

Fred Hutch · Seattle Children's · UW Medicine

Bleeding Disorders

Rebecca Kruse-Jarres, MD/MPH

Professor of Medicine and Pediatrics, University of Washington

Medical Director, Washington Center for Bleeding Disorders

Disclosures

Consulting Fees (e.g., advisory boards)

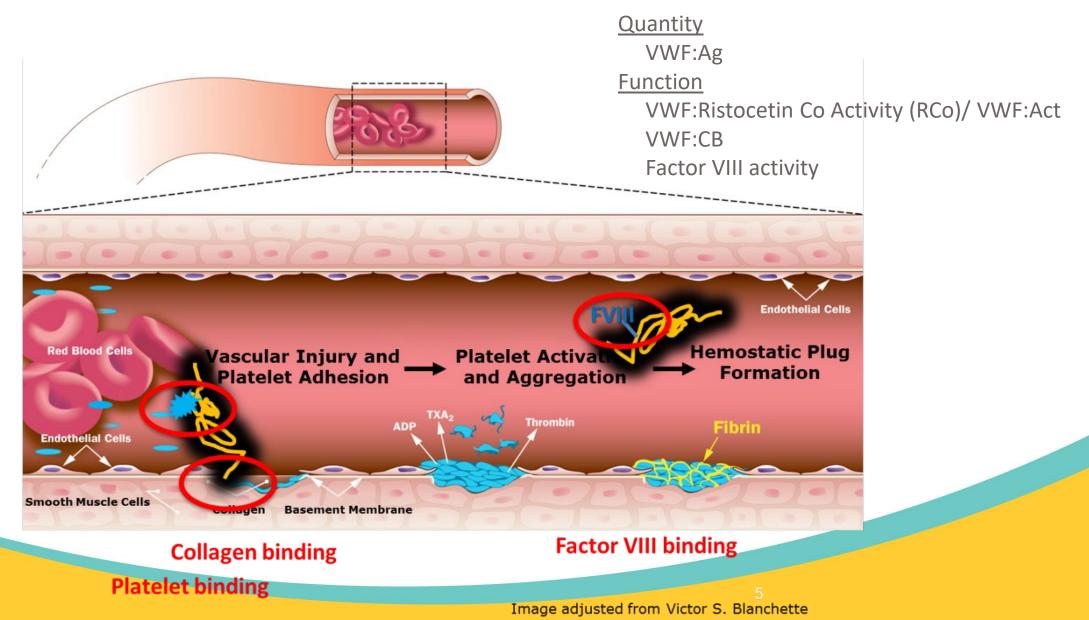
Chugai, Biomarin, CSL Behring, CRISPR Therapeutics, Genentech

Fees for Non-CME/CE Services Received Directly from a Commercial Interest or their Agents (e.g., speakers' bureaus)

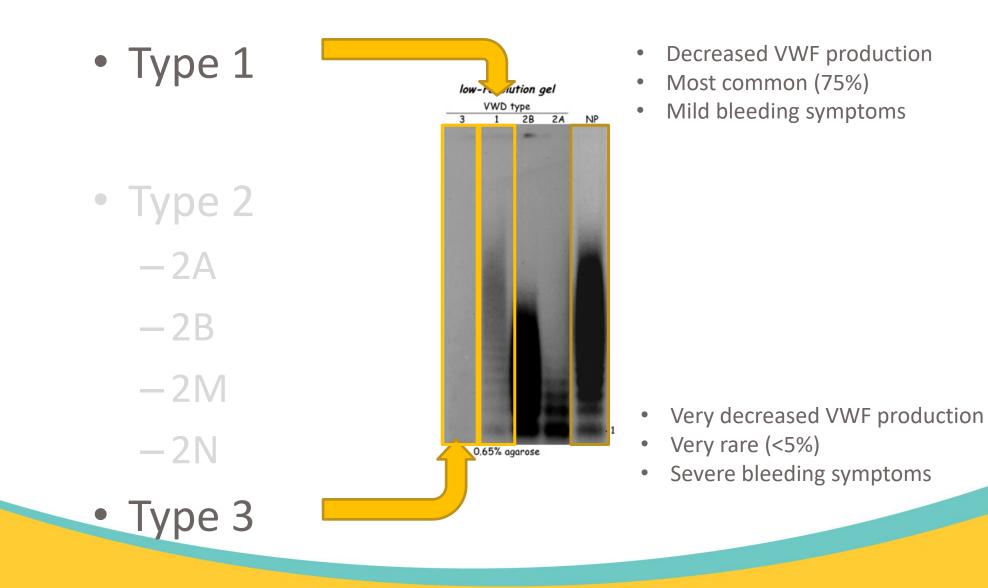
Roche

Contracted Research

CSL Behring, Genentech, Spark



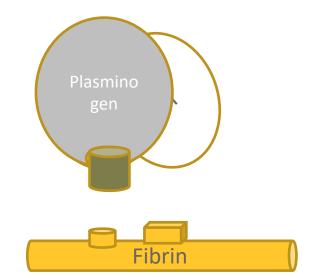
Objectives


- To discuss von Willebrand disease
 - Treatment option
 - Acquired von Willebrand syndrome
- To describe new treatment options for **congenital hemophilia**
- To recognize **acquired hemophilia** and describe potential 1st line treatment options
- To describe some rarer factor deficiencies and their treatment approaches

Von Willebrand Disease

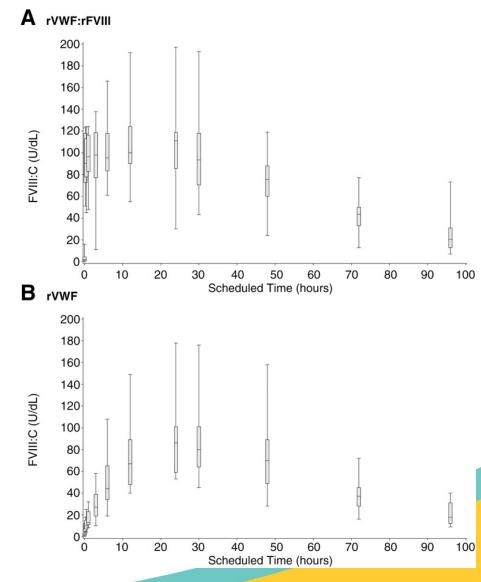
Von Willebrand Factor

Quantitative defects



<u>Qualitati</u>	ve defects	VWD type	VWF:RCo (IU/dL)	VWF:Ag (IU/dL)	FVIII	Ratio of VWF:RCo/ VWF:Ag	
		Type 2A	<30*	<30-200*?	↓or Normal	<0.5-0.7	Abnormal multmers Abnormal Ag/RCo ratio
• Type 2		Type 2B	<30*	<30-200*?	↓ or Normal	Usually <0.5-0.7	Abnormal multmers Abnormal Ag/RCo ratio Increased plt. binding
-2A		Type 2M	<30*	<30-200*?	↓ or Normal	<0.5-0.7	Normal multimers Abnormal Ag/RCo ratio
-2B		Type 2N	30-200	30-200	$\downarrow\downarrow$	>0.5-0.7	Normal multimers Normal Ag/RCo ratio Decreased FVIII binding
-2M	(3)	9				NP	Iow-resolution gel VWD type TTP 3 1 2B 2A NP
-2N	Ŏ-			Endothelial Cells			
	Red Blood Cells Platelet Adhesion Endothelial Cells Smooth Muscle Cells Basement Membra	ADP TXA2	Activat Argument of the second	Hemostatic Plug Formation			
30/2021	Collagen binding Platelet binding	Ima	Factor VIII bin	-			

