

Hemoglobin disorders

Oyebimep Adesina, MD, MS

Assistant Professor of Medicine (Hematology) University of California Davis School of Medicine

adesina@ucdavis.edu

DISCLOSURES

Research funding:

- Doris Duke Charitable Foundation
- NHLBI
- NICHD

ABIM Hematology exam blueprint

Thalassemias

- > β-thalassemia
- $\geq \alpha$ -thalassemia
- > Hemoglobin E disorders

Sickle cell disorders

- > Sickle cell trait
- Sickle cell anemia (hemoglobin SS disease)
- ➤ Hemoglobin SC disease and C hemoglobinopathy
- \triangleright Sickle cell- β^0 and sickle cell- β^+ thalassemias

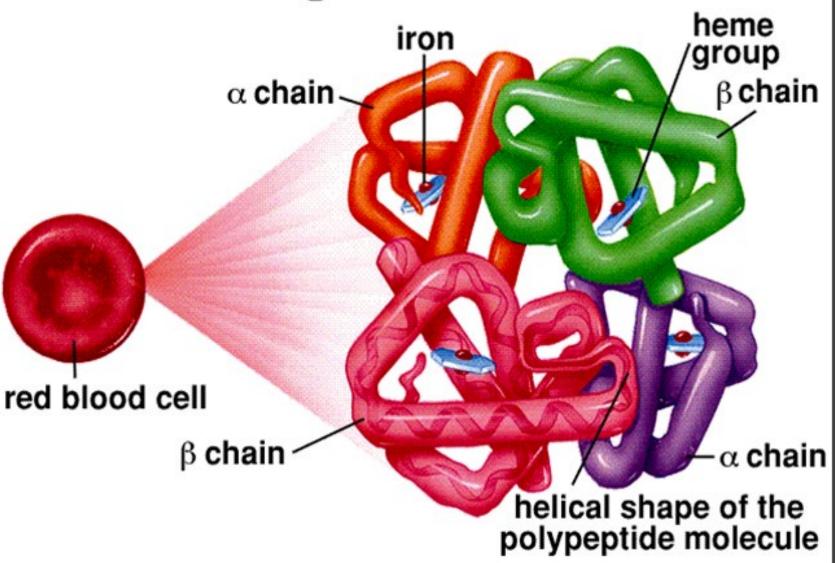
Non-sickle hemoglobinopathies

Educational resources

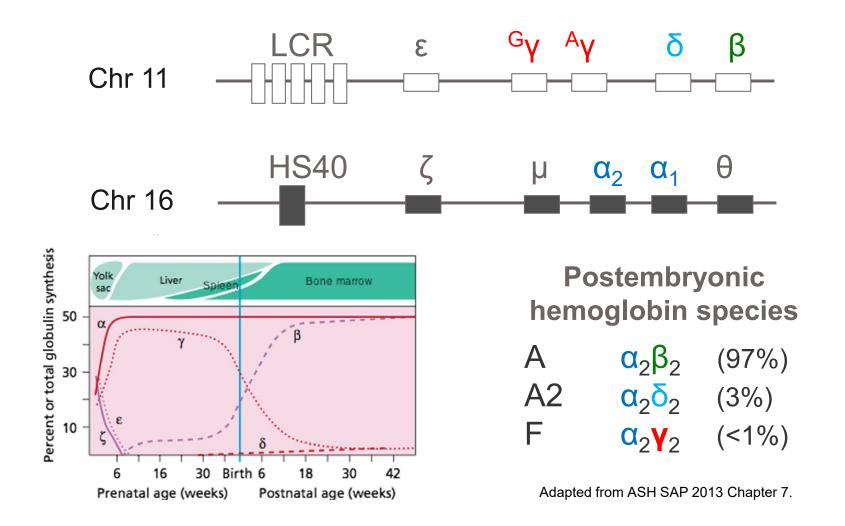
ABIM Hematology exam blueprint

Thalassemias

- > β-thalassemia
- $\geq \alpha$ -thalassemia
- ➤ Hemoglobin E disorders


Sickle cell disorders

- ➤ Sickle cell trait
- ➤ Sickle cell anemia (hemoglobin SS disease)
- ➤ Hemoglobin SC disease and C hemoglobinopathy
- \triangleright Sickle cell- β^0 and sickle cell- β^+ thalassemias


Non-sickle hemoglobinopathies

Educational resources

Hemoglobin Molecule

Globin genes and hemoglobin variants

Hemoglobin disorders

- Thalassemias:
- Named after the reduced/absent structurally normal globin chain
- α-thalassemia: excess β-chains
- β -thalassemia: excess α -chains

- Hemoglobinopathies:
- Amino acid substitution results in structurally abnormal
 hemoglobin → HbS, HbC, HbSC, HbG-Philadelphia, HbD, HbOArab, etc.
- Thalassemia-hemoglobinopathy:
- HbS-β thalassemia, HbE-β thalassemia, etc.

