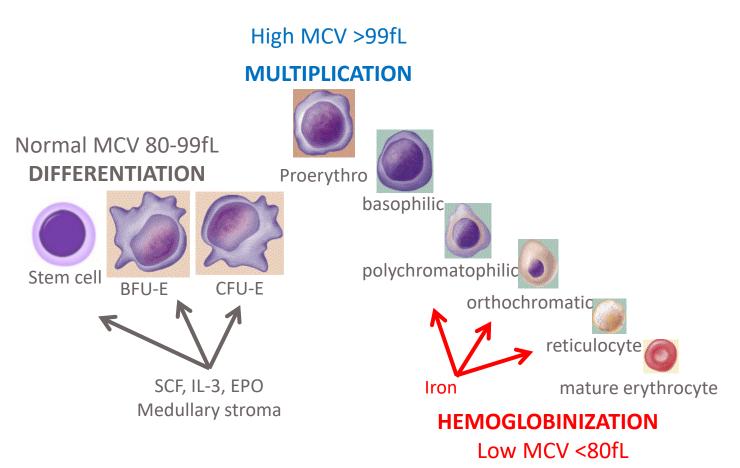


Fred Hutch · Seattle Children's · UW Medicine

Iron metabolism disorders and hemolytic anemias

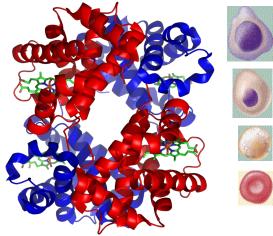
Kleber Y. Fertrin, MD, PhD Assistant Professor, University of Washington Director, Sickle Cell Disease and Iron Overload Program kleber@uw.edu

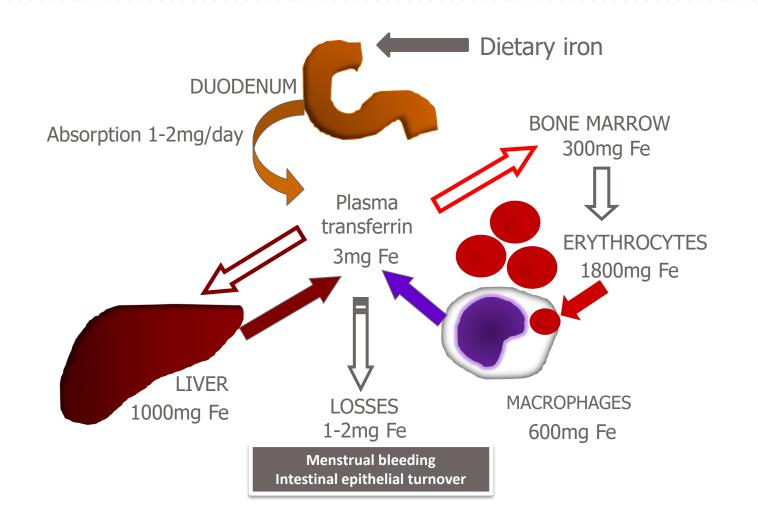

ABIM Hematology exam blueprint

				Treatment/	Risk Assessment/ Prognosis/	Pathophysiology/
		Diagnosis	Testing	Care Decisions	Epidemiology	Basic Science
Red blood cell production disorders	(4% 0	f exam)				
Nutritional deficiencies		\bigcirc	\bigcirc	\bigcirc	\bigcirc	
Anemia of chronic inflammation		\bigcirc	\bigcirc	\bigcirc		\bigcirc
Red blood cell destruction disorders continued						
Autoimmune hemolytic anemias (A	IHA)					
Warm antibody-mediated autoimmune hemolytic anemia		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
Cold antibody-mediated autoimmune hemolytic anemia	LF	\bigcirc	\bigcirc	\bigotimes	\bigcirc	\bigcirc
Drug-induced hemolysis	LF					
Metabolic abnormalities and enzyn	ne def	iciency hemolyt	ic anemias			
Oxidant hemolysis, including glucose-6-phosphate dehydrogenase (G6PD) deficiency	LF /	✓*	✓*	✓*	✓*	✓*
Pyruvate kinase deficiency and other metabolic deficiencies	LF	✓*	✓*	*	*	*