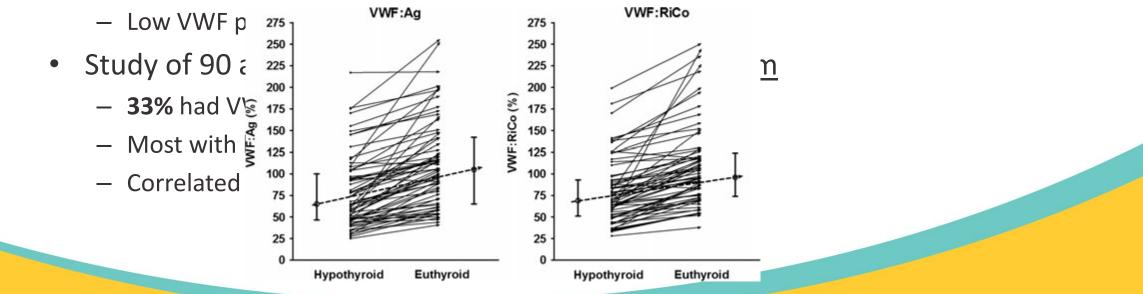
7/30/2021


Treatment of VWD

- **Desmopressin** (DDAVP, Stimate)
 - Releases endogenous VWF and factor VIII
- Antifibrinolytic
 - ε-aminocaproic acid, tranexamic acid
 - Lysine analog
 - Binds to plasminogen and prevents conversion to plasmin and thus fibrin degradation

Treatment of VWD

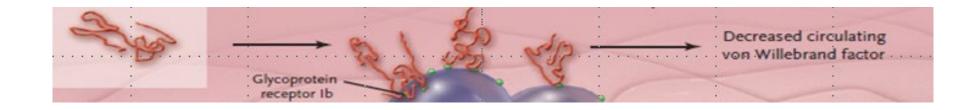
- Factor concentrate
 - <u>Plasma derived</u> all contain factor VIII as well
 - <u>Recombinant</u> von Willebrand factor (rVWF)
 - Phase III trial in severe VWD
 - 50 U/kg with or without FVIII
 - Terminal half life not affected by co-infusion of FVIII
 - Single infusion was effective in 81.8% of bleeds
 - 100% of bleeds (n=192) were controlled


Acquired von Willebrand syndrome (AVWS)

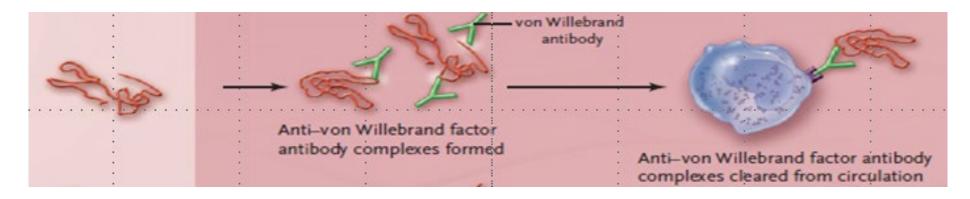
- Rare
 - underreported
- Paucity of data
 - largest data collection on the disorder today, the International Society of Thrombosis and Haemostasis International Registry on AVWS

AVWS due to decreased production

Decreased production of thyroid hormone Decreased synthesis of von Willebrand factor


- Looks like a type 1 VWD (quantitative)
 - Low VWF:Ag and VWF:Activity
 - Normal multimers

7/30/2021

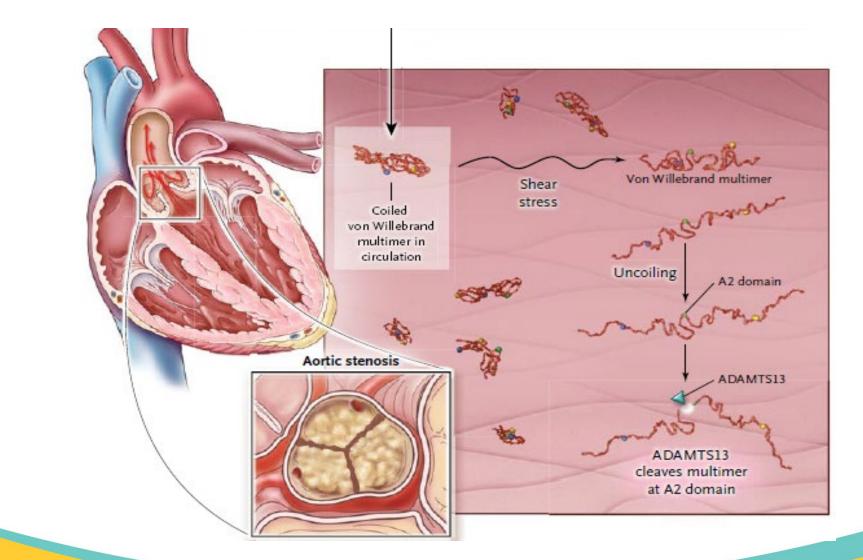

AVWS due to adsorption

7/30/2021

- Lymphoproliferative disorders (MM, WM, NHL, HCL), Myeloproliferative disorders (ET, PV), other thrombocytosis, malignancy
- Treat the underlying disease

AVWS due to antibodies

- Associated conditions:
 - monoclonal gammopathy of undetermined significance (MGUS)
 - lymphoproliferatve disorders
 - systemic lupus erythematous


7/30/2021

• Detection of actual antibodies remains challenging and not well standardized

AVWS due to antibodies

- Immunosuppression
 - Intravenous immunoglobulin¹
 - Corrects laboratory abnormalities within 24-48 hours
 - Alleviates bleeding symptoms in IgG-MGUS but not IgM-MGUS.
 - Response can be seen for about 21 days and periodic re-dosing can achieve long-term control
 - Prednisone and other immunosuppressant and rituximab
 - Varying results

- Etiology
 - acquired valve and other structural abnormalities
 - hypertrophic cardiomyopathy
 - intra-cardiac devices
- About 20% of adults with congenital heart disease have AVWS Laboratory
 - Often normal VWF:Ag, VWF:RCo, or VWF:CB levels
 - But reduced VWF:RCo/Ag and VWF:CB/Ag ratio

• Mitral valve regurgitation:

7/30/2021

Variable	Mild (N = 13)	Moderate $(N = 14)$	Severe $(N = 26)$	P-value	
HMWM loss	1 (8)	9 (64)	22 (85)	< 0.001*	
PFA-CADP (s)	84 (73-96)	156 (104-181)	190 (157-279)	< 0.001	
VWF multimers > 15	0.21 (0.18-0.23)	0.15 (0.14-0.18)	0.12 (0.10-0.14)	< 0.001	
VWF multimers > 10	0.50 (0.46-0.54)	0.43 (0.37-0.45)	0.37 (0.32-0.44)	< 0.001	
VWF:Act (%)	109 (93-124)	101 (61–133)	83 (77-140)	0.56	
VWF:Ag (IU dL^{-1})	123 (97-146)	116 (76-167)	107 (93-195)	0.67	
VWF:Act/VWF:Ag	0.92 (0.83-0.97)	0.85 (0.76-0.89)	0.79 (0.75-0.82)	< 0.001	
BNP (pg mL ^{-1})	48 (27-60)	112 (72–193)	156 (77-329)	< 0.001	
BNP/ULN	0.42 (0.31-0.55)	1.10 (0.79-1.61)	1.92 (1.04-3.78)	< 0.001	

