# Gastroenteropancreatic Neuroendocrine Tumors

Kit Wong, MD Assistant Professor, Medical Oncology University of Washington School of Medicine Seattle Cancer Care Alliance

2020 Annual Comprehensive Hematology & Oncology Review Course

UNIVERSITY of **WASHINGTON** 



red Hutch · Seattle Children's · UW Medicine

# Disclosures

- Research funding through institution: Pfizer, Tanabe, Shanghai DeNovo, Genentech, Adaptimmune, Replimmune
- Advisory board: HalioDx

# Abbreviations

- NET = neuroendocrine tumor
- PNET = pancreatic neuroendocrine tumor
- GEP NET = gastroenteropancreatic neuroendocrine tumor = neuroendocrine tumor of GI tract and pancreas

# Sites of NETs



- Neuroendocrine cells found at various body sites
- Produce hormones and peptides with biological activity
- NETs can arise in different organs
- GI tract and pancreas are common sites of origin for NETs
- Some cases of unknown primary

# Epidemiology – SEER data

#### 6.4-fold increase in incidence of all NETs from 1973 to 2012

#### Increased incidence of earlier stage disease



Trends may be related to improved diagnostic tests and more awareness of disease

Dasari et al. JAMA Oncol. 2017;3:1335.

### Incidence of NETs by anatomic site



- Lung: 1.49
- GEP NETs: 3.56
- Unknown primary: 0.48

# Pathologic classification

- GEP NETs are characterized by strong immunohistochemical staining of synaptophysin and chromogranin
- Very heterogeneous group of tumors with different biology and behavior
- WHO classification based on degree of proliferation (Ki67 index, mitotic count)

|                       |                         | eer ne                                                                                         |                                                  |                             |
|-----------------------|-------------------------|------------------------------------------------------------------------------------------------|--------------------------------------------------|-----------------------------|
| Differentiation       | Grade                   | NET                                                                                            | Proliferative Rate                               |                             |
| Well-differentiated   | G1 (low grade)          | NET                                                                                            | < 2 mitoses/10 hpf<br>AND < 3% Ki-67<br>index    |                             |
|                       | G2 (intermediate grade) | NET                                                                                            | 2-20 mitoses/10 hpf<br>OR 3%-20% Ki-<br>67 index | Neuroendocrine tumor        |
| Poorly differentiated | G3 (high grade)         | Neuroendocrine carcinoma<br>small-cell type;<br>neuroendocrine<br>carcinoma large-cell<br>type | > 20 mitoses/10<br>hpf OR > 20%<br>Ki-67 index   | Neuroendocrine<br>carcinoma |

GEP NETS7

### 2010 WHO classification for gastrointestinal tract NETs (carcinoid tumors)

Abbreviations: GEP, gastroenteropancreatic; hpf, high-powered field; NET, neuroendocrine tumor.

1. Modlin et al. Lancet Oncol 2008;9:61. 2. Bosman et al. WHO Classification of Tumours of the Digestive System (ed 4), 2010.

# Grade 3 well-differentiated NETs (WD NETs)

- Distinct group of tumors from grade 3 poorly differentiated neuroendocrine carcinomas (PD NECs)
- Compared to PD NECs, the grade 3 WD NETs are more likely to:
  - Be diagnosed at earlier age and be functional
  - Have lower Ki67 (typically 21-55%)
  - Have +ve somatostatin receptor imaging
  - Carry mutations associated with low/intermediate grade NETs (i.e. mutations in DAXX, ATRX, MEN1)
  - Have longer overall survival (i.e. median OS 98.7 months for WD NETs vs. 17.0 months for PD NECs, p<0.001)</li>



Heefeld et al. Endocr Relat Cancer 2015;22:657.

### **2017 WHO classification for PNET**

|                    | Neoplas                    |                                       | Proliferat         | ion                                 |                                          |
|--------------------|----------------------------|---------------------------------------|--------------------|-------------------------------------|------------------------------------------|
| Туре               | Differentiation<br>Status  | Definition                            | Grade              | Ki67<br>(% of ≥500 cells)           | Mitotic<br>Count<br>(2 mm <sup>2</sup> ) |
| NEN                | Well differentiated        | NET                                   | G1<br>G2           | <3<br>3–20                          | <2<br>2–20                               |
|                    | Poorly differentiated      | NEC                                   | G3<br>(default G3) | >20<br>>20                          | >20<br>>20                               |
|                    |                            | Small cell type<br>Large cell type    |                    |                                     |                                          |
| MiNEN <sup>a</sup> | Well/poorly differentiated | NET or NEC<br>ADC <sup>b</sup> or SCC | G1-G3<br>G1-G3     | See above<br>See Ref. <sup>11</sup> | See above<br>See Ref. <sup>11</sup>      |