Genetics of thalassemias

α-thalassemias

- expressed in fetus and at birth
- Predominantly gene deletion(s)

β-thalassemias

- expressed several months after birth (γ -globin $\rightarrow \beta$ -globin)
- Predominantly point mutations

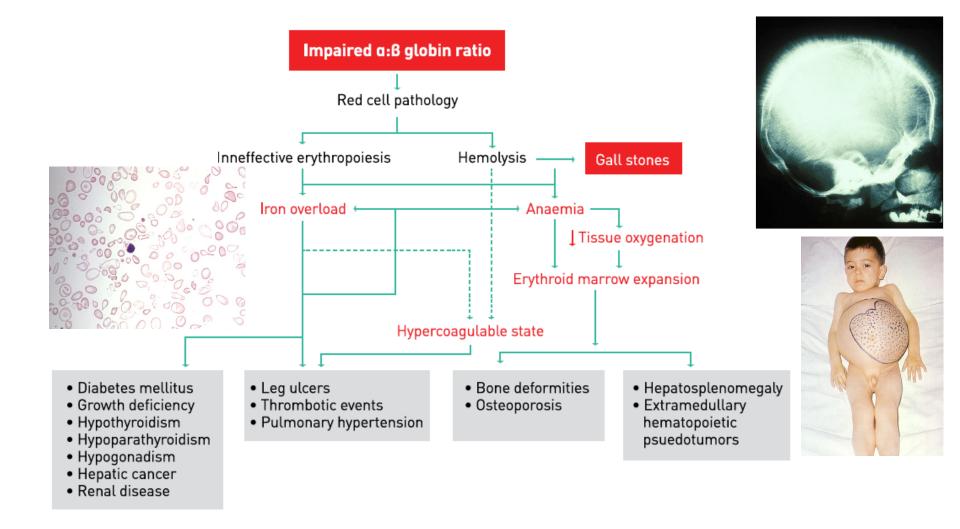
β-thalassemias

Causative mutations

- $> \beta^0$ (null) = No gene product
- \triangleright β^+ = reduced production

• Excess α -globin chains \rightarrow INEFFECTIVE ERYTHROPOIESIS

 \triangleright α -globin aggregates in erythroid precursors \rightarrow intramedullary death


Excess free intracellular iron:

- > membrane lipid oxidation
- membrane protein damage

Membrane damage → PS* exposure and hypercoagulability

- decreased RBC deformability
- > increased clearance from circulation

Complications of thalassemias

Clinical classification of \(\beta \)-thalassemias

Phenotype	Hb (g/dL)	Transfusions	Clinical features	Most common genotype
Thalassemia minor (trait)	10-12	No	No hemolysis or anemic symptoms, RBC > 5million, HbA2 > 3.5%	β^0/β or β^+/β
Thalassemia intermedia	7-10	+/-	High Hb F, bone disease, transfusion and non- transfusion-related iron overload, splenomegaly*, pulmonary HTN, leg ulcers	β^+/β^+ or β^+/β^0
Thalassemia major	<7	Age < 2 yrs	>95% HbF, bone disease, transfusion iron overload, splenomegaly*	β^0/β^0 or β^0/β^+

β-thalassemia major: current treatment

Referral to comprehensive medical center

Hematology, Genetics, Cardiology, Hepatology, Endocrinology, Ob/Gyn

Supportive care

- RBC transfusions: typically, 2-3 pRBCs q 3-4weeks
 - > pre-transfusion Hb: 9-10.5 g/dL
 - > post-transfusion Hb: 12-15g/dL

Iron chelation

- ➤ Initiate after 10-20 pRBCs or ferritin>1000ug/L
- Single chelator or combination therapy
- **➢** Goals:
 - liver iron concentration (LIC) < 3mg/g
 - cardiac T2* <20ms
 - ➤ Cardiac iron → consider combination therapy (e.g., DFO+DFP)

Iron chelators

Medication	Brand name	Dose	Route/form	Comments
Deferoxamine (DFO)	Desferal®	50-60mg/kg/d 5-7 days per week	SQ/IV 8-24h	Local reaction, hearing loss, retinopathy, growth delay
Deferiprone (DFP)	Ferriprox [®]	25-33mg/kg/d q8h	PO (tablets)	Neutropenia, n/v/d, elevated LFTs, arthralgia
Deferasirox (DFX)	Exjade®	20-40mg/kg/d q24h	PO (dispersible)	elevated creat, rash, n/v/d
	Jadenu [®]	14-28mg/kg/d q24h	PO (tablets or sprinkles)	elevated creat, rash, n/v/d, less diarrhea (no lactose)

β-thalassemia major: current treatment

Splenectomy

➤ Indications: transfusions >200-220mL/kg/year; un-transfusable due to alloimmunization, severe cytopenias, symptomatic splenomegaly

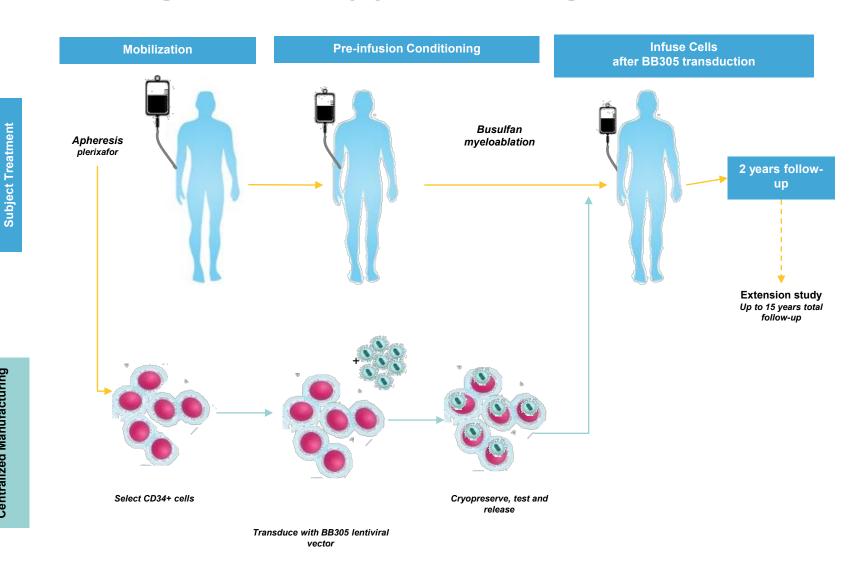
> less used than before due to complications

- post-op pancreatitis, pleural effusion, portal vein thrombosis;
- long-term risk for sepsis and VTE; need for antibiotic prophylaxis