ABIM Hematology exam blueprint

	Diagnosis	Testing	Treatment/ Care Decisions	Risk Assessment/ Prognosis/ Epidemiology	Pathophysiology/ Basic Science
Paroxysmal nocturnal LF				\bigcirc	\bigcirc
Red blood cell membrane disorders LF		\checkmark	\checkmark	\bigcirc	\bigotimes
Microangiopathic hemolytic anemias (other than TTP, HUS, or DIC)	\bigcirc	\bigcirc	\bigcirc	\bigotimes	\bigcirc
Non-autoimmune, acquired hemolytic anemias		\bigcirc	\bigcirc	\bigcirc	\bigcirc
Hemochromatosis		\bigcirc	\bigcirc	\bigcirc	\bigcirc


MCV signals what stage of erythropoiesis is affected


Anemias of the hemoglobinization stage (microcytic, MCV<80fL)

Lack of a component of hemoglobin

- 1. Iron deficiency
 - Absolute: iron deficiency anemia
 - Functional: anemia of inflammation /chronic disease
- 2. <u>Globin</u> deficiency
 - Thalassemias (see lecture on Hb disorders)
- 3. <u>Heme</u> deficiency
 - Hereditary sideroblastic anemia
 - ALA synthase mutation (ALAS2 gene)
 - Chronic lead poisoning
 - ALA synthase inhibition

Physiology of iron metabolism

Common "iron studies"

.

.

Test	Common reference ranges		
Serum ferritin	20-200 (female)		
(mcg/L)	30-300 (male)		
Serum iron	60-180		
(mcg/dL)			
Total iron binding capacity	270-535 (female)		
(mcg/dL)	250-460 (male)		
Serum transferrin	192-382 (female)		
(mg/dL)	180-329 (male)		
Transferrin saturation (TSAT)	20-45 (female)		
(Serum iron/TIBC)	20-50 (male)		
(%)			

Diagnosis of iron deficiency anemia

- Anemia = low RBC production: low Hb, Hct, and RBCs
 - Beta thal trait has normal or elevated RBCs
- Hypoproliferative: normal or low retics
 - Reticulocytosis (>100k): think acute bleeding or hemolysis!
- Biochemical evidence of iron deficiency
 - Ferritin <30mcg/L (WHO 2020)
 - Ferritin < 70mcg/L in inflammatory states (see later)
 - Low serum iron with high TIBC = low transferrin saturation <20% (typically <16%)
- Work up for causes: blood loss or low iron intake/absorption

Causes of iron deficiency

- Always investigate **bleeding** (GI, Gyn, epistaxis, hematuria)
- Malabsorption
 - Surgical (gastric bypass, resections...)
 - Inflammatory bowel disease
 - Parasites (hookworm)
 - Atrophic gastritis
 - Prolonged use of medications (e.g. <u>PPI</u>)
- Vegetarian/vegan diets DO NOT cause iron deficiency on their own!

→ Treat/control the underlying cause!

Treatment of iron deficiency anemia - 1

<u>**Goals**</u> of iron supplementation:

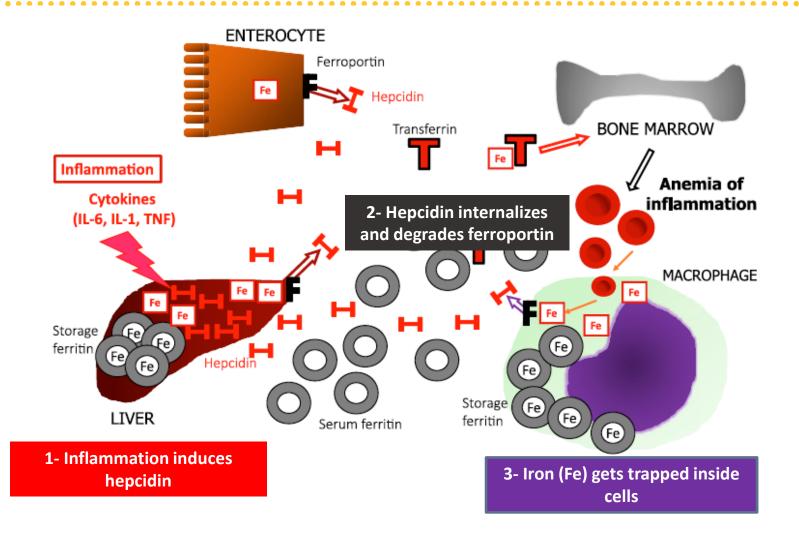
- 1. First phase: **Normalize CBC** (4-6 months)
 - Hb>12g/dL women, Hb>13g/dL men AND
 - Normal MCV (>80fL) AND MCH (>28pg)
- 2. Second phase: **Normalize iron stores** (3-4 more extra months)
 - Ferritin >30ug/L AND
 - Transferrin saturation > 20%