- Takes into account the heterogeneity of PNETs
- Grade 3 includes both well-differentiated PNET (PanNET G3) and poorly differentiated pancreatic NEC (PanNECs G3)
- Cell differentiation distinguishes between NET and NEC, not Ki67 value
- Therapy for the well-differentiated G3 tumors needs to be further studied

# Prognosis

- Wide range of prognosis based on:
  - Stage at diagnosis (localized > regional > distant)
    - By AJCC TNM staging system (stages 1-4)
  - Grade (well diff > poor diff)
  - Age at diagnosis (younger > older)
  - Primary site
  - Time of diagnosis (2000-2004 < 2005-2008 < 2008-2012)</p>
    - Greater improvement in survival for advanced GEP NETs (especially carcinoids) due to better therapies

# Functionality

- GEP NETs may produce and secrete bioactive amines and peptides (hormones, neuromodulators) causing clinical symptoms
- Classified as functional vs. non-functional
- Symptoms do not correlate with tumor burden
- Treatment of clinical syndromes of hormone excess: somatostatin analogue (SSA), except insulinoma

| Carcinoids (8-35% functional)                                                                                                                                                                                   | PNETs (10-40% functional)                                                                                                                                                                                                                                           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Carcinoid syndrome → flushing, diarrhea, right sided valvular fibrosis, bronchoconstriction</li> <li>Typically associated with serotonin and midgut NETs in the setting of liver metastases</li> </ul> | Secretion of: <ul> <li>*Insulin (insulinoma) → hypoglycemia</li> <li>*Gastrin (gastrinoma) → PUD</li> <li>Vasoactive intestinal peptide (VIPoma) →</li> <li>diarrhea, hypoK</li> <li>Glucagon (glucagonoma) → flushing,</li> <li>diarrhea, hyperglycemia</li> </ul> |

1. Choti et al. J Clin Oncol 2012;30:suppl abstr 4126. 2. Soga et al. J Exp Clin Cancer Res 1999;18:133. 3. Oberg K. Semin Oncol 2010;37:594. 4. Halfdanarson et al. Ann Oncol 2008;19:1727.

# Characteristics of carcinoid tumors by location

|                       | Foregut                                                                                 | Midgut                                                                                                           | Hindgut                                                                                                |
|-----------------------|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| Localization          | Stomach, duodenum,<br>bronchus, thymus                                                  | Jejunum, ileum,<br>appendix, ascending<br>colon                                                                  | Transverse, descending,<br>and sigmoid colon,<br>rectum, genitourinary                                 |
| Secretory<br>products | 5-hydroxytryptophan,<br>histamine, multiple<br>polypeptides                             | Serotonin<br>prostaglandins,<br>polypeptides                                                                     | Variable                                                                                               |
| Carcinoid<br>syndrome | Rare, and atypical when<br>it happens<br>(angioedema, hive-like<br>pink flushing, rash) | <u><b>Classic</b></u> (flushing,<br>diarrhea, wheezing due<br>to bronchoconstriction,<br>R valvular involvement) | Rare (usually found on<br>lower GI endoscopy,<br>patients may present<br>with obstructive<br>symptoms) |

## Carcinoid syndrome

- Occurs in approximately 8% to 35% of patients with NETs and occurs mostly in cases of patients with hepatic metastases<sup>1</sup>
- Consequence of vasoactive peptides such as serotonin, histamine, or tachykinins released into the circulation<sup>2,3</sup>
- Manifested by episodic flushing, wheezing, diarrhea, and, potentially, the eventual development of carcinoid heart disease<sup>2,3</sup>



Percentage of patients with symptoms

Rorstad O. J Surg Oncol. 2005; 89:151-60.
 Modlin IM, Kidd M, Latich I, Zikusoka MN, Shapiro MD. Gastroenterology. 2005;128:1717-1751.
 Vinik A, Moattari AR. Dig Dis Sci. 1989;34(3 Suppl):14S-27S.
 Creutzfeldt W. World J Surg. 1996;20:126-131.

# Workup

- Goals of workup
  - Assess primary site and stage
  - Characterize aggressiveness (grade, differentiation) need tissue
  - Establish functionality
- NCCN guidelines (v2.2020)
  - Recommend: multiphasic CT or MRI abdomen/pelvis
  - As appropriate:
    - CT chest with or without contrast
    - Somatostatin receptor-based imaging (Ga68 dotatate PET/CT preferred, or Octreoscan)
    - Endoscopy
    - Biochemical evaluation as clinically indicated (if suspicious symptoms present)

## Somatostatin receptor-based imaging

- >90% well-differentiated GEP NETs express variable levels of SSTR
- Imaging using radiolabelled SSAs
  - Bind to SSTR2 and 5 on NET cells
  - OctreoScan (Indium-111 pentetreotide)
  - Functional PET imaging (68Ga DOTATATE PET/CT) – more sensitive for detecting small lesions, shorter time (30-60 min)
- Should stop short-acting SSA 24 hours and longacting SSA 5-6 weeks before imaging
- NOT recommended for routine surveillance



http://www.carcinoid.org/2014/06/30/carcinoid-cancer-foundation-awards-grant-tostanford-university/.