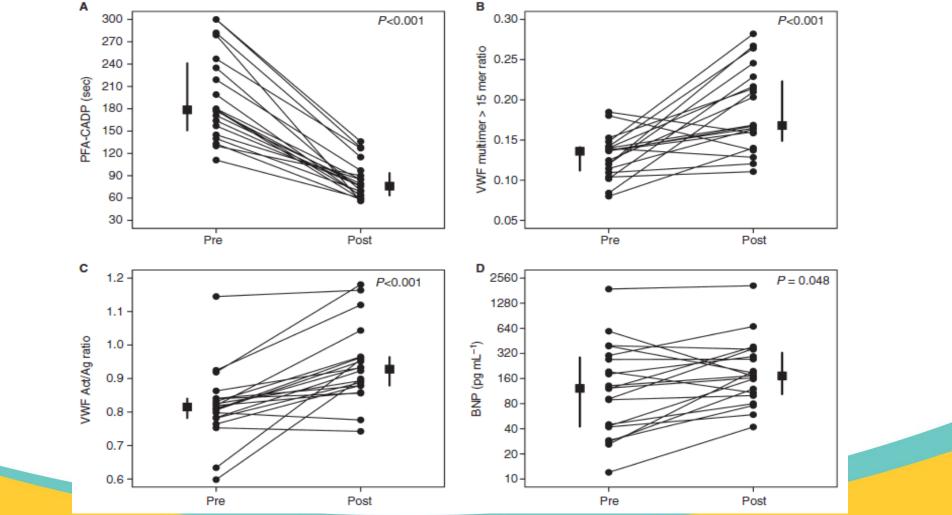
• Mitral valve regurgitation:

7/30/2021

Variable	Mild (N = 13)	Moderate $(N = 14)$	Severe $(N = 26)$	P-value	
HMWM loss	1 (8)	9 (64)	22 (85)	< 0.001*	
PFA-CADP (s)	84 (73-96)	156 (104-181)	190 (157-279)	< 0.001	
VWF multimers > 15	0.21 (0.18-0.23)	0.15 (0.14-0.18)	0.12 (0.10-0.14)	< 0.001	
VWF multimers > 10	0.50 (0.46-0.54)	0.43 (0.37-0.45)	0.37 (0.32-0.44)	< 0.001	
VWF:Act (%)	109 (93-124)	101 (61–133)	83 (77-140)	0.56	
VWF:Ag (IU dL ⁻¹)	123 (97-146)	116 (76-167)	107 (93-195)	0.67	
VWF:Act/VWF:Ag	0.92 (0.83-0.97)	0.85 (0.76-0.89)	0.79 (0.75-0.82)	< 0.001	
BNP (pg mL ^{-1})	48 (27-60)	112 (72–193)	156 (77-329)	< 0.001	
BNP/ULN	0.42 (0.31-0.55)	1.10 (0.79-1.61)	1.92 (1.04-3.78)	< 0.001	

• Mitral valve regurgitation:

7/30/2021


Variable	Mild $(N = 13)$	Moderate $(N = 14)$	Severe $(N = 26)$	P-value	
HMWM loss	1 (8)	9 (64)	22 (85)	< 0.001*	
PFA-CADP (s)	84 (73-96)	156 (104-181)	190 (157-279)	< 0.001	
VWF multimers > 15	0.21 (0.18-0.23)	0.15 (0.14-0.18)	0.12 (0.10-0.14)	< 0.001	
VWF multimers > 10	0.50 (0.46-0.54)	0.43 (0.37-0.45)	0.37 (0.32-0.44)	< 0.001	
VWF:Act (%)	109 (93-124)	101 (61-133)	83 (77-140)	0.56	
VWF:Ag (IU dL ⁻¹)	123 (97-146)	116 (76-167)	107 (93-195)	0.67	
VWF:Act/VWF:Ag	0.92 (0.83-0.97)	0.85 (0.76-0.89)	0.79 (0.75-0.82)	< 0.001	
BNP (pg mL ^{-1})	48 (27-60)	112 (72–193)	156 (77-329)	< 0.001	
BNP/ULN	0.42 (0.31-0.55)	1.10 (0.79-1.61)	1.92 (1.04-3.78)	< 0.001	

• Mitral valve regurgitation:

7/30/2021

Variable	Mild (N = 13)	Moderate $(N = 14)$	Severe $(N = 26)$	<i>P</i> -value < 0.001*	
HMWM loss	1 (8)	9 (64)	22 (85)		
PFA-CADP (s)	84 (73-96)	156 (104-181)	190 (157-279)	< 0.001	
VWF multimers > 15	0.21 (0.18-0.23)	0.15 (0.14-0.18)	0.12 (0.10-0.14)	< 0.001	
VWF multimers > 10	0.50 (0.46-0.54)	0.43 (0.37-0.45)	0.37 (0.32-0.44)	< 0.001	
VWF:Act (%)	109 (93-124)	101 (61–133)	83 (77-140)	0.56	
VWF:Ag (IU dL ⁻¹)	123 (97-146)	116 (76-167)	107 (93-195)	0.67	
VWF:Act/VWF:Ag	0.92 (0.83-0.97)	0.85 (0.76-0.89)	0.79 (0.75-0.82)	< 0.001	
BNP (pg mL^{-1})	48 (27-60)	112 (72–193)	156 (77-329)	< 0.001	
BNP/ULN	0.42 (0.31-0.55)	1.10 (0.79-1.61)	1.92 (1.04-3.78)	< 0.001	

Effect of mitral valve repair

Blackshear et al. J Thromb Haemost 2014; 12: 1966–74.

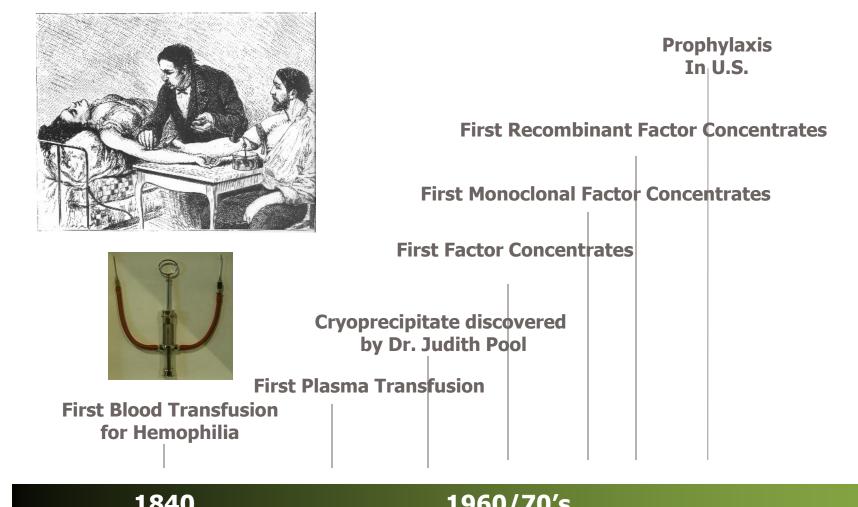
Hyde's Syndrome

Correspondence in NJEM 1958 by EC Heyde

Gastrointestinal Bleeding in Aortic Stenosis

In Blacksmith study in hypertrophic cardiomyopathy

8/20 (40%) had AVM's


Etiology is poorly understood

7/30/2021

normal vascular aging and an impairment of platelets to maintain vascular endothelium