Luspatercept

- \triangleright FDA-approved for transfusion-dependent β -thalassemia (April 2020)
- \triangleright Activin receptor ligand trap \rightarrow improves ineffective erythropoiesis
- ➤ Dose: 1-1.25mg/kg SQ q 3 weeks
- >33% reduction in transfusion burden in 72% patients
- > AEs: bone pain, headache, asthenia

β-thalassemia major: current treatment

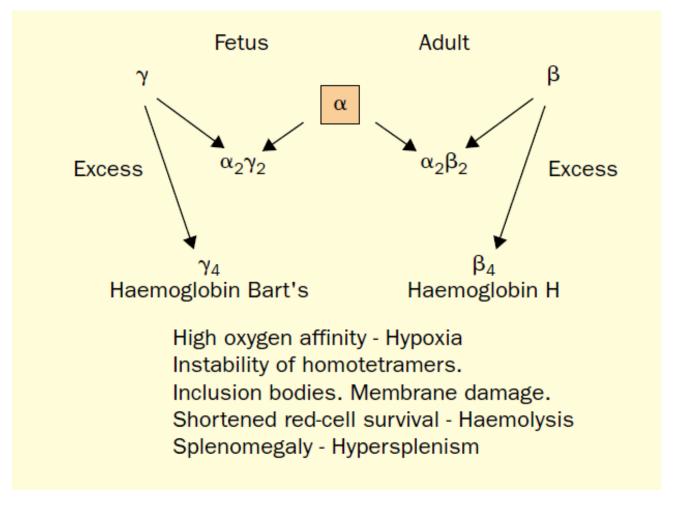

Allogeneic hematopoietic cell transplantation

- Age<14 years; HLA-matched sibling donor; no significant iron overload</p>
- Pesaro system: predicts post-BMT 3-year OS in children < 16years</p>
- Adverse factors:
 - 1. Hepatomegaly >2cm from costal arch
 - 2. Liver fibrosis on biopsy
 - 3. Irregular iron chelation
 - Class I: 0 adverse factors → 94%
 - \triangleright Class II: 1 or 2 adverse factors \rightarrow 80%
 - ➤ Class III: all adverse factors → 61%

Investigational: LentiGlobin gene therapy

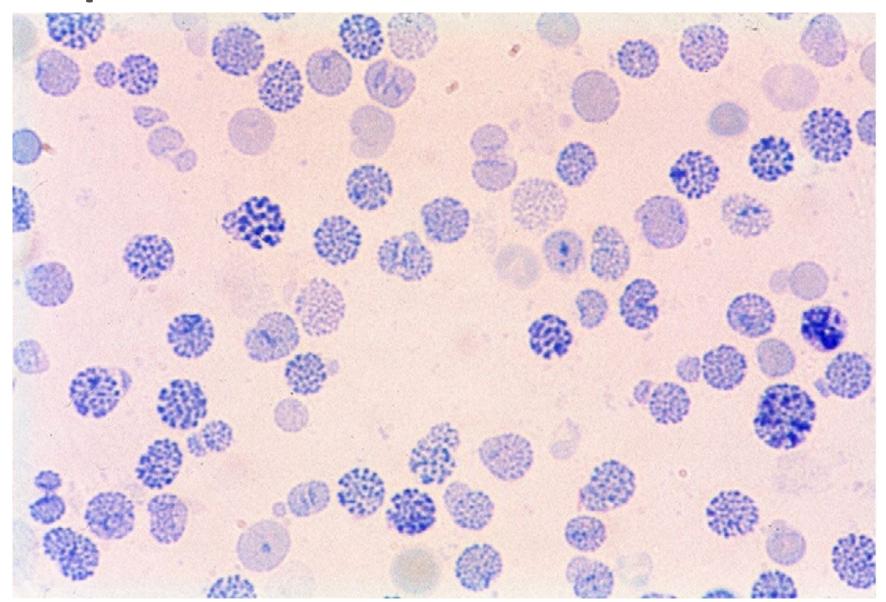

(Thompson et al. N Engl J Med. 2018 Apr 19;378(16):1479-1493)

LentiGlobin gene therapy for hemoglobin disorders



Centralized Manufacturing

Alpha thalassemia genetics



Pathophysiology of alpha thalassemias

- excess of γ-like globin chains Hb Bart's
- excess of β-like globin chains Hb H

Peripheral blood smear: Hb H disease

Alpha thalassemia - continued

If α-thalassemia trait (carrier state) is suspected:

- Consider compatible ethnicity and clinical picture
- > no hemolysis, family history of HbH or hydrops

Rule out the following conditions:

- Iron deficiency
- β thalassemia trait
- Newborn screening: may show Hb Bart's or HbH
- Adults: confirmed if positive for HbH inclusions in peripheral blood or confirm with genetic testing for deletions

Unusual alpha thalassemias

- α-thalassemia-mental retardation syndromes
 - \triangleright ATR-16 syndrome : large deletions in α -globin genes on chromosome 16
 - > ATR-X syndrome: mutations in ATRX gene (chromatin-associated protein)
- α thalassemia associated with myeloid malignancy (ATMDS)
 - \triangleright acquired α -thalassemia mostly in MDS, very rarely MPN or AML
 - ATRX mutation with low MCV/MCH; HbH inclusions can be present

Treatment for alpha thalassemias

Hb Bart's hydrops fetalis (--/--)

- ➤ Intrauterine transfusions → chronic transfusions and chelation
- screening, genetic counseling in high-risk populations
- hematopoietic cell transplantation (in certain cases)

HbH disease (α-/--)

- Splenomegaly may lead to hypersplenism
- ➤ Hemolytic crises → RBC transfusions +/-iron chelation
- Complications: gallstones, leg ulcers

• Mild α thalassemia (α -/ α - or $\alpha\alpha$ /--)