Kidd et al. Nat Rev Clin Oncol 2016;13:691.



### 111-In-DTPAOC SPECT

### 68-Ga-DOTATOC PET

## Biochemical testing (NCCN v2.2020)

|                                                           | Location                                                                    | Clinical Symptoms                                                                                                                                                                                                                                                                                                                                                                                                          | Testing                                                                                                                                                                                                                                                                                                                                                                                |
|-----------------------------------------------------------|-----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NETs of<br>Gastrointestinal<br>Tract, Lung, and<br>Thymus | Primary tumors in GI tract<br>(ileum, appendix, rectum),<br>lung, or thymus | <ul> <li>Primary tumors in the GI tract usually<br/>are not associated with symptoms of<br/>hormone secretion unless extensive<br/>metastasis.</li> <li>Symptoms of hormone secretion<br/>may include flushing, diarrhea,<br/>cardiac valvular fibrosis, and<br/>bronchoconstriction.</li> <li>Bronchial/thymic tumors may be<br/>associated with classic carcinoid<br/>syndrome as well as Cushing's syndrome.</li> </ul> | <ul> <li>Chromogranin A (category 3)</li> <li>24-hour urine or plasma 5-HIAA</li> <li>Foods to avoid for 48 hours prior to<br/>and during testing: avocados, bananas,<br/>cantaloupe, eggplant, pineapples,<br/>plums, tomatoes, hickory nuts/pecans,<br/>plantains, kiwi, dates, grapefruit,<br/>honeydew, or walnuts.</li> <li>Test for Cushing's syndrome (NE-C, 2 of 3)</li> </ul> |
| PanNET (see subtypes below)                               | Pancreas                                                                    | Depends on hormone secreted, can be clinically silent                                                                                                                                                                                                                                                                                                                                                                      | Serum pancreatic polypeptide (category 3)     Chromogranin A (category 3)                                                                                                                                                                                                                                                                                                              |
| Insulinoma                                                | Pancreas                                                                    | Hypoglycemia                                                                                                                                                                                                                                                                                                                                                                                                               | <ul> <li>While hypoglycemic:</li> <li>Serum insulin</li> <li>Pro-insulin</li> <li>C-peptide</li> <li>See Workup for insulinoma (<u>PanNET-3</u>)</li> </ul>                                                                                                                                                                                                                            |
| VIPoma                                                    | Most common in pancreas, can be extra pancreatic                            | Diarrhea, hypokalemia                                                                                                                                                                                                                                                                                                                                                                                                      | Serum VIP                                                                                                                                                                                                                                                                                                                                                                              |
| Glucagonoma                                               | Pancreas                                                                    | Flushing, diarrhea, hyperglycemia, dermatitis, hypercoaguable state                                                                                                                                                                                                                                                                                                                                                        | Serum glucagon                                                                                                                                                                                                                                                                                                                                                                         |
| Gastrinoma                                                | Pancreas or duodenum                                                        | Gastric ulcers, duodenal ulcers, diarrhea                                                                                                                                                                                                                                                                                                                                                                                  | Serum gastrin <sup>a</sup>                                                                                                                                                                                                                                                                                                                                                             |

### • Chromogranin A

- Ubiquitous distribution in neuroendocrine tissues, stored in secretory granules and secreted with modified amines
- Sensitive, but non-specific
- Trend is more important

NCCN Practice Guidelines (Neuroendocrine Tumors). https://www.nccn.org/professionals/physician\_gls/pdf/neuroendocrine.pdf

# False elevations

- Chromogranin A
  - Proton pump inhibitors (should be discontinued at least 2 weeks before)
  - Other disorders: endocrine, GI, cardiac, inflammatory diseases, renal impairment, other non-GI cancers

- 24h urinary 5-HIAA (5hydroxyindoleacetic acid)
  - Ingestion of tryptophan/serotoninrich foods
  - Avoid for 48h before measurement: avocado, banana, cantaloupe, eggplant, pineapple, plum, tomato, hickory nut/pecan, plantain, kiwi, date, grapefruit, honeydew, walnut
  - Malabsorption syndromes



- For symptom (if present) and tumor control
- Multidisciplinary approach if appropriate
- Therapy selection depends on:
  - Carcinoid vs. PNET, grade and cell differentiation, SSTR expression, symptoms, tumor burden, rate of growth