Bleeding symptoms resolve after valve replacement

Congenital Hemophilia

The biggest challenges for hemophilia #1

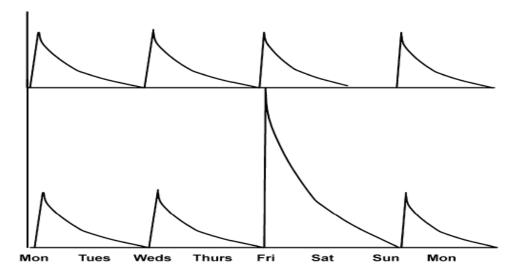
Factor replacement is standard of care

Prophylactic factor given several times weekly for severe hemophilia

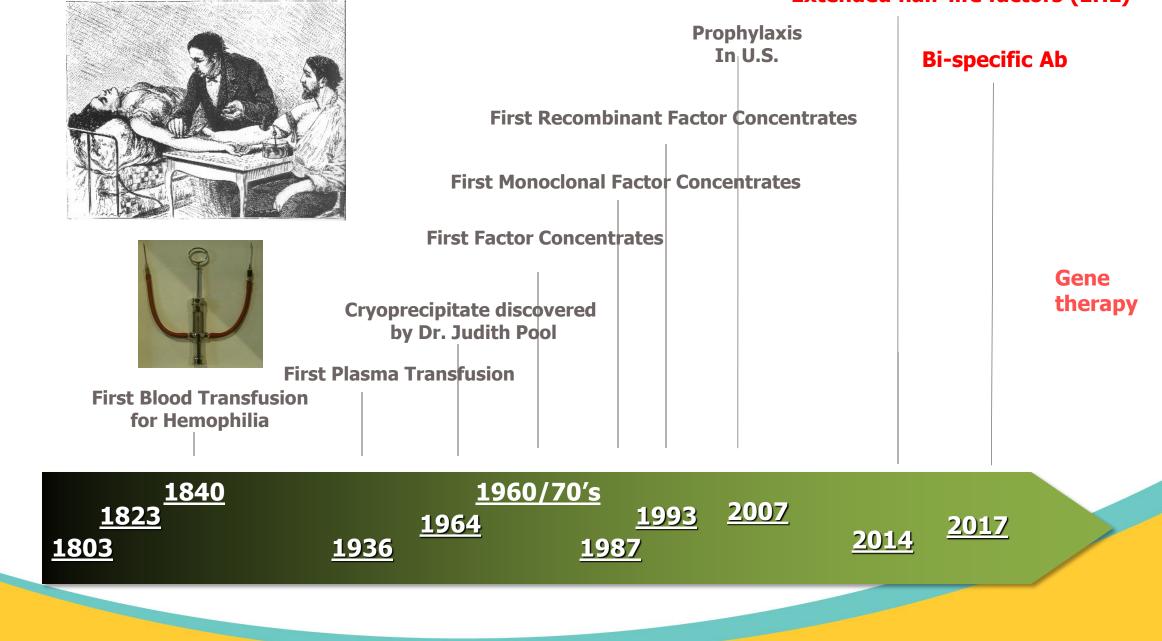
As needed for moderate/mild hemophilia

Has to be given IV

7/30/2021

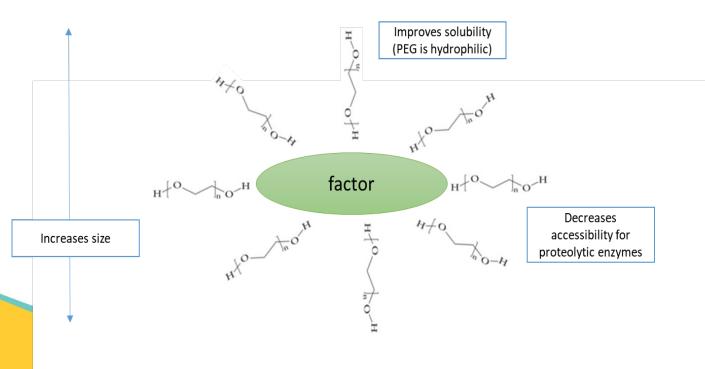

Factor has a relatively short half life

~ 6-10 hours for factor VIII

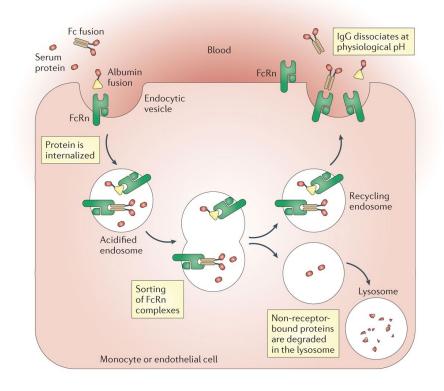

~12-18 hours for factor IX

Has to be given frequently

Difficult to achieve troughs to maintain an active lifestyle

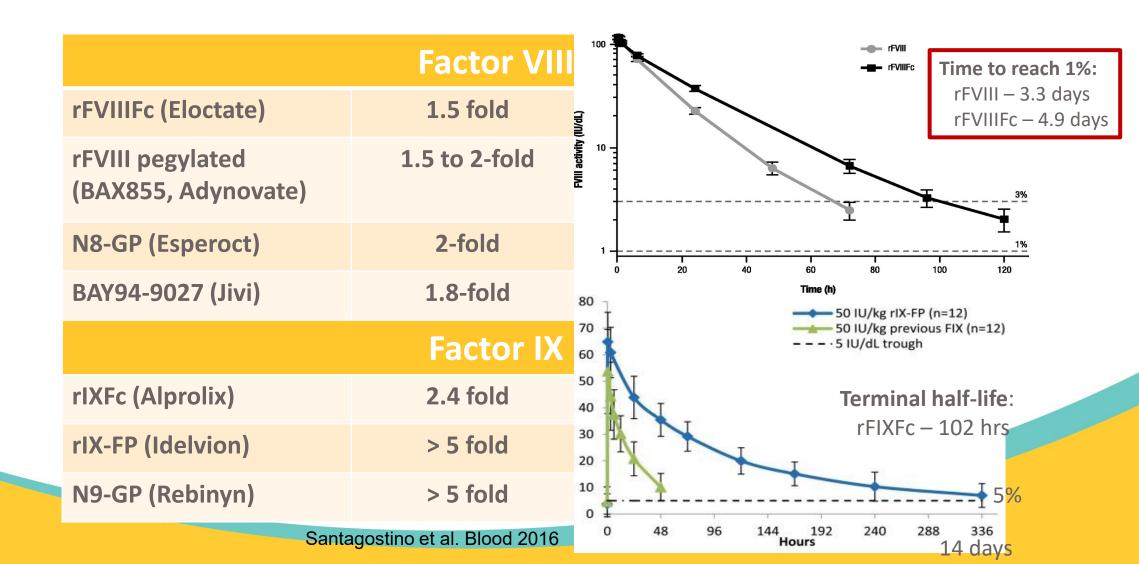


Extended half-life factors (EHL)



