Surgery alone Arm B: Surgery → 5-FU/LV + RT	50%
Fuchs, CS 2011 (CALGB 80101)	546	Arm A: Surgery → 5-FU/LV/RT Arm B: Surgery → ECF/RT	52%
Cunningham, D 2006 (MAGIC)	503	Arm A: Surgery alone Arm B: ECF(3) → surgery → ECF(3)	36%
Sasako, M 2011 (ACTS-GC)	1,059	Arm A: Surgery (D2) Arm B: Surgery → S1 x 1 year	71.7%
Bang, Y. 2011 (CLASSIC)	1,035	Arm A: Surgery (D2) Arm B: Surgery (D2) → XELOX x 8 cycles	83%

CRITICS Trial: (MAGIC vs. MacDonald?)

Stage Ib – IVa resectable gastric cancer

3 cycles EOX or ECX
Surgery

KEY RESULTS

5-year survival: 41.3 % (chemo) vs. 40.9% (RT), p=0.99

87% underwent D2 dissection

Poor postoperative treatment compliance in both arms

3 cycles EOX or ECX (n=393)

CRT (capecitabine + weekly cisplatin + 45 Gy) (n=395)

Cats, A. et al. Lancet Oncology. 2018, 19(5): 616-628

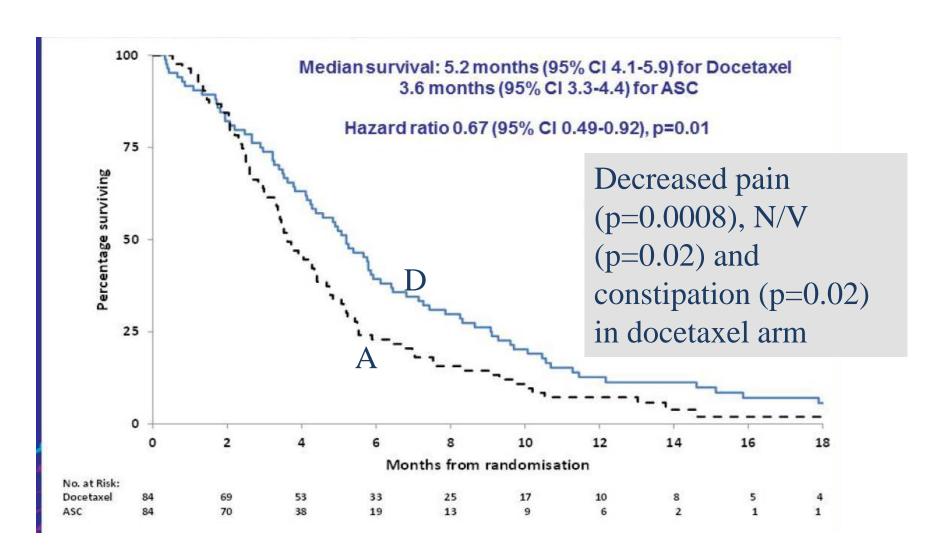
2nd Line Therapy --- Cougar-2 Study

Advanced Esophagogastric Cancer (n=168)

Progression within 6 mo of 5FU/platinum

ECOG 0-2

Docetaxel 75mg/m2 q3w X 6 cycles


Active symptom control

OS (primary endpoint), HRQOL (secondary endpoint)

Ford H et al. Lancet Oncology 2014; 15: 78-86

2nd Line Therapy --- Cougar-2 Study