# Systemic therapy for symptoms

- Clinical symptoms associated with hormone secretion
- SSA is mainstay of treatment
  - Octreotide
    - Highest affinity for SSTR2
    - Short-acting and long-acting formulations
    - Recommend short-acting for 2-3 weeks until steady levels of octreotide LAR are reached
  - Lanreotide (SSTR2) and pasireotide (SSTR1,2,3,5)
    - Equally effective as octreotide in controlling carcinoid syndrome
- Telotristat for refractory carcinoid syndrome-related diarrhea
  - Tryptophan hydroxylase inhibitor in serotonin synthesis pathway
- Consider octreotide during surgery to avoid carcinoid crisis

### SSAs have anti-tumor activity against GEP NETs and inhibit growth factors



Chalabi et al. Trends in Endocrinology & Metabolism 2014;25:115.

# Octreotide





- Improvement in median time to progression (HR 0.34, 95% CI 0.2-0.59, p=0.000072)
- Stable disease: 67% vs. 37% (at 6m)
- No improvement in overall survival
- Both functional and non-functional tumors responded
- Most common adverse events related to GI tract (diarrhea, flatulence)

# Lanreotide



Caplin et al. N Engl J Med 2014;371:224.

# Side effects of SSAs

- Injection site pain (8-10%)
- Nausea (9-30%)
- Abdominal cramps (4-44%), diarrhea (7-58%), steatorrhea (0-4%), flatulence (0.5-13%)
- Hyperglycemia (15%)
- Cholelithiasis/biliary sludge (52-62%)
  - Consider prophylactic cholecystectomy if anticipate long-term use
  - Assess with ultrasound of gallbladder and bile ducts every 6-12 months
  - Gallstones may be treated with ursodiol

## Everolimus



Figure 1 | **Selected signalling pathways and drugs for RCC. a** | A simplified overview of the PI3K–AKT–mTOR pathway, together with points of action of drugs for RCC. **b** | Everolimus.

Atkins et al. Nat Rev Drug Discov 2009;8:535.

## Everolimus – RADIANT3





## Everolimus – RADIANT4



PFS by central review

OS

Yao et al. Lancet 2016;387:968.

|                             | Everolimus | (n=202)  |          |         |         | Placebo (n= | <b>⊧</b> 98) |         |         |         |
|-----------------------------|------------|----------|----------|---------|---------|-------------|--------------|---------|---------|---------|
|                             | All grades | Grade 1  | Grade 2  | Grade 3 | Grade 4 | All grades  | Grade 1      | Grade 2 | Grade 3 | Grade 4 |
| Stomatitis*                 | 127 (63%)  | 72 (36%) | 37 (18%) | 18 (9%) | 0       | 19 (19%)    | 17 (17%)     | 2 (2%)  | 0       | 0       |
| Diarrhoea                   | 63 (31%)   | 30 (15%) | 18 (9%)  | 13 (6%) | 2 (1%)  | 16 (16%)    | 10 (10%)     | 4 (4%)  | 2 (2%)  | 0       |
| Fatigue                     | 62 (31%)   | 35 (17%) | 20 (10%) | 5 (2%)  | 2 (1%)  | 24 (24%)    | 17 (17%)     | 6 (6%)  | 1 (1%)  | 0       |
| Infections†                 | 59 (29%)   | 12 (6%)  | 33 (16%) | 10 (5%) | 4 (2%)  | 4 (4%)      | 1 (1%)       | 3 (3%)  | 0       | 0       |
| Rash                        | 55 (27%)   | 42 (21%) | 12 (6%)  | 1(<1%)  | 0       | 8 (8%)      | 6 (6%)       | 2 (2%)  | 0       | 0       |
| Peripheral oedema           | 52 (26%)   | 30 (15%) | 18 (9%)  | 4 (2%)  | 0       | 4 (4%)      | 2 (2%)       | 1 (1%)  | 1 (1%)  | 0       |
| Nausea                      | 35 (17%)   | 26 (13%) | 6 (3%)   | 2 (1%)  | 1 (<1%) | 10 (10%)    | 7 (7%)       | 3 (3%)  | 0       | 0       |
| Asthenia                    | 33 (16%)   | 8 (4%)   | 22 (11%) | 2 (1%)  | 1 (<1%) | 5 (5%)      | 4 (4%)       | 1 (1%)  | 0       | 0       |
| Anaemia                     | 33 (16%)   | 5 (2%)   | 20 (10%) | 8 (4%)  | 0       | 2 (2%)      | 0            | 1 (1%)  | 1 (1%)  | 0       |
| Decreased appetite          | 32 (16%)   | 22 (11%) | 9 (4%)   | 1 (<1%) | 0       | 6 (6%)      | 2 (2%)       | 4 (4%)  | 0       | 0       |
| Non-infectious pneumonitis‡ | 32 (16%)   | 5 (2%)   | 24 (12%) | 3 (1%)  | 0       | 1 (1%)      | 0            | 1 (1%)  | 0       | 0       |
| Dysgeusia                   | 30 (15%)   | 26 (13%) | 3 (1%)   | 1(<1%)  | 0       | 4 (4%)      | 4 (4%)       | 0       | 0       | 0       |
| Pruritus                    | 26 (13%)   | 19 (9%)  | 6 (3%)   | 1 (<1%) | 0       | 4 (4%)      | 4 (4%)       | 0       | 0       | 0       |
| Cough                       | 26 (13%)   | 18 (9%)  | 8 (4%)   | 0       | 0       | 3 (3%)      | 3 (3%)       | 0       | 0       | 0       |
| Pyrexia                     | 22 (11%)   | 14 (7%)  | 4 (2%)   | 2 (1%)  | 2 (1%)  | 5 (5%)      | 4 (4%)       | 1 (1)   | 0       | 0       |
| Hyperglycaemia              | 21 (10%)   | 5 (2%)   | 9 (4%)   | 7 (3%)  | 0       | 2 (2%)      | 2 (2%)       | 0       | 0       | 0       |
| Dyspnoea                    | 21 (10%)   | 4 (2%)   | 15 (7%)  | 2 (1%)  | 0       | 4 (4%)      | 2 (2%)       | 1 (1)   | 0       | 1 (1)   |