Mechanism of extended half-life factors

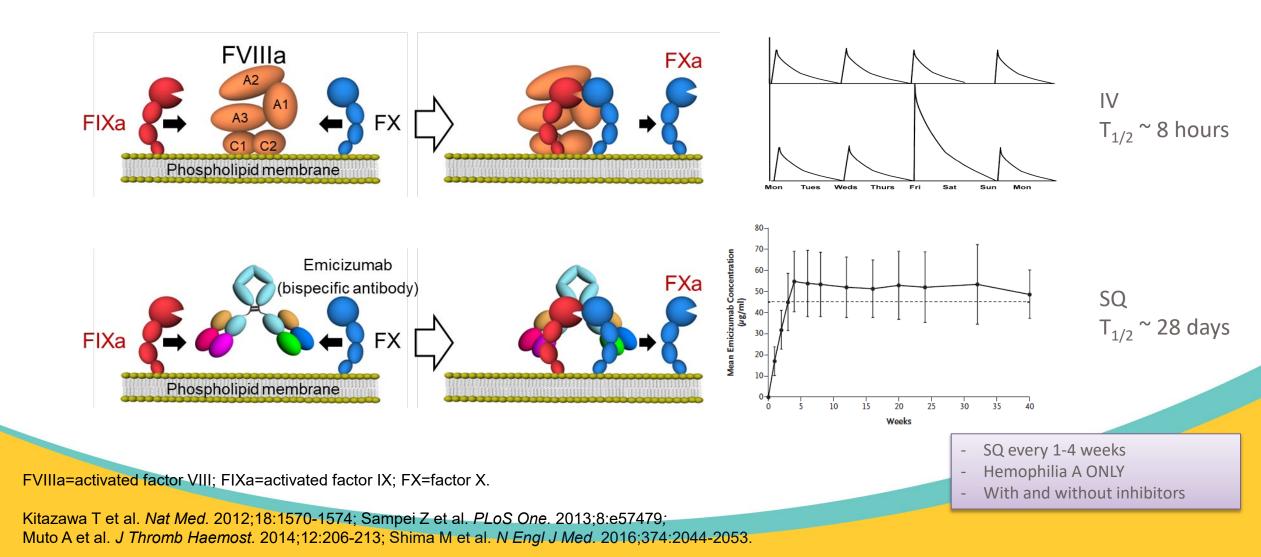
Pegylation



Fc or albumin fusion

Nature Reviews | Drug Discovery

Products with phase III data in the U.S.



The biggest challenges for hemophilia #2

Antibody (inhibitor) formation is the most problematic side effect of factor replacement

- 30% of people with severe hemophilia A develop antibodies
- High titer inhibitors do not respond to FVIII replacement
 - •Need to treat bleeding with **bypassing agents**
 - recombinant factor VII activated (rFVIIa)
 - activated prothrombin complex concentrate (aPCC, contains factor II, VII, IX, X)
 - •Need lengthy immune tolerance therapy (ITT) to eradicate inhibitor
 - •Daily high dose factor VIII infusion for months

Concept of FVIIIa-Mimetic Bispecific Antibody

Emicizumab approval

The NEW ENGLAND JOURNAL of MEDICINE N Engl J Med. 2017 Jul 10.

ORIGINAL ARTICLE

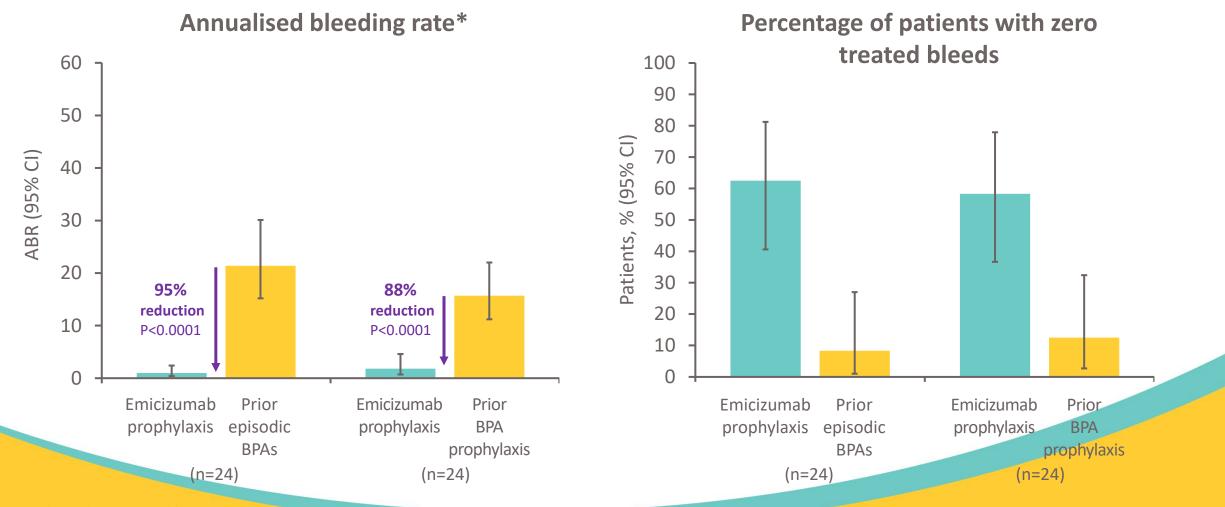
Emicizumab Prophylaxis in Hemophilia A with Inhibitors

Johannes Oldenburg, M.D., Ph.D., Johnny N. Mahlangu, M.D., Benjamin Kim, M.D., Christophe Schmitt, Pharm.D., Michael U. Callaghan, M.D., Guy Young, M.D., Elena Santagostino, M.D., Ph.D., Rebecca Kruse-Jarres, M.D., M.P.H., Claude Negrier, M.D., Ph.D., Craig Kessler, M.D., Nancy Valente, M.D., Elina Asikanius, M.Sc., Gallia G. Levy, M.D., Ph.D., Jerzy Windyga, M.D., and Midori Shima, M.D., Ph.D.

The NEW ENGLAND JOURNAL of MEDICINE

ESTABLISHED IN 1812

AUGUST 30, 2018

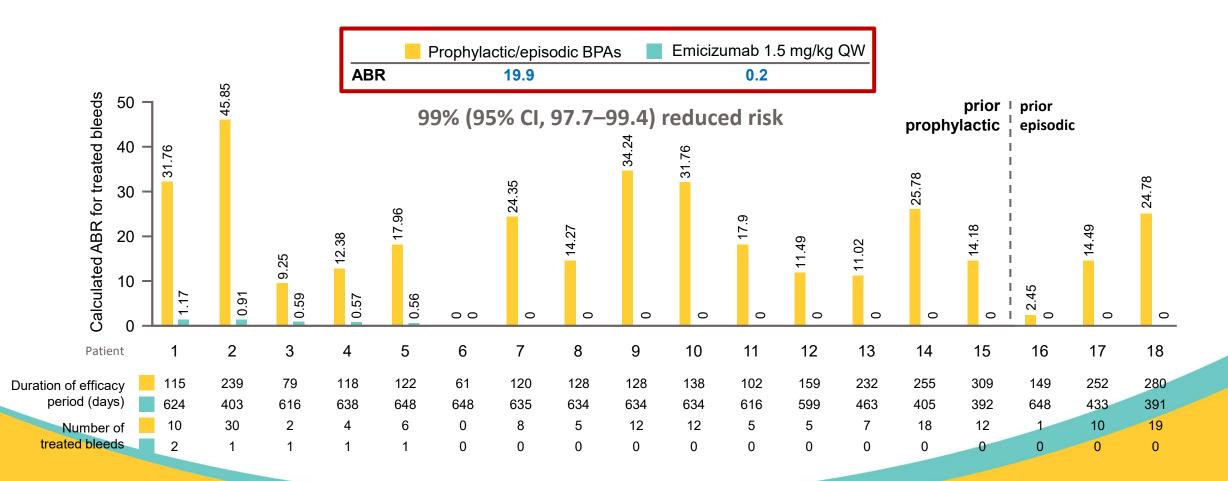

VOL. 379 NO. 9

Emicizumab Prophylaxis in Patients Who Have Hemophilia A without Inhibitors

J. Mahlangu, J. Oldenburg, I. Paz-Priel, C. Negrier, M. Niggli, M.E. Mancuso, C. Schmitt, V. Jiménez-Yuste, C. Kempton, C. Dhalluin, M.U. Callaghan, W. Bujan, M. Shima, J.I. Adamkewicz, E. Asikanius, G.G. Levy, and R. Kruse-Jarres