- genetic counseling
- avoid unnecessary iron supplementation

ABIM Hematology exam blueprint

Thalassemias

- > β-thalassemia
- > α-thalassemia
- ➤ Hemoglobin E disorders

Sickle cell disorders

- ➤ Sickle cell trait
- ➤ Sickle cell anemia (hemoglobin SS disease)
- ➤ Hemoglobin SC disease and C hemoglobinopathy
- \triangleright Sickle cell- β^0 and sickle cell- β^+ thalassemias

Non-sickle hemoglobinopathies

Educational resources

Hemoglobin E

Thalassemic hemoglobinopathy

- amino acid substitution HBB p.Glu26Lys
- \triangleright decreased β^{E} -mRNA production
- \triangleright precipitation of α -globin chains in cytoplasm of erythroid precursors and RBCs
- increased oxidant stress

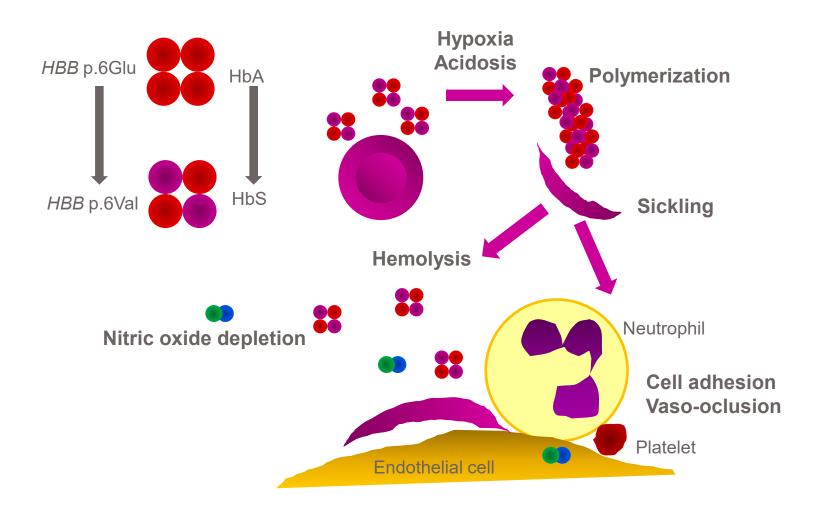
2nd most prevalent Hb variant in the world

- > 30 million worldwide with > 80% in Southeast Asia
- Hb E carriers clinically silent, may have low MCV

Hemoglobin E disorders

Condition	Genotype	Hb EP	Clinical features
Hb E trait	β ^A /β ^E	HbE 30%	Normal or low MCV
Hb E disease	β^{E}/β^{E}	HbE 90%	Mild microcytic anemia
Hb E/β thal (Very common in SE Asia)	β^{E}/β^{O} or β^{E}/β^{+}	HbE 40-85%, HbF 10-60%	Moderate to severe microcytic anemia, ineffective erythropoiesis, iron overload
Hb SE disease	β ^S /β ^E	HBE 30% HbS 65%	Mild sickling disorder, like HbS/β+ thalassemia

ABIM Hematology exam blueprint


Thalassemias

- > β-thalassemia
- > α-thalassemia
- ➤ Hemoglobin E disorders

Sickle cell disorders

- > Sickle cell trait
- Sickle cell anemia (hemoglobin SS disease)
- ➤ Hemoglobin SC disease and C hemoglobinopathy
- \triangleright Sickle cell- β^0 and sickle cell- β^+ thalassemias
- Non-sickle hemoglobinopathies
- Educational resources

Pathophysiology of sickle cell disease (SCD)

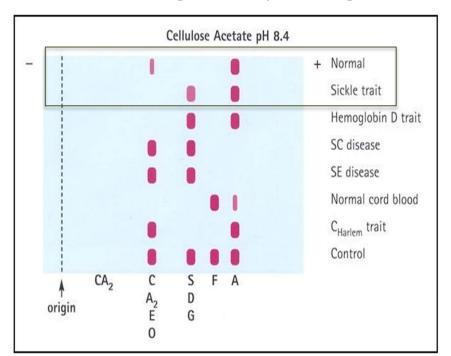
Question

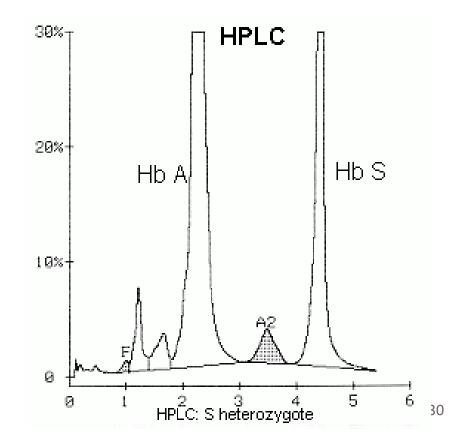
A healthy African immigrant woman with sickle cell trait brings her 19- and 21-year-old sons by the same father for evaluation. Neither son has ever had a blood transfusion. You find on hemoglobin HPLC that the younger son has a report of ASFA₂ and the older SAFA₂.