\*Included in this category are stomatitis, aphthous stomatitis, mouth ulceration, and tongue ulceration. †All types of infections are included. ‡Included in this category are pneumonitis, interstitial lung disease, lung infiltration, and pulmonary fibrosis.

Table 3: Treatment-related adverse events reported in at least 10% of patients (safety population)

Most significant toxicities: stomatitis, diarrhea, fatigue, infections, rash Possible hyperglycemia and pneumonitis

# Sunitinib



# Sunitinib



Raymond et al. N Engl J Med 2011;304:501.

| Table 3. Common Adverse Events in the Safety Population.* |            |                 |               |                 |                |              |
|-----------------------------------------------------------|------------|-----------------|---------------|-----------------|----------------|--------------|
| Event                                                     | :          | Sunitinib (N=83 | )             |                 | Placebo (N=82) |              |
|                                                           | All Grades | Grade 1 or 2    | Grade 3 or 4  | All Grades      | Grade 1 or 2   | Grade 3 or 4 |
|                                                           |            |                 | number of pat | ients (percent) |                |              |
| Diarrhea                                                  | 49 (59)    | 45 (54)         | 4 (5)         | 32 (39)         | 30 (37)        | 2 (2)        |
| Nausea                                                    | 37 (45)    | 36 (43)         | 1 (1)         | 24 (29)         | 23 (28)        | 1 (1)        |
| Asthenia                                                  | 28 (34)    | 24 (29)         | 4 (5)         | 22 (27)         | 19 (23)        | 3 (4)        |
| Vomiting                                                  | 28 (34)    | 28 (34)         | 0             | 25 (30)         | 23 (28)        | 2 (2)        |
| Fatigue                                                   | 27 (32)    | 23 (28)         | 4 (5)         | 22 (27)         | 15 (18)        | 7 (8)        |
| Hair-color changes                                        | 24 (29)    | 23 (28)         | 1 (1)         | 1(1)            | 1(1)           | 0            |
| Neutropenia                                               | 24 (29)    | 14 (17)         | 10 (12)       | 3 (4)           | 3 (4)          | 0            |
| Abdominal pain                                            | 23 (28)    | 19 (23)         | 4 (5)         | 26 (32)         | 18 (22)        | 8 (10)       |
| Hypertension                                              | 22 (26)    | 14 (17)         | 8 (10)        | 4 (5)           | 3 (4)          | 1 (1)        |
| Palmar–plantar erythro-<br>dysesthesia                    | 19 (23)    | 14 (17)         | 5 (6)         | 2 (2)           | 2 (2)          | 0            |
| Anorexia                                                  | 18 (22)    | 16 (19)         | 2 (2)         | 17 (21)         | 16 (20)        | 1 (1)        |
| Stomatitis                                                | 18 (22)    | 15 (18)         | 3 (4)         | 2 (2)           | 2 (2)          | 0            |
| Dysgeusia                                                 | 17 (20)    | 17 (20)         | 0             | 4 (5)           | 4 (5)          | 0            |
| Epistaxis                                                 | 17 (20)    | 16 (19)         | 1 (1)         | 4 (5)           | 4 (5)          | 0            |
| Headache                                                  | 15 (18)    | 15 (18)         | 0             | 11 (13)         | 10 (12)        | 1 (1)        |
| Insomnia                                                  | 15 (18)    | 15 (18)         | 0             | 10 (12)         | 10 (12)        | 0            |
| Rash                                                      | 15 (18)    | 15 (18)         | 0             | 4 (5)           | 4 (5)          | 0            |
| Thrombocytopenia                                          | 14 (17)    | 11 (13)         | 3 (4)         | 4 (5)           | 4 (5)          | 0            |
| Mucosal inflammation                                      | 13 (16)    | 12 (14)         | 1 (1)         | 6 (7)           | 6 (7)          | 0            |
| Weight loss                                               | 13 (16)    | 12 (14)         | 1 (1)         | 9 (11)          | 9 (11)         | 0            |
| Constipation                                              | 12 (14)    | 12 (14)         | 0             | 16 (20)         | 15 (18)        | 1 (1)        |
| Back pain                                                 | 10 (12)    | 10 (12)         | 0             | 14 (17)         | 10 (12)        | 4 (5)        |