FDA Approval in USA for on November 16, 2017	FDA Approval in USA for on October 4, 2018
to prevent or reduce the frequency of bleeding episodes in adult and pediatric patients with hemophilia A who have developed antibodies called Factor VIII (FVIII) inhibitors	for prophylaxis to prevent or reduce the frequency of bleeding episodes in adult and pediatric patients (ages newborn and older) with hemophilia A with or without factor VIII (FVIII) inhibitors

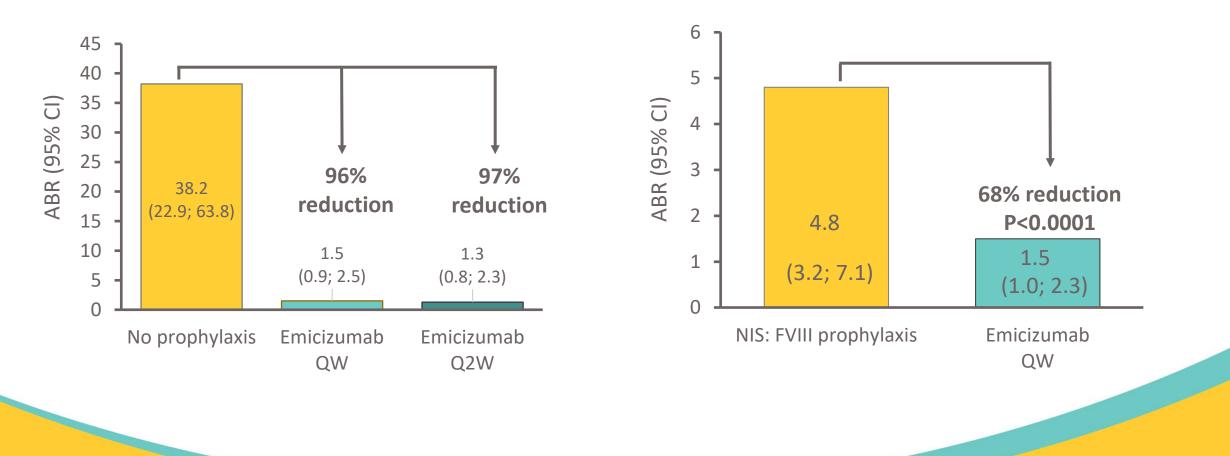
Intra-individual comparison Comparing BPA prophylaxis to Emicizumab - ≥12 years old



*Negative binomial regression model. ABR, annualised bleeding rate; BPA, bypassing agent.

Mancuso et al. 2nd International Conference on Inhibitors in Coagulation Disorders 2018, Milan

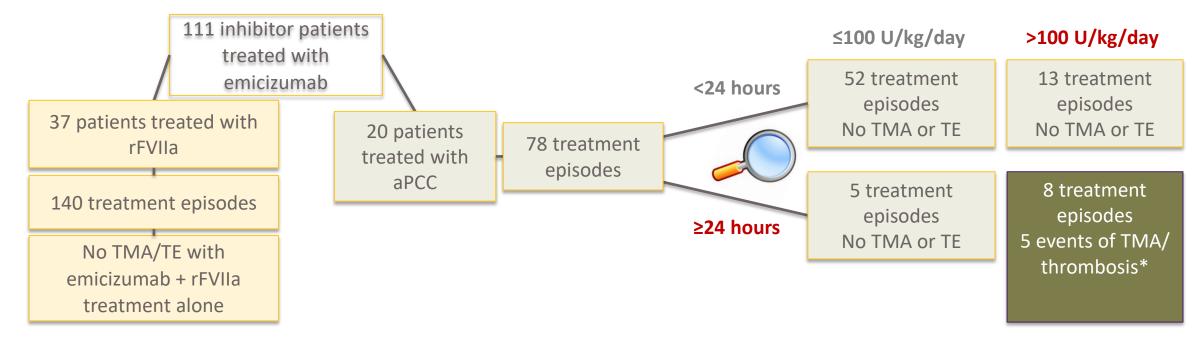
Efficacy of Emicizumab – Inhibitor <12 yo (HAVEN 2)


Intra-individual comparison

Efficacy of emicizumab – Non-Inhibitor (HAVEN 3)

On demand FVIII

Prophylactic FVIII

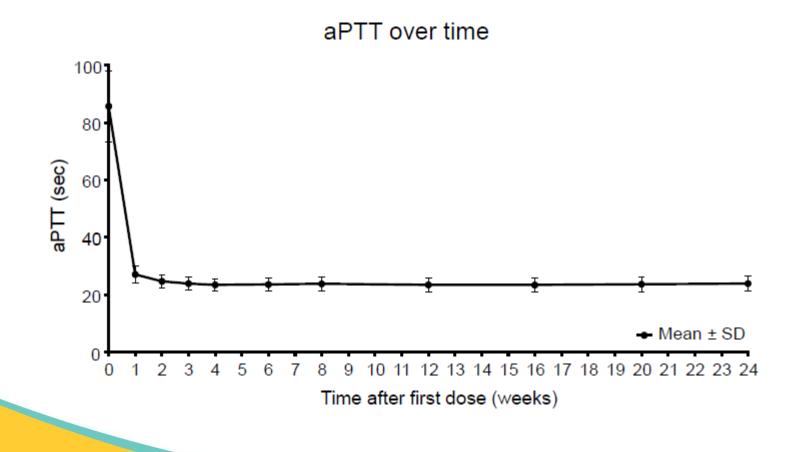

HAVEN 1: Overall Safety with Emicizumab

	Total (N=103)	
Total number of adverse events (AEs), n	198	
Total patients with ≥1 AE, n (%)	73 (70.9)	
Serious AE*	9 (8.7)	
Thrombotic microangiopathy (TMA)**	3 (2.9)	Serious adverse
Thrombotic event	2 (1.9)	Serious adverse
Death**	1 (<1)	
AEs leading to withdrawal	2 (1.9)	
Grade ≥3 AE	8 (7.8)	
Related AE	23 (22.3)	
Local injection site reaction	15 (14.6)	Most common

*Additional serious AEs included one event each of: iron deficiency anaemia, sepsis, haemarthrosis, muscle haemorrhage, gastric ulcer haemorrhage, headache and haematuria. **Third TMA event occurred after primary data cut-off; patient also experienced fatal rectal haemorrhage Two additional withdrawals not related to AEs; one withdrawal by patient, one withdrawal due to physician decision

Oldenburg J, et al. ISTH 2017

HAVEN 1: assessment of interaction between emicizumab and aPCC

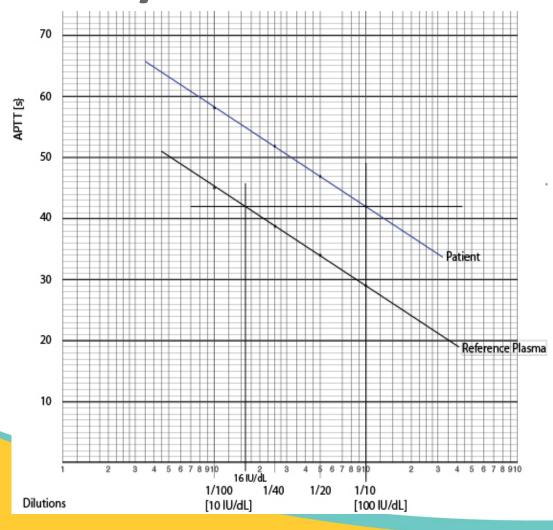


- aPCC contains activated and non-activated coagulation factors, including FII, FVII, FIX and FX, which can accumulate with repeat dosing
 - Risk may be mitigated with clear dosing guidance
- No further SAEs of TE/TMA in >350 patients treated in emicizumab development program to date