You suspect:

- A. Both sons have sickle cell trait
- B. One son has sickle cell trait and the other has sickle cell anemia with α -thalassemia
- C. One has sickle cell trait and the other has sickle-β-thalassemia
- D. Lab error in reporting S and A out of order for in the older son
- E. Incongruent paternity

Sickling syndromes


Table 1. Genotypes of Sickling Syndromes and Their Relative Severities


Genotype	Severity	Characteristics
HbSS	Severe	Most common form
ньѕβ0	Severe	Clinically indistinguishable from HbSS ⁶
HbSO-Arab	Severe	Relatively rare ⁶
HbSD-Punjab	Severe	Mostly in northern India ⁶
HbSC-Harlem	Severe	Migrates like HbSC, but rare double β -globin mutation ⁷
HbCS-Antilles	Severe	Rare double β-globin mutation ⁸
HbSC	Moderate	25% of SCD ⁹
HbSβ+, Mediterranean	Moderate	5%–16% HbA ⁶
HbAS-Oman	Moderate	Dominant rare double β-globin mutation ¹⁰
HbSβ+, African	Mild	16%–30% HbA ⁶
HbSE	Mild	HbE found mostly in Southeast Asia11
HbS-HPFH	Very mild	Large deletions in β -globin gene complex; > 30% HbF ⁶

HbA = hemoglobin A; HbE = hemoglobin E; HbF = fetal hemoglobin; HbS-HPFH = HbS and gene deletion HPFH; HbSC = heterozygous hemoglobin SC; HbSS = homozygous hemoglobin SS; HbSβ $^{\circ}$ = hemoglobin S- $^{\circ}$ thalassemia $^{\circ}$; HbSβ $^{+}$ = hemoglobin S- $^{\circ}$ thalassemia $^{+}$; SCD = sickle cell disease.

Laboratory diagnosis

- Hemoglobin electrophoresis
 - cellulose acetate (alkaline)
 - citrate agar (acidic)
- High performance liquid chromatography (HPLC)
 - currently most common test
- Molecular biology
 - PCR, gene sequencing

Sickle cell trait -evidence-based complications

High-quality, positive association

- Renal: Proteinuria, chronic kidney disease (CKD)
- Vascular: venous thromboembolism (VTE), pulmonary emboli (PE)

Low-quality, variable association

- Exertion-related: sudden death
- Renal: hematuria, end-stage renal disease (ESRD)
- Vascular: HTN, MI, retinopathy, diabetic vasculopathy
- Pediatric: sudden infant death syndrome (SIDS)
- Surgery ± trauma-related: complications, length of stay
- Overall mortality

No evidence

- Exertion-related: splenic infarction
- Renal: papillary necrosis, renal medullary cell carcinoma

Hemoglobin SC disease – clinical manifestations

- Hemolytic anemia or compensated hemolytic state
- Sickled cells and HbC crystals
- Milder disease; 30% may have frequent pain episodes
- Splenomegaly frequent may have mild thrombocytopenia due to hypersplenism
- Higher incidence of <u>avascular necrosis and retinopathy</u>

Clinical complications of SCD

ACUTE COMPLICATIONS

Stroke, Meningitis Post-Hyphema Glaucoma, Retinal Infarction Acute Chest Syndrome Sickle Hepatopathy Splenic Sequestration, Splenic Infarction Papillar y Necrosis Cholelithiasis Priapism Bone Marrow Infarction, Osteomyelitis

CHRONIC COMPLICATIONS

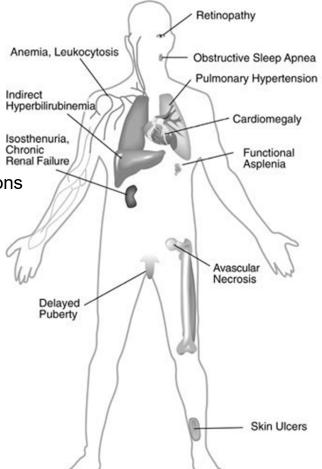
Acute complications

Vasoocclusion (pain)

Acute chest syndrome

Acute stroke

Priapism


Hepatobiliary complications

Splenic sequestration

Acute renal failure

Chronic complications

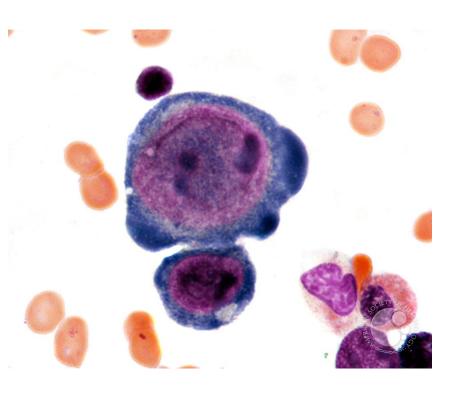
- Pulmonary hypertension
- Ophthalmologic complications
- Avascular necrosis
- Leg ulcers
- Recurrent or stuttering priapism

Question

A 22-yo F with history of sickle cell anemia (HbSS) presents to the ED with severe chest pain and shortness of breath. She has copious sputum production, severe pain and low-grade fever. CXR reveals a RLL infiltrate. She is also hypoxic. She is started on broad spectrum antibiotics, IVF and a morphine PCA. She receives 2 units of packed RBCs. Despite these interventions, she remains in respiratory distress.

What additional therapy should be initiated at this time?

- A. BiPAP
- B. Albuterol
- C. Hydroxyurea
- D. RBC exchange
- E. Sildenafil


Acute chest syndrome (ACS)

- Leading cause of death and 2nd most common cause of admissions in adults with SCD
- Suspect ACS when patients present with:
 - Fever ± hypoxia
 - Respiratory symptoms (dyspnea/cough/sputum)
 - New infiltrate on chest X-ray
- Triggers:
 - Infection (mostly children)
 - > In-situ thrombosis
 - > Fat emboli (more frequent in adults)

