The Myelodysplastic Syndromes

Aaron T. Gerds, MD, MS

Associate Professor of Medicine
Deputy Director for Clinical Research
Medical Director, Case Comprehensive
Cancer Center

Disclosures

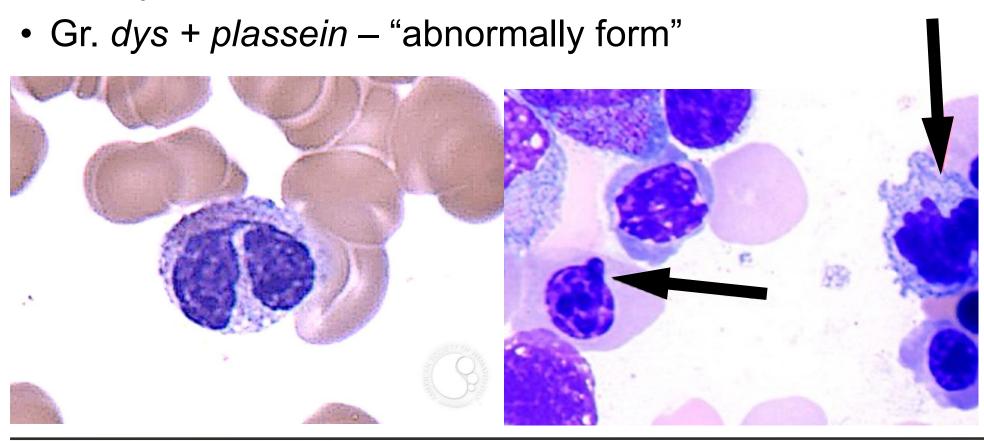
"It troubles me that we're being led into battle by a person wearing a bow tie."

-New Yorker | September 10, 2018

Overview – Myelodysplastic Syndromes

- 1. Organization, in general
- 2. Diagnosis and Classification
- 3. Epidemiology
- 4. Pathogenesis
 - a. Clonal Process
 - b. Secondary MDS
- 5. Risk stratification
 - a. IPSS-R
- 6. Treatment of Lower-risk MDS
 - 1. ESAs
 - 2. IMIDS
 - 3. Immunosuppressive therapy

- 7. Treatment of Higher-risk MDS
 - 1. Hypomehtylating agents
- 8. Transplantation for MDS
- 9. Discussion



What is MDS?

The Myelodysplastic Syndromes

• Gr. *myelos* – "marrow"

@AaronGerds

MDS is a cancer?

Oxford dictionary: The disease caused by an uncontrolled division of abnormal cells in a part of the body (from Latin *cancr* meaning crab)

Diagnosis and Classification of MDS

WHO Diagnostic Criteria

Minimal Morphologic Criteria

- ≥10% of the cells ≥1 lineage must show dysplasia
- Dysplasia not required if:
 - Defining cytogenetics
 - BM blasts ≥ 5%, PB blasts ≥ 2%, or Auer rods
- At least one cytopenia present
- Causes of secondary dysplasia must be excluded

Defining Cytogenetics

- -7 or del(7q)
- t(17p) or i(17q)
- -5 or del(5q)
- t(11;16

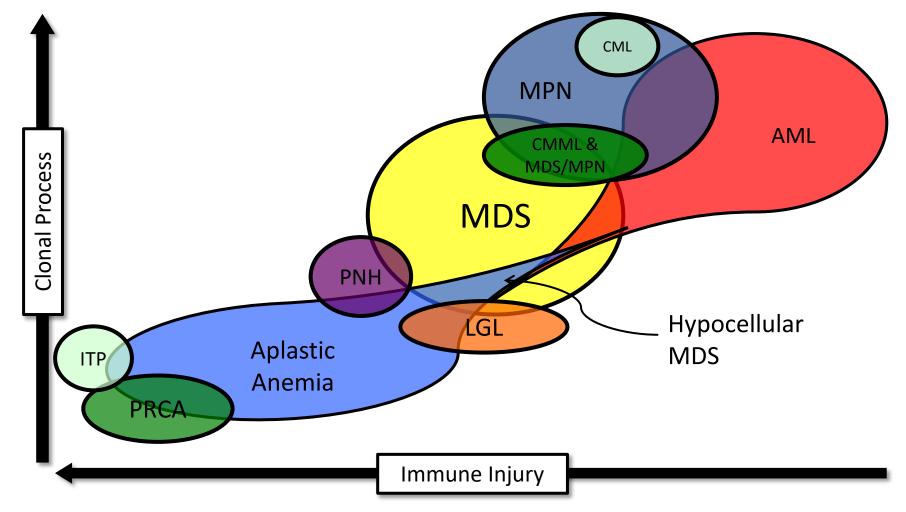
del(13q)