Oral iron: several salts - ferrous sulfate, fumarate, gluconate

- First line of therapy
- **Single dose, alternate days** (100-150mg elemental iron, e.g. ferrous sulfate 325mg 2 tab qod)
- Side effects: GI symptoms (>50%), dark stools

Treatment of iron deficiency anemia - 2

Intravenous iron


- Formulations: Iron sucrose, low molecular weight iron dextran, iron gluconate, ferric carboxymaltose, ferumoxytol, iron isomaltoside
- Consider if :
 - Intolerance/failure to oral iron
 - Malabsorption (e.g gastric bypass, IBD)
 - > CKD
- Side effects:

Gan & Orringer, Dermatol Surg 2015

- Anaphylaxis: RARE these days, mostly associated with HIGH-molecular weight dextran (discontinued);
- Skin hyperpigmentation
- Hypophosphatemia (usually asymptomatic, more frequent in ferric carboxymaltose, rarely in isomaltoside)

Pathophysiology of anemia of inflammation

Fertrin, Hematology Am Soc Hematol Educ Program 2020 Dec 4;2020(1):478-486.

Diagnosis of anemia of inflammation

- History of **underlying chronic disease**:
 - Inflammatory: RA, SLE, IBD, Castleman's disease
 - Infections: Tb, osteomyelitis, endocarditis
 - Malignancy: lymphoma and other hematologic
 - Other chronic conditions: CHF, COPD
- Lab findings:
 - Mild to moderate hypoproliferative N/N anemia (occasionally microcytic)
 - ► Low serum iron with <u>low TSAT <20%</u>
 - Normal to increased serum ferritin (typically >100 mcg/L)
 - May have elevated CRP>5 mg/L but not required
 - Investigational: hepcidin levels

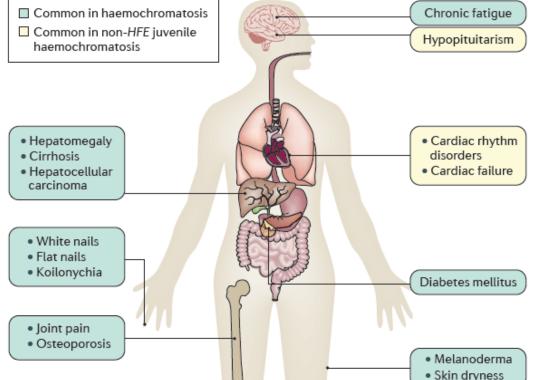
Management of anemia of inflammation

- **Treatment of the underlying disorder** is usually best;
- Iron supplementation: usually NOT indicated unless combined iron deficiency exists (e.g. if ferritin <100ug/L), or if patient on ESA for CKD;
- Erythropoiesis-stimulating agents: consider if CKD-associated, or in some patients undergoing chemotherapy for malignancy
- Transfusions: only if symptomatic, life-threatening anemia
- Investigational: hepcidin blockers

Pathophysiology of Hereditary Hemochromatoses

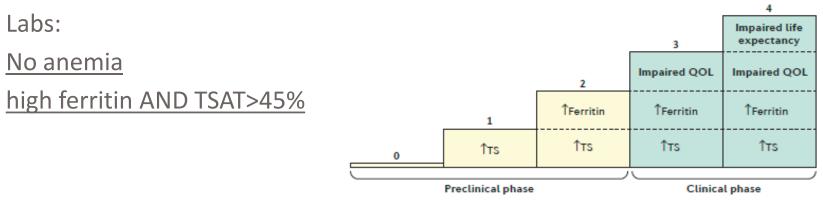
Uncontrolled iron absorption due to <u>hyperactivity of ferroportin</u> (mostly due to <u>hepcidin deficiency</u>)