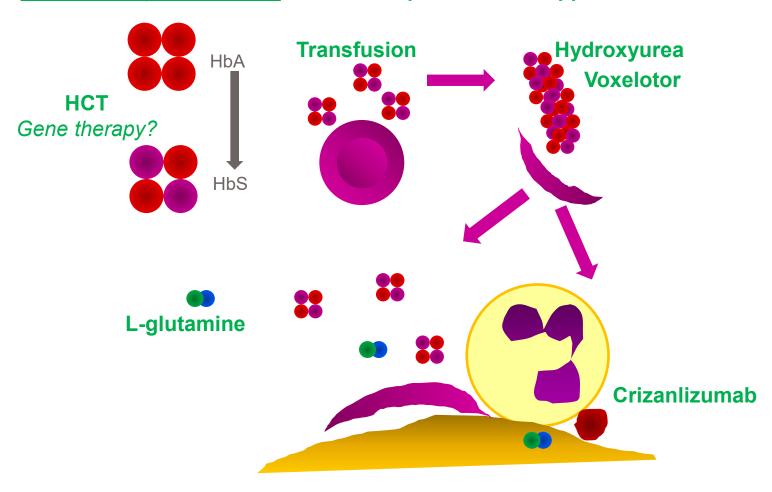
Acute care management in SCD

- Vaso-occlusive episodes (VOE)
 - Aggressive analgesia
 - > Appropriate <u>hydration</u>
 - Check for triggers (infection, dehydration, acidosis)
- Acute chest syndrome (ACS) → As above, also add
 - > Empiric broad-spectrum antibiotics
 - ➤ Supplemental <u>oxygen</u> if SpO2<92%
 - Incentive spirometer, bronchodilators PRN
 - > Simple or exchange red cell transfusions
- DISCUSS STARTING HYDROXYUREA!

A 17 yo F with sickle cell anemia presents with profound fatigue and weakness. Her labs show Hb 4.3 g/dl (baseline 7.5 g/dl), MCV 84fL, and retic 1%. Her bone marrow core biopsy shows:

What is the most likely etiology of her severe anemia?

- A. Splenic sequestration
- B. Hyperhemolysis syndrome
- C. Iron deficiency
- D. Parvovirus infection
- E. Folate deficiency

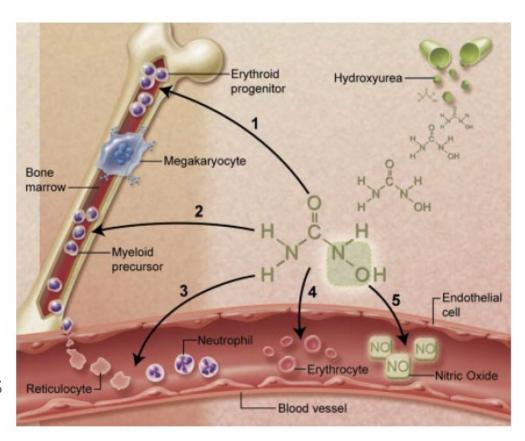

Copyright © 2017 American Society of Hematology.

Aplastic crisis

- Cause: Parvovirus B19 infection
- May happen in ANY chronic hemolytic anemia
- Diagnosis:
 - Anemia with <u>reticulocytopenia</u>
 - Marrow: giant **proerythroblasts** with viral inclusions
 - PCR+ for parvovirus (serology is not useful)
- Management:
 - RBC transfusions, but avoid Hb overcorrection

Treatment of sickle cell disease (SCD)

Children < 5yrs: penicillin; adults and peds: folate supplementation


Hydroxyurea (HU)

Mechanisms of action:

- 1. HbF induction
- 2. Lower WBC, plts, retics
- 3. Decrease adhesion
- 4. Reduce hemolysis, improve RBC hydration, increase MCV
- 5. Nitric oxide donor

Decreases:

- Mortality
- Frequency/severity of VOEs
- Frequency of ACS
- Red cell transfusion

Russell E. Ware. *Blood* 2010 115:5300-5311;

Dose: HU 15-35mg/kg/day, titrate to maximum tolerated dose (target ANC ~ 2000)

When should you consider hydroxyurea?

Table 4. Indications for Hydroxyurea in Adult Patients with Sickle Cell Disease

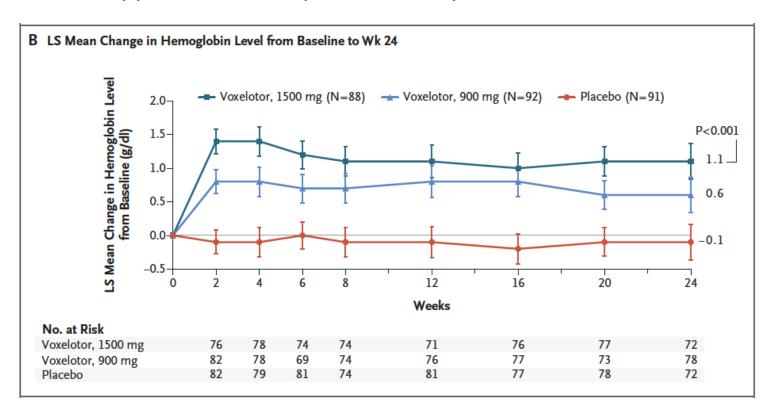
Indication	Strength of Recommendation
SCA with ≥ 3 pain crises per year	Strong
SCA with pain that interferes with ADL and QoL	Strong
History of severe or recurrent ACS	Strong
Chronic kidney disease on epoetin	Weak
$HbS\beta + \ and \ HbSC \ with \ pain \ that \ interferes \ with \ ADL \ and \ QoL; consult \ sickle \ cell \ disease \ expert$	Moderate

ACS = acute chest syndrome; ADL = activities of daily living; QoL = quality of life; SCA = sickle cell anemia.

A 16-yo F with sickle cell anemia (HbSS) is admitted to the hospital for an <u>acute ischemic stroke</u>. Her baseline hemoglobin is 9 g/dL (Hb S 85-90%). What should be recommended to prevent further cerebral ischemia?