*Two patients also received rFVIIa prior to/during the event Updated data cutoff – April 21, 2017, including 8 additional patients

Oldenburg J, et al. ISTH 2017

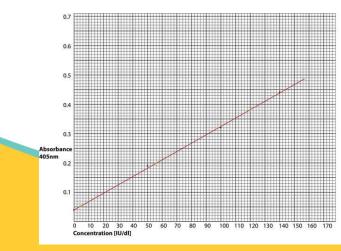
Emicizumab has a strong effect on aPTT

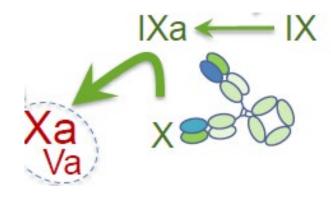


 aPTT is not an accurate measure of hemostatic potential in the presence of emicizumab

Adamkewicz et al – data from HAVEN 1 study

Effect on one stage assay (OSA) factor VIII


assay...

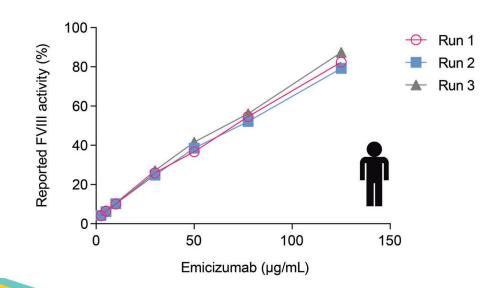


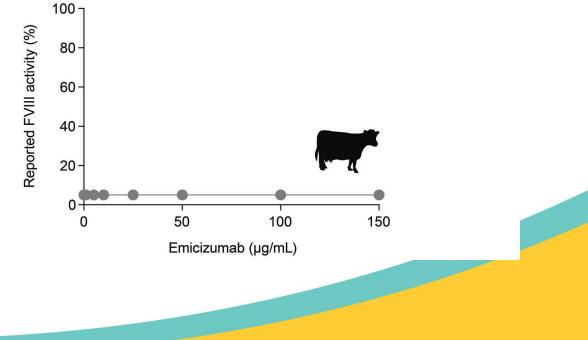
- OSA is based on aPTT
- Not a reliable assay to measure FVIII on emicizumab

Chromogenic Factor VIII Assay

- Incubation step to generate FXa -> determine the amount of FXa produced
- Amount of FXa is measured by its action on a highly specific chromogenic substrate -> color intensity produced is directly proportional to the amount of Fxa -> directly proportional to the amount of FVIII

Works with human or bovine reagent

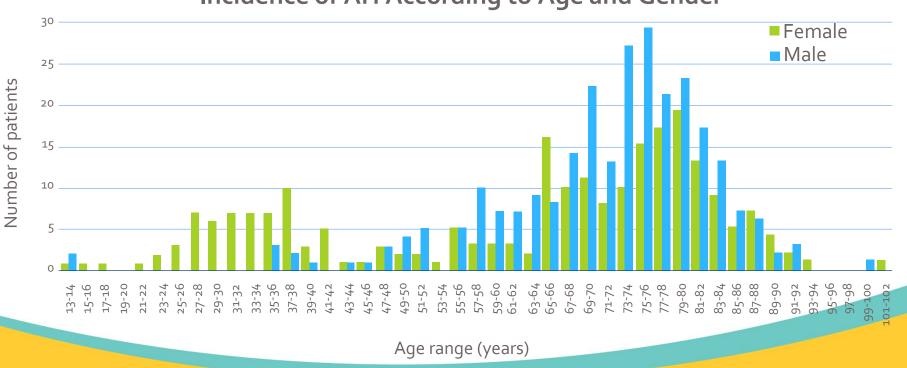

Effect of emicizumab on chromogenic factor VIII activity


Human reagent

- detects emicizumab

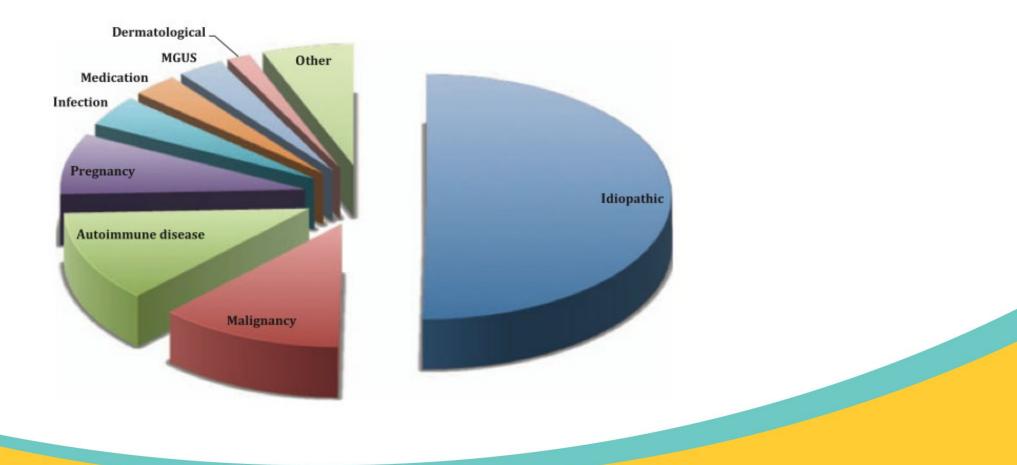
Bovine reagent

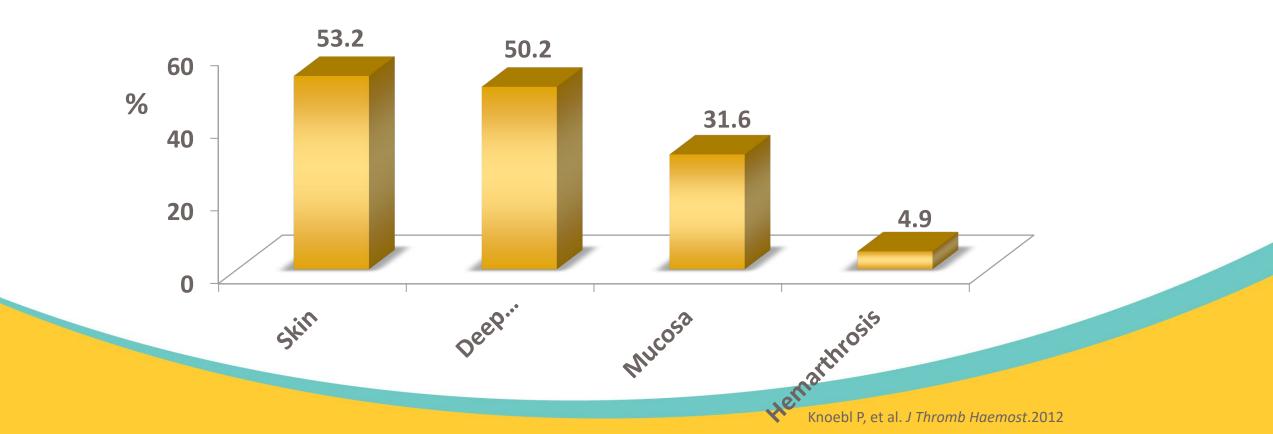
- does NOT detect emiczumab



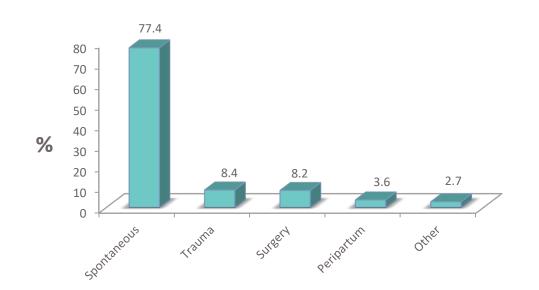
Acquired Hemophilia A

Epidemiology of Acquired Hemophilia


- Rare bleeding condition caused by an autoantibody (inhibitor) to coagulation factor VIII (FVIII)
 - Incidence: 1.5 cases per million/year¹