Adapted from Brissot et al., Nat Rev Dis Primers 2018


Hemochromatosis – Clinical features

Classical HH

- type 1, *HFE* mutation (Northern Europe origin)
- type 3, *TFR2* mutation (rare, may have earlier onset)
- type 4B, *SLC40A1* mutation (gain-of-function ferroportin)


<u>Juvenile HH</u>

- type 2A, hemojuvelin mutation
- type 2B, hepcidin mutation (extremely rare)

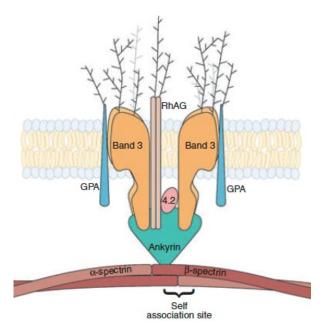
Brissot et al., Nat Rev Dis Primers 2018

Hemochromatosis - Diagnosis

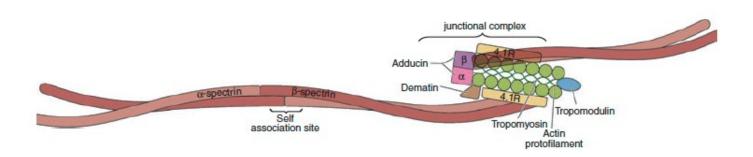
- Northern European ascent: start with *HFE* testing
 - *HFE* C282Y/C282Y or heterozygote C282Y/H63D: diagnosis of HH
 - *HFE* H63D/H63D: diagnosis is debatable; low penetrance
 - Other genotypes: non-diagnostic, pursue other causes
- No obvious Northern European ascent: <u>start with MRI T2*</u> to confirm iron overload; if positive for liver iron overload:
 - If age<30, consider testing for *HAMP*, *HJV*, *TFR2* genes
 - If age>30, consider testing for *HFE*, *TFR2*, *SLC40A1* genes

Hemochromatosis - treatment

- Avoid iron supplements and alcohol;
 - Tea, coffee consumption and use of PPI can decrease absorption
 - No need to follow iron-poor diet
 - Avoid vitamin C supplements
- Phlebotomy GOAL: ferritin 50-100mcg/L Bacon et al; Hepatology. 2011;54(1):328–343
 - Induction: 400-500mL weekly provided Hb>11g/dL
 - > Maintenance: maximum interval to keep ferritin at goal
 - Blood donation: acceptable in some countries
- **Erythrocytapheresis**: allows faster iron removal; higher cost; side effects of procedure (hypocalcemia, longer procedure)
- **Iron chelation**: low dose deferasirox may be used for those intolerant to phlebotomy
- Liver transplantation may be required and is curative


Hemolytic anemias

CAUSES


- 1. <u>Ma</u>laria (and other infections- *Clostridium, Babesia, Bartonella,* endocarditis, Gram-positive cocci, *Salmonella typhi*)
- 2. Medications (drug-induced or oxidative)
- **3. Mi**croangiopathic or fragmentation hemolysis
- Motherhood (think <u>antibodies</u>: hemolytic disease of the newborn; transfusion reactions; don't forget <u>autoimmune</u>)
- 5. Mutations
 - a) Acquired mutation \rightarrow PIG-A: paroxysmal nocturnal hemoglobinuria
 - b) Congenital (think <u>COMPONENTS OF A RED CELL</u>):
 - Hemoglobin (other lecture)
 - Membrane: HS, elliptocytosis, stomatocystosis, xerocytosis...
 - Enzyme: G6PDD, PKD

Red cell membranopathies - HS

- <u>Hereditary spherocytosis</u> is the most common inherited hemolytic anemia due to membrane defects (1/3,000, all racial groups)
- AD in 75%; mutation in ankyrin, spectrin, band 3, protein 4.2 (VERTICAL linkages); <u>may occur *de novo*</u>;
- Family history of gallstone and/or splenectomy;
- Clinical features: hemolysis with <u>high MCHC</u>; negative DAT; may have hypersplenism
- Diagnosis:
 - <u>osmotic fragility test</u> with right shift of the curve; reduced fluorescence with <u>eosin-5'-maleimide</u> (flow cytometry)
 - Treatment: splenectomy is very effective