Raymond et al. N Engl J Med 2011;304:501.

# Peptide receptor radionuclide therapy (PRRT)



- Delivers radionuclides directly to tumor cells via SSTR
- Used for SSTR-positive metastatic well-differentiated NETs in Europe since 1990s
- Lutetium-177 is a beta and gamma emitting radionuclide

ORIGINAL ARTICLE

### Phase 3 Trial of <sup>177</sup>Lu-Dotatate for Midgut Neuroendocrine Tumors

J. Strosberg, G. El-Haddad, E. Wolin, A. Hendifar, J. Yao, B. Chasen, E. Mittra, P.L. Kunz, M.H. Kulke, H. Jacene, D. Bushnell, T.M. O'Dorisio, R.P. Baum, H.R. Kulkarni, M. Caplin, R. Lebtahi, T. Hobday, E. Delpassand, E. Van Cutsem, A. Benson, R. Srirajaskanthan, M. Pavel, J. Mora, J. Berlin, E. Grande, N. Reed, E. Seregni, K. Öberg, M. Lopera Sierra, P. Santoro, T. Thevenet, J.L. Erion,
P. Ruszniewski, D. Kwekkeboom, and E. Krenning, for the NETTER-1 Trial Investigators\*

- Patients with metastatic welldifferentiated midgut NETs
  - SSTR-positive
- Progressed during treatment with octreotide LAR for at least 12 wks prior to study



- Octreotide LAR 60 mg IM every 4 weeks (n=113)
- For renal protection, IV amino acid solution (lysine, arginine) given concomitantly for at least 4 hours starting 30 min before infusion of 177Lu-Dotatate
- Octreotide LAR given 24 hours after each infusion of 177Lu-Dotatate, then monthly



65% vs. 11% Median PFS: not reached vs. 8.4 months (HR 0.21, 95% CI 0.13-0.33, p<0.001)

#### Interim analysis for overall survival: 14 vs. 26 deaths (p=0.004)

| Response Category           | <sup>177</sup> Lu-Dotatate Group<br>(N=101) | Control Group<br>(N=100) | P Value† |
|-----------------------------|---------------------------------------------|--------------------------|----------|
| Complete response — no. (%) | 1 (1)                                       | 0                        |          |
| Partial response — no. (%)  | 17 (17)                                     | 3 (3)                    |          |
| Objective response          |                                             |                          |          |
| No. with response           | 18                                          | 3                        |          |
| Rate — % (95% CI)           | 18 (10–25)                                  | 3 (0–6)                  | <0.001   |

| Table 3. Overview of Adverse Events (Safety Population).* |                                             |                          |          |  |  |
|-----------------------------------------------------------|---------------------------------------------|--------------------------|----------|--|--|
| Event                                                     | <sup>177</sup> Lu-Dotatate Group<br>(N=111) | Control Group<br>(N=110) | P Value† |  |  |
|                                                           | number of patier                            | nts (percent)            |          |  |  |
| Adverse event                                             |                                             |                          |          |  |  |
| Any                                                       | 106 (95)                                    | 95 (86)                  | 0.02     |  |  |
| Related to treatment                                      | 95 (86)                                     | 34 (31)                  | < 0.001  |  |  |
| Serious adverse event                                     |                                             |                          |          |  |  |
| Any                                                       | 29 (26)                                     | 26 (24)                  | 0.76     |  |  |
| Related to treatment                                      | 10 (9)                                      | 1 (1)                    | 0.01     |  |  |
| Withdrawal from trial because of adverse event            |                                             |                          |          |  |  |
| Because of any adverse event                              | 7 (6)                                       | 10 (9)                   | 0.46     |  |  |
| Because of adverse event related to treatment             | 5 (5)                                       | 0                        | 0.06     |  |  |

\* The safety population included all patients who underwent randomization and received at least one dose of trial treatment. † P values were calculated with the use of Fisher's exact text.