- A. Simple transfusion to Hb>10g/dL
- B. Simple transfusion to Hb>10g/dL and heparin drip
- C. Red cell exchange transfusion to Hb>10g/dL
- D. Red cell exchange transfusion to HbS<30%
- E. Red cell exchange transfusion to HbS<20%

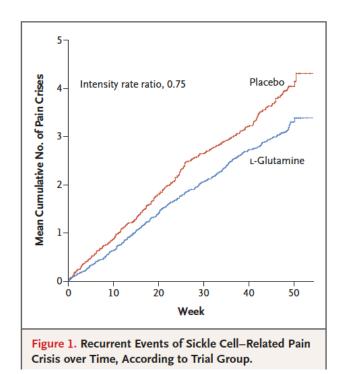
She receives the RBC exchange transfusion and makes a full neurologic recovery from her acute cerebrovascular infarct.


Which of the following interventions should be recommended upon discharge?

- A. Continue red cell exchange
- B. Initiate hydroxyurea
- C. High dose folic acid (5 mg daily)
- D. Simple transfusion to keep Hb>10g/dL
- E. Erythropoietin to keep Hb > 10 g/dL

Novel agent to improve anemia in SCD

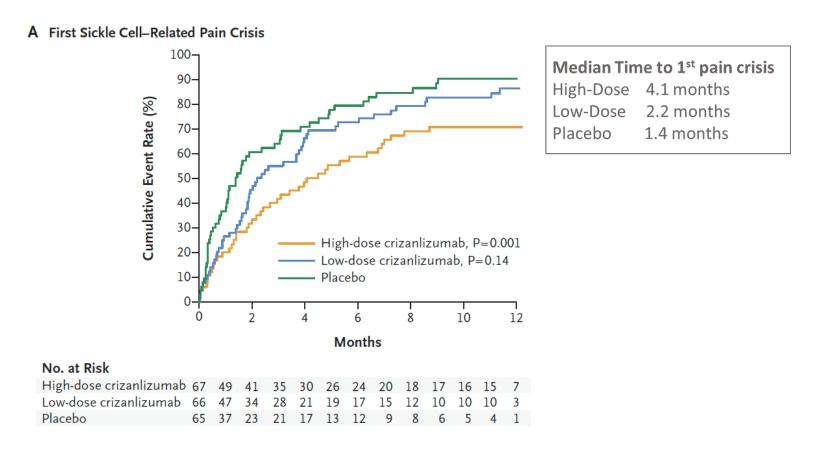
Voxelotor (Oxbryta®, previously GBT440)


- small molecule that stabilizes R state binding to amino-terminus of alpha chain of Hb
- FDA-approved for SCD patients ≥ 12 years

Novel agents to decrease VOEs in SCD

L-glutamine (Endari®)

- Increases NADH and improves anti-oxidative defense
- No change in Hb or hemolysis
- Decrease in VOE frequency



A Time to First Sickle Cell-Related Pain Crisis 100 Placebo 90-Cumulative Event Rate (%) L-Glutamine 60-50-10 50 100 150 200 250 300 350 400 Days to First Sickle Cell-Related Pain Crisis No. at Risk Placebo L-Glutamine 151

Figure 2. Time to Sickle Cell-Related Pain Crisis.

Novel agents to decrease VOEs in SCD

- Crizanlizumab (Adakveo®, previously SelG1)
 - Humanized monoclonal anti-P-selectin antibody that reduces cell adhesion

A 32-yo male with sickle cell anemia (HbSS) is diagnosed with acute cholecystitis. He has not been compliant with his daily folic acid and hydroxyurea. He is slated for a cholecystectomy under general anesthesia. The surgery is considered medium risk. CBC reveals he is at his baseline hemoglobin level of 8.2 g/dL.

Which of the following should be done preoperatively?

- A. Simple RBC transfusion
- B. Folic acid
- C. Hydroxyurea
- D. Enoxaparin
- E. RBC exchange transfusion

An 18-year-old woman with HbSS on chronic transfusion therapy for primary stroke prevention develops back pain and fever 6 days after a routine pRBC transfusion. Her pre-transfusion hemoglobin was 8.3 g/dL; current hemoglobin is 5.7 g/dL. Her electrophoresis shows HbA 40%, HbS 60%, HbF 5%, and HbA₂ 5%. Direct antiglobulin test (DAT) and indirect antiglobulin test (IAT) are negative; LDH level is elevated at 1205 U/L. Absolute reticulocyte count (ARC) is high at $450,000/\mu$ L.

What is the most likely diagnosis?

- a. Aplastic crisis
- b. New alloantibodies
- c. Delayed hemolytic transfusion reaction (DHTR)
- d. Hyperhemolysis syndrome
- e. Splenic sequestration

Hyperhemolysis syndrome

- Severe complication of delayed hemolytic transfusion reaction
 - "Bystander hemolysis" of self-RBCs
- Most commonly diagnosed in people with SCD
- Post-transfusion Hb lower than pre-transfusion levels
- Increased hemolysis markers
- Management: immunosuppression, transfuse matched blood if unstable.

Curative therapies for SCD

Allogeneic hematopoietic stem cell transplant

- Gene therapy investigational
 - Gene addition e.g., anti-sickling Hb (HbA^{T87Q})
 - Gene editing (zinc-finger nucleases, CRISPR-Cas9)
 e.g., disruption of BCL11A
 - Gene editing and addition
 - Base pair editing

ABIM Hematology exam blueprint

Thalassemias

- > β-thalassemia
- $\geq \alpha$ -thalassemia
- ➤ Hemoglobin E disorders

Sickle cell disorders

- ➤ Sickle cell trait
- Sickle cell anemia (hemoglobin SS disease)
- ➤ Hemoglobin SC disease and C hemoglobinopathy
- \triangleright Sickle cell- β^0 and sickle cell- β^+ thalassemias