Other red cell membranopathies

1. Hereditary elliptocytosis

Brissot et al., Nat Rev Dis Primers 2018

- AD, more common in malaria endemic regions
- Alpha spectrin (65%), beta spectrin or protein 4.1R mutations (HORIZONTAL linkages)
- Hereditary pyropoikilocytosis homozygous or compound heterozygous spectrin mutations causing severe HE (*pyros*, "fire"- thermal instability)
- 2. Southeast Asian Ovalocytosis: mild or no hemolysis with ovalocytes causes by unique 27bp deletion in band 3
- 3. Hereditary stomatocytoses: AD defects in volume control
 - 1. xerocytosis (compensated hemolysis, macrocytosis, <10% stomatocytes)
 - 2. overhydrated stomatocytosis (frank stomatocytosis with hemolytic anemia)

Red cell enzymopathies

• Glucose-6-phosphate dehydrogenase (G6PD) deficiency

- Recessive X-linked inheritance
- Variable phenotype: mostly episodic hemolytic crises; may present as chronic non-spherocytic hemolytic anemia
- Diagnosis: <u>Heinz bodies</u> during hemolysis; <u>low G6PD activity outside of</u> <u>hemolytic episode</u> (false normal G6PD with reticulocytosis)
- Triggers: infections, medications (dapsone, primaquine)
- Pyruvate kinase deficiency (PKD)
 - Most common defect of the glycolytic pathway; AR
 - Chronic non-spherocytic anemia with variable severity
 - Macrocytosis and extreme reticulocytosis (>50%) postsplenectomy
 - May develop <u>spontaneous iron overload</u>

Autoimmune hemolytic anemias

- Acquired hemolytic conditions with production of abnormal antibodies reacting against red cell epitopes
- **<u>Positive hemolytic markers</u>** (increase in reticulocytes, LDH, indirect bilirubin, with low haptoglobin)
- **Direct antiglobulin test**: detects immunoglobulins and complement bound to red blood cells ("direct Coombs' test")
 - IgG alone: warm AIHA (typically with <u>spherocytes</u> in peripheral blood smear);
 - Complement (C3) and/or IgM: cold agglutinin disease, paroxysmal cold hemoglobinuria
 - IgG and C3: mixed AIHA

Warm autoimmune hemolytic anemia - management

- **Transfusions**: if severe anemia (Hb<6), instability; beware of history of alloimmunization; failure to respond may indicate IVIg.
- First line of therapy is glucocorticosteroids (e.g. prednisone 1-2mg/kg/day with taper after 2-3 weeks if response)
- Second line therapy:
 - Rituximab (may be used as first line)
 - Splenectomy (often third line)
 - Other immunosuppressants
 - MMF, cyclophosphamide, azathioprine, cyclosporine
 - sirolimus may be preferred in children/young adults with ALPS

Cold agglutinin disease – clinical features

- Cold-induced symptoms
 - Acrocyanosis
 - Livedo reticularis / skin ulcers
 - Raynaud's phenomenon
 - Dysphagia or pain upon ingesting cold food
- Extravascular hemolytic anemia (may be precipitated by cold or infections)
 - Spurious macrocytosis
 - *In vitro* agglutination
- Venous thromboembolism

Cold agglutinin disease – diagnosis

- Evidence of <u>hemolysis</u>
- DAT positive for complement (C3d)
- Cold agglutinin titer 1:64 or higher at 4°C
 - IgM with specificity anti-I (often linked to Mycoplasma pneumoniae) or anti-i (often linked to mononucleosis/EBV)

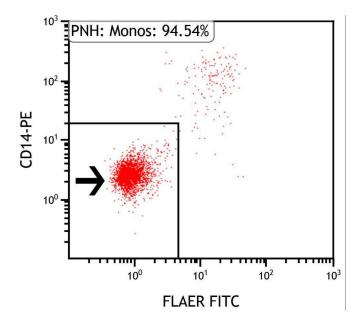
Classification:

- **Primary CAD**: typically associated with a monoclonal IgM kappa not meeting criteria for a lymphoproliferative disorder (MGUS)
- **Secondary CAD**: infections, autoimmune disorder, or lymphoid malignancy