#### • 177Lu-Dotatate group:

- Nausea 59%, vomiting 47% (due to amino acid), fatigue/asthenia 40%
- Grade 3 or 4: neutropenia 1%, thrombocytopenia 2%, lymphopenia 9% (none in control group)
- No renal toxicity observed at median follow-up duration of 14 months
- 1 patient developed myelodysplastic syndrome possibly related to PRRT

## **Update of NETTER-1**



Median OS: not reached vs. 27.4 months

Median PFS: 28.4 vs. 8.5 months (HR 0.214, 95% CI 0.139-0.331, p<0.0001)

Strosberg et al. J Clin Oncol 2018;36:suppl abstr 4099.



Home > News & Events > Newsroom > Press Announcements

### PRRT approved for refractory SSTRexpressing welldifferentiated GEP NETs

#### FDA News Release

## FDA approves new treatment for certain digestive tract cancers

f share ♥ TWEET in LINKEDIN ♥ PIN IT ■ EMAIL ↔ PRINT

For Immediate Release January 26, 2018

Release

The U.S. Food and Drug Administration today approved Lutathera (lutetium Lu 177 dotatate) for the treatment of a type of cancer that affects the pancreas or gastrointestinal tract called gastroenteropancreatic neuroendocrine tumors (GEP-NETs). This is the first time a radioactive drug, or radiopharmaceutical, has been approved for the treatment of GEP-NETs. Lutathera is indicated for adult patients with somatostatin receptor-positive GEP-NETs.

"GEP-NETs are a rare group of cancers with limited treatment options after initial therapy fails to keep the cancer from growing," said Richard Pazdur, M.D., director of the FDA's Oncology Center of Excellence and acting director of the Office of Hematology and Oncology Products in the FDA's Center for Drug Evaluation and Research. "This approval provides another treatment choice for patients with these rare cancers. It also demonstrates how the FDA may consider data from therapies that are used in an expanded access program to support approval for a new treatment."

#### **Pharmacokinetics:**

- Half-life 6.71 days
- Poorly metabolized and mainly excreted renally as intact compound
  - 60% eliminated in urine within 24h; 65% within 48h

#### Use in patients with CKD:

- CrCl <30 mL/min: contraindicated
- CrCl <50 mL/min: not recommended</li>
- Mild to moderate CKD with CrCl ≥50 mL/min: use with caution, consider dose reduction

1. <u>https://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm594043.htm 2</u>. Lutathera<sup>®</sup> monograph

## Practical considerations for <sup>177</sup>Lu-Dotatate

- Interval between each infusion is 8 (+/-1) weeks, can be extended up to 16 weeks for toxicity
- May use half-dose (3.7 GBq) due to toxicity
- \*No long-acting SSA within 4 weeks of treatment
- \*No short-acting SSA within 24 hours of treatment
- Concomitant infusion of amino acid solution is required for renal protection (over 4 hours)
  - Composition: lysine 25g, arginine 25g in 1L NS

# Chemotherapy

- Carcinoids
  - Generally do not respond well to chemotherapy
  - May be considered for progressive disease with no other standard or trial options
- PNETs
  - Activity has been shown with alkylating agents
  - May be initially considered for bulky, rapidly progressing, and/or symptomatic well-differentiated PNETs
    - Greater response rate
  - Synergistic activity of temozolomide and capecitabine in PNET in preclinical and early studies

A randomized phase II study of temozolomide or temozolomide and capecitabine in patients with advanced pancreatic neuroendocrine tumors: A trial of the ECOG-ACRIN Cancer Research Group (E2211)

Pamela L. Kunz<sup>1</sup>, Paul J. Catalano<sup>2,3</sup>, Halla S. Nimeiri<sup>4</sup>, George A. Fisher Jr<sup>1</sup>, Teri A. Longacre<sup>1</sup>, Carlos J. Suarez<sup>1</sup>, James C. Yao<sup>5</sup>, Matthew H. Kulke<sup>6</sup>, Andrew E. Hendifar<sup>7</sup>, James C. Shanks<sup>8</sup>, Manisha H. Shah<sup>9</sup>, Mark M. Zalupski<sup>10</sup>, Edmond Schmulbach<sup>11</sup>, Diane L. Reidy-Lagunes<sup>12</sup>, Jonathan R. Strosberg<sup>13</sup>, Peter J. O'Dwyer<sup>14</sup>, and Al B. Benson III<sup>4</sup> on behalf of the E2211 Study Team