Incidence of AH According to Age and Gender²

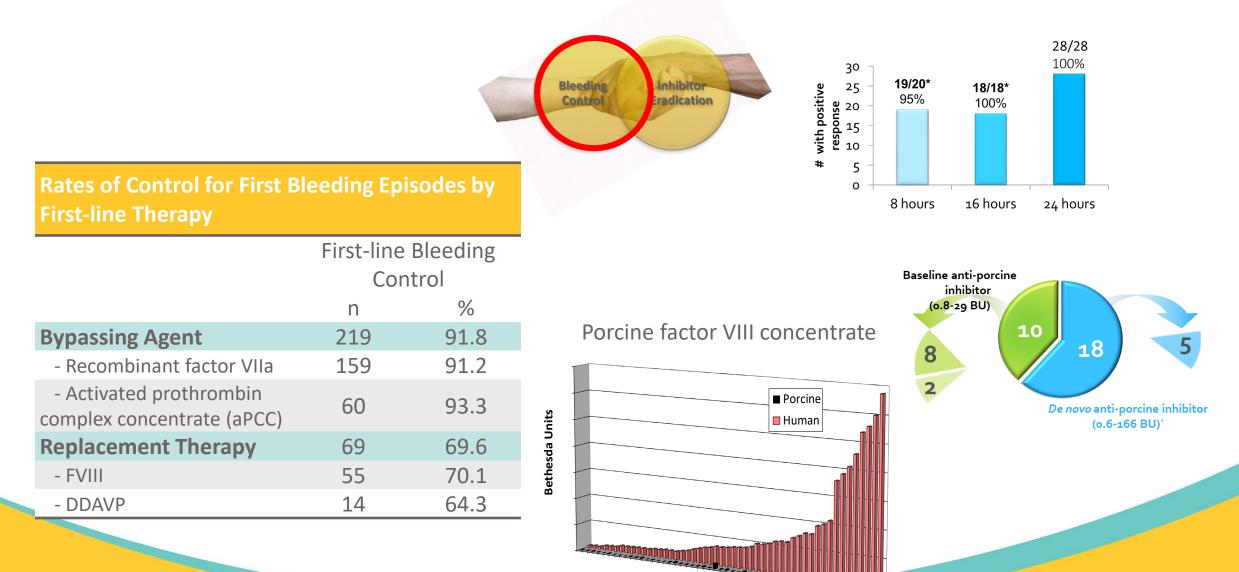
1. Collins et al Blood 2007, 2. Knoebl, et al.


Associated Conditions

Bleeding Pattern in AHA

Bleeding Severity in AHA

73% severe Mortality - 8% to 22%


Collins P, et al. BMC Res Notes. 2010;3:161.

Zeitler H, et al. Atheroscler Suppl. 2013.

Principles of Treatment

Principles of Treatment

Immunosuppressive therapy (IST)

Collins et al. Blood. 2012 .

Other Clotting Factor Deficiencies

Factor V Deficiency

Pathophysiology

- Inherited as an autosomal recessive disease
 - 75% quantitative, 25% qualitative
- Acquired as a result of autoantibody formation
 - Spontaneously or secondary to exposure to bovine thrombin or medications
 - autoimmune disorders, human immunodeficiency virus, bacterial infections, malignancy, and medications such as beta-lactam or aminoglycoside antibiotics

<u>Treatment</u>

- 25% of FV is stored within platelet alpha granules
- FFP or platelet transfusion
- There is no factor V concentrate

Lippi et al. Blood Coagul Fibrinolysis 2011;22:160-6 Bouchard et al. Blood 2015;125:3647-51 Franchini et al. J Thromb Thrombolysis 2011;31:449-57

Factor VII Deficiency

Pathophysiology

• Inherited – autosomal

<u>Clinical</u>

- Bleeding correlates poorly with factor level
 - less likely if FVII > 10%
 - patient with undetectable levels can be asymptomatic
- Excessive bleeding after invasive procedures, intracranial, umbilical cord, joint and muscle bleeding

<u>Treatment</u>

- rFVIIa concentrate 15 to 30 mcg/kg every 12 hours
- Goal to keep FVII > 15-20%

Factor X Deficiency

Pathophysiology

- Inherited as an autosomal recessive disease
- Acquired associated with amyloidosis

<u>Clinical</u>

- Bleeding correlates well with factor level, usually < 10%
- Excessive bleeding after invasive procedures, intracranial, umbilical cord, joint and muscle bleeding

Treatment

- Half-life of factor X is 40 to 60 hours
- FFP or prothrombin complex concentrate (Factor II, VII, IX, X)
- High-purity, human plasma-derived FX concentrate (pdFX; Coagadex[®])
- Goal to keep FX>20%

Factor XI Deficiency

Pathophysiology

- Inherited as an autosomal recessive disease
 - Higher prevalence in Ashkenazi Jews (8-9% are heterozygous)
- Acquired associated with liver dysfunction, DIC, factor XI inhibitors (allo or auto)

<u>Clinical</u>

- Poor correlation between plasma level and bleeding
- Not usually spontaneous bleeding but bleeding provoked by trauma or surgery (especially mucosal surfaces)

<u>Treatment</u>

- Half-life of factor XI is 50 to 80 hours
- Fresh Frozen Plasma 10 20 mL/kg, followed by 5 10 mL/kg every 24 to 48 hours
- Antifibrinolytic agents, fibrin sealant (fibrin glue), desmopressin (DDAVP), and low dose recombinant activated factor VII (rFVIIa)
- Factor XI concentrates not available in the United States

Factor XIII Deficiency

Pathophysiology

- Inherited as an autosomal recessive disease
- A or B subunit deficiency (A more severe)
- Factor XIII A subunit in anchoring the cytotrophoblast
 - Unlikely to have successful pregnancy without replacement

<u>Clinical</u>

• Bleeding correlates well with factor level, bleeding usually if < 5%

<u>Treatment</u>

- Half-life of factor XIII is 11-14 days
- FFP or cryoprecipitate
- Factor XIII concentrate
 - Recombinant factor XIII A subunit (Tretten)
 - Plasma derived factor XIII (Corifact)

International registry of 104 patients with factor XIII deficiency²

57%
56%
49%
40%
36%
34%
6%

1. Austin et al. <u>Haemophilia.</u> 2016 May;22(3):419-25 2. Ivaskevicius et al. Thromb Haemost. 2007;97(6):914.

Summary

- Reviewed von Willebrand disease
 - New treatment option recombinant VWF
 - Acquired von Willebrand syndrome always an underlying etiology
- New treatment options for congenital hemophilia
 - Extended half-life factor: FXI more than FVIII
 - Bispecific antibody
- Treatment options for Acquired hemophilia A
 - Bypassing agents (rFVIIa, aPCC, porcine FVIII)
- Some rarer factor deficiencies and their treatment approaches

Thank you for attention!