Cold agglutinin disease – treatment

- Cold avoidance
- Transfusions: avoid cooling down patient's sample for crossmatch; use of blood warmers
- <u>Plasmapheresis and IVIg</u> can be used as temporizing measures in severe cases
- For <u>secondary CAD</u>, treatment of the <u>underlying disorder</u> is appropriate
- For <u>primary CAD</u>:
 - Consider first line with <u>rituximab containing regimen</u> (e.g. rituximab + <u>bendamustine</u>); may associated with <u>fludarabine</u>, prednisone, interferon, or monotherapy;
 - Alternative regimen: bortezomib.
 - Investigational: anti-complement therapies (sutimlimab)

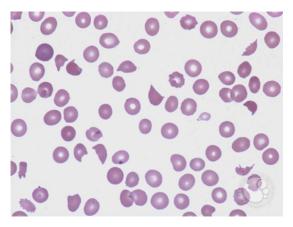
Drug-induced hemolysis


- Mechanisms:
 - DAT-positive:
 - IgG alone: Hapten formation-drug adsorption: penicillin, piperacillin, oxaliplatin
 - IgG +/- C3: Autoantibody: alpha-methyldopa, diclofenac
 - C3 alone: Ternary-immune complex formation: 3rd gen cephalosporins, diclofenac
 - **Oxidative hemolysis:** primaquine, dapsone, phenazopyridine worse if associated with G6PD deficiency
 - Methemoglobinemia: anesthetics, nitrites
 - Drug-induced thrombotic microangiopathy: quinine, Bactrim, <u>oxaliplatin</u>, <u>gemcitabine</u>, mitomycin, <u>bevacizumab</u>, sunitinib, proteasome inhibitors, quetiapine, <u>cyclosporine</u>, tacrolimus, sirolimus
 - Other mechanisms: ribavirin, artesunate (for malaria), interferon alpha

Paroxysmal nocturnal hemoglobinuria (PNH)

- Acquired clonal disorder with *PIGA* gene mutation → loss of GPI-anchored proteins
 → susceptibility to complement destruction
- 1. Classical PNH
 - Pancytopenia
 - Non-autoimmune hemolytic anemia
 - Fatigue, jaundice, hemoglobinuria
 - Smooth muscle dystonia: dysphagia, erectile dysfunction
 - Hemostasis activation: venous thromboembolic events in unusual vessel beds
 - Abdominal VTE (Budd-Chiari syndrome)
 - Upper extremity
 - Venous sinuses
- PNH clone in the context of another hematologic disorders (aplastic anemia, MDS, PMF)

Paroxysmal nocturnal hemoglobinuria


- Diagnosis: <u>Peripheral blood flow cytometry</u>
 - lack of at least 2 GPI-anchored proteins in at least 2 different lineages
- Treatment:
 - <u>Support</u> for anemia: folic acid, transfusion, iron supplementation if iron deficient due to hemoglobinuria
 - Symptomatic disease: <u>complement</u> <u>inhibitors</u> eculizumab or ravulizumab
 - prophylaxis for meningococcal infections
 - Allogeneic hematopoietic cell transplant for AA/MDS, refractory disease, or severe disease without access to anticomplement therapy

Copyright © 2020 American Society of Hematology.

Fragmentation hemolysis

- 1. Thrombotic microangiopathy: TTP, HUS
- 2. Systemic conditions:
 - DIC
 - Pre-eclampsia / HELLP syndrome
 - Malignancy
 - Scleroderma renal crisis
 - Malignant hypertension
 - Antiphospholipid syndrome
- 3. Localized hemolysis:
 - Hemangioendothelioma (Kasabach-Merritt syndrome)
 - TIPS
 - Malfunctioning cardiac valve or assist device
 - March hemoglobinuria (includes extreme running, bongo drumming)

Copyright © 2020 American Society of Hematology. Image Bank.

Educational resources

- American Society of Hematology Self-Assessment Program 7th Ed. (ASH SAP)
- ASH Pocket Guides (download from App store)
- Hematology/Oncology question bank <u>http://hemeoncquestions.com/</u>
- Hematology-Oncology board review questions
 <u>www.turner-white.com/brm/bonco.htm</u>

THANK YOU