Non-sickle hemoglobinopathies

Educational resources

Hemoglobin Lepore

• Fusion of β and δ globin genes

- Decreased synthesis of β-like globins
- Homozygote: β-thal major phenotype
 - > 8-30% Hb Lepore
 - > 70-92% Hb F

Heterozygote: β-thal minor (trait) phenotype

Hemoglobin Constant Spring

Non-deletional form of α-thalassemia

• Mutation in stop codon of α_2 -globin adds 31 additional amino acids \rightarrow 1% normal α -globin

 Homozygotes: more severe Hb H disease, but ~normal MCV

Hereditary persistence of HbF (HPFH)

- Clinically silent (e.g., found in blood donation)
- Up-regulation of γ chain synthesis
- Caused by:
 - \triangleright deletions involving β and δ genes (nearly 100% HbF);
 - \triangleright point mutations in γ chain promoter (variable HbF);
 - decreased expression of *KLF1*, transcription factor that activates fetal hemoglobin suppressor gene *BCL11A*
- Significantly modifies clinical outcomes when coinherited with Hb S

Sickling syndromes

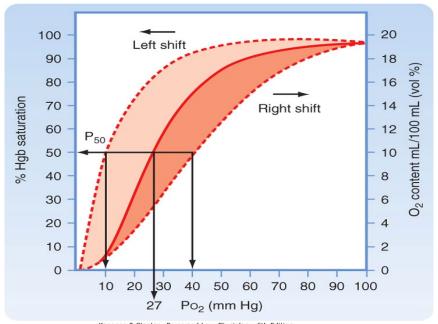
Table 1. Genotypes of Sickling Syndromes and Their Relative Severities

Genotype	Severity	Characteristics
HbSS	Severe	Most common form
ньѕβ⁰	Severe	Clinically indistinguishable from HbSS ⁶
HbSO-Arab	Severe	Relatively rare ⁶
HbSD-Punjab	Severe	Mostly in northern India ⁶
HbSC-Harlem	Severe	Migrates like HbSC, but rare double β -globin mutation ⁷
HbCS-Antilles	Severe	Rare double β-globin mutation ⁸
HbSC	Moderate	25% of SCD ⁹
HbSβ+, Mediterranean	Moderate	5%–16% HbA6
HbAS-Oman	Moderate	Dominant rare double β-globin mutation ¹⁰
HbSβ+, African	Mild	16%–30% HbA ⁶
HbSE	Mild	HbE found mostly in Southeast Asia11
HbS-HPFH	Very mild	Large deletions in β -globin gene complex; > 30% HbF ⁶

HbA = hemoglobin A; HbE = hemoglobin E; HbF = fetal hemoglobin; HbS-HPFH = HbS and gene deletion HPFH; HbSC = heterozygous hemoglobin SC; HbSS = homozygous hemoglobin SS; HbSβ $^{\circ}$ = hemoglobin S- $^{\circ}$ thalassemia $^{\circ}$; HbSβ $^{+}$ = hemoglobin S- $^{\circ}$ thalassemia $^{+}$; SCD = sickle cell disease.

Unstable hemoglobin disease

- Congenital chronic non-spherocytic anemia
 - variable severity
 - ± low MCV
- Rare, AD mutations → defective heme binding by globin chains
- Diagnosis:
 - Heinz bodies precipitation in RBCs on isopropanol test
 - About 200 "unstable" Hb variants → DNA sequencing
- Hb Köln most common: anemia, retics (10-25%), splenomegaly
- Treatment: avoid oxidant drugs, RBC transfusions as needed, splenectomy


Hemoglobin M disorders

- Hereditary methemoglobinemias:
 - Asymptomatic cyanosis, slate grey/brownish skin, no dyspnea or hypoxia
 - > Autosomal dominant (AD)
 - ightharpoonup Amino acid substitution in heme pocket: Fe²⁺ \rightarrow Fe³⁺, cyanosis
- Diagnosis: abnormal SpO2, Hb electrophoresis or spectra, methemoglobin < 30%
- No treatment needed, cyanosis not reversible with methylene blue or vitamin C
- Different from other methemoglobinemias (treat with methylene blue)
- > Toxins: nitrites, sulfanilamide, dapsone, primaquine, etc.
 - Symptomatic with metHb> 30% (> 50% is lethal!)
- ➤ Congenital deficiency in cytochrome b5 reductase: Fe³⁺ → Fe²⁺
 - > cyanosis improves with methylene blue or vitamin C

Other hemoglobin disorders

Hb with high O₂ affinity:

- AD, familial <u>erythrocytosis</u>,
- \triangleright α or β -chains can be affected
- Diagnosis: low P₅₀ (left shifted on O₂ dissociation curve), variant Hb in electrophoresis, DNA sequencing
- ➤ No phlebotomy unless Ht >60%
- Differential dx: polycythemia vera, secondary polycythemias

Koeppen & Stanton: Berne and Levy Physiology, 6th Edition. Copyright © 2008 by Mosby, an imprint of Elsevier, Inc. All rights reserved

Hb with low O₂ affinity:

- Right shift on O_2 dissociation curve (high $P_{50} \sim 30-40$ mmHg)
- Cyanosis, but otherwise asymptomatic (depending on degree of right shift)
- No treatment required

Educational resources

- NHBLI Evidence-based Management of Sickle Cell Disease- Expert Panel Report (2014)
- Thalassemia International Foundation (TIF) publications www.thalassaemia.org.cy
- American Society of Hematology, ASH (www.hematology.org)
 - ASH Self-Assessment Program (ASH SAP), 7th Ed.
 - All Grown Up: Ensuring Effective Care Transition in β-Thalassemia Program
 - Benign Hematology Curriculum Sickle Cell Disease
- ASH Pocket Guides (download from App store)
- Hematology/Oncology question bank <u>hemeoncquestions.com/</u>

THANK YOU