<sup>1</sup>Stanford University, <sup>2</sup>Dana Farber Cancer Institute, <sup>3</sup>ECOG-ACRIN Biostatistics Center, <sup>4</sup>Northwestern University, <sup>5</sup>MD Anderson Cancer Center, <sup>6</sup>Boston University, <sup>7</sup>Cedars Sinai Medical Center, <sup>8</sup>Saint John's Hospital Healtheast, <sup>9</sup>Ohio State Comprehensive Cancer Center, <sup>10</sup>University of Michigan Comprehensive Cancer Center, <sup>11</sup>Kaiser Permanente South San Francisco, <sup>12</sup>Memorial Sloan Kettering Cancer Center, <sup>13</sup>Moffitt Cancer Center, <sup>14</sup>University of Pennsylvania





PRESENTED BY: Pamela L. Kunz, MD

Abstract #4004

Presented By Pamela Kunz at 2018 ASCO Annual Meeting

## E2211 Study Design

### Progressive, G1/G2, metastatic pancreatic NETs

n=72 R 1:1 n=72

#### ARM A: <u>Temozolomide</u> 200 mg/m<sup>2</sup> po QD days 1-5

ARM B: <u>Capecitabine</u> 750 mg/m<sup>2</sup> po BID days 1-14 <u>Temozolomide</u> 200 mg/m<sup>2</sup> QD days 10-14

Cycle length = 28 days; <u>max 13 cycles</u>. Imaging performed every 12 weeks (RECIST 1.1)

#### Primary Endpoint:

• PFS (local review)

#### Secondary Endpoints:

- RR
- OS
- Toxicity

#### Correlative Endpoints:

- MGMT by IHC
- MGMT by promoter methylation

## Stratified by:Prior everolimus

- Prior sunitinib
- Concurrent octreotide

**Concurrent SSAs allowed** 

PRESENTED AT: 2018 ASCO ANNUAL MEETING

#ASCO18 Slides are the property of the author, permission required for reuse.

PRESENTED BY: Pamela L. Kunz, MD

NCT01824875

Presented By Pamela Kunz at 2018 ASCO Annual Meeting

### **Progression Free Survival**

### **Overall Survival**



|                                                       | Temozolomide<br>(N=72) | Temozolomide + Capecitabine<br>(N=72) |
|-------------------------------------------------------|------------------------|---------------------------------------|
| Time from Diagnosis (months)                          | 24.4 mo                | 34.0 mo                               |
| *WHO Grade<br>Low (Grade 1)<br>Intermediate (Grade 2) | 45.1%<br>54.9%         | 68.1%<br>31.9%                        |



- Grade was not associated with PFS/OS
- PFS/OS benefits were observed after adjusting for grade

Kunz et al. J Clin Oncol 2018;36:suppl; abstr 4004.

| Response Rates                     |                        |                                       |         |  |  |  |
|------------------------------------|------------------------|---------------------------------------|---------|--|--|--|
|                                    | Temozolomide<br>(N=72) | Temozolomide + Capecitabine<br>(N=72) | p-value |  |  |  |
| Complete response                  | 2.8%                   | 0                                     |         |  |  |  |
| Partial response                   | 25.0%                  | 33.3%                                 |         |  |  |  |
| Stable disease                     | 40.3%                  | 48.6%                                 |         |  |  |  |
| Progressive disease                | <b>19.4</b> %          | 13.9%                                 |         |  |  |  |
| Unevaluable                        | 12.5%                  | 4.2%                                  |         |  |  |  |
| Objective Response Rate<br>(CR+PR) | 27.8%                  | 33.3%                                 | 0.47    |  |  |  |
| Disease Control Rate<br>(CR+PR+SD) | 68.1%                  | 81.9%                                 |         |  |  |  |
| Response Duration (median)         | 9.7 mo                 | 12.1 mo                               |         |  |  |  |

Safety

- Grade 3/4 treatment-related AEs: 44% vs. 22% (p=0.007)
- Most common grade 3/4 AEs with CAPTEM neutropenia (13%), thrombocytopenia (8%), nausea/vomiting (8%), diarrhea (8%), lymphopenia (5%), fatigue (5%)

Summary of systemic therapy for unresectable or metastatic well-differentiated GEP NETs

### **Carcinoid tumor**

- SSA (octreotide, lanreotide)
- PRRT
- Everolimus

### PNET

- SSA (octreotide, lanreotide)
- PRRT
- Everolimus
- Sunitinib
- CAPTEM

Other cytotoxic chemotherapy regimens may be considered (less preferred) (for instance, FOLFOX or CAPOX)

### No data to support a specific sequence of systemic therapy options Consider clinical trials

# Thank you for your attention!