• t(3;21)

• del(11q)

- t(1;3)
- del(12p) or t(12p)
- t(2;11)

• del(9q)


• t(6;9)

• inv(3)

- idic(X)(q13)
- Complex

Spectrum of Marrow Failure

WHO Classification

Myeloid Neoplasms

Acute Myeloid Leukemia

Myelodysplastic Syndromes

Myeloproliferative Neoplasms

Mastocytosis

MDS/MPN Overlap Syndromes

Myeloid neoplasms with germ line predisposition

Myeloid/lymphoid neoplasms with eosinophilia and rearrangement of *PDGFRA*, *PDGFRB*, or *FGFR1*, or with *PCM1-JAK2*

WHO Classification

Myeloid Neoplasms

Acute Myeloid Leukemia

Myelodysplastic Syndromes

Myeloproliferative Neoplasms

Mastocytosis

MDS/MPN Overlap Syndromes

Myeloid neoplasms with germ line predisposition

Myeloid/lymphoid neoplasms with eosinophilia and rearrangement of PDGFRA, PDGFRB, or FGFR1, or with PCM1-JAK2

	Dysplastic		Ringed sideroblasts as % of	Bone marrow (BM) and	Cytogenetics by conventional karyotype
Name	lineages	Cytopenias*	marrow erythroid elements	peripheral blood (PB) blasts	analysis
MDS with single lineage dysplasia (MDS-SLD)	1	1 or 2	<15%/<5%†	BM <5%, PB <1%, no Auer rods	Any, unless fulfills all criteria for MDS with isolated del(5q)
MDS with multilineage dysplasia (MDS-MLD)	2 or 3	1-3	<15%/<5%†	BM <5%, PB <1%, no Auer rods	Any, unless fulfills all criteria for MDS with isolated del(5q)
MDS with ring sideroblasts (MDS-RS)					
MDS-RS with single lineage dysplasia (MDS-RS-SLD)	1	1 or 2	≥15%/≥5%†	BM <5%, PB <1%, no Auer rods	Any, unless fulfills all criteria for MDS with isolated del(5q)
MDS-RS with single lineage dysplasia (MDS-RS-SLD)	2 or 3	1-3	≥15%/≥5%†	BM <5%, PB <1%, no Auer rods	Any, unless fulfills all criteria for MDS with isolated del(5q)
MDS with isolated del(5q)	1-3	1-2	None or any	BM <5%, PB <1%, no Auer rods	$del(5q) \pm 1$ additional abnormality except - 7 or $del(7q)$
MDS with excess blasts (MDS-EB)					
MDS-EB-1	0-3	1-3	None or any	BM 5%-9% or PB 2%-4%, no Auer rods	Any
MDS-EB-2	0-3	1-3	None or any	BM 10%-19% or PB 5%-19% or Auer rods	Any
MDS, unclassifiable (MDS-U)					
With 1% blood blasts	1-3	1-3	None or any	BM <5%, PB = 1%,‡ no Auer rods	Any
with single lineage dysplasia and pancytopenia	1	3	None or any	BM <5%, PB <1%, no Auer rods	Any
based on defining cytogenetic abnormality	0	1-3	<15%§	BM <5%, PB <1%, no Auer rods	MDS-defining abnormality
Refractory cytopenia of childhood	1-3	1-3	None	BM <5%, PB <2%	Any

Swerdlow SH et al (Eds). WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues 4th ed., IARC, Lyon 2017Press

MDS with < 5% blasts

MDS with excess (≥ 5%) blasts

MDS, unclassifiable

Epidemiology of MDS

MDS Epidemiology

Age-Adjusted Incidence Rates for the 18 SEER Geographic Areas by Age and Race, 2009-2013

	<u>Both Sexes</u>		Ma	Males		ales
Site	Rate	Count	Rate	Count	Rate	Count
Myelodysplastic Syndromes (MDS)						
By age						
Ages <40	0.1	335	0.1	164	0.1	171
Ages 40-49	0.7	459	<u> </u>	233	0 7	226
Ages 50-59	2.4	1,406				
Ages 60-69	9.3	3,653	Ind	cidenc	e Kat	e =
Ages 70-79	30.2	6,539	111	3140110	O I W	
Ages 80+	59.8	8,946	А	0/400	000 -	
By race			4.	9/100	.UUU T	er
All Races	4.9	21,338			, • • • •	.
White	5.1	17 , 978		\ / 0	.	
Black	4.1	1,617		VE	ear	
Asian/Pacific Islander	3.7	1,420		J -	<u> </u>	
American Indian/Alaska Native ^b	3.4	76	3.6	38	3.2	38
Hispanic ^c	3.5	1,644	4.4	866	2.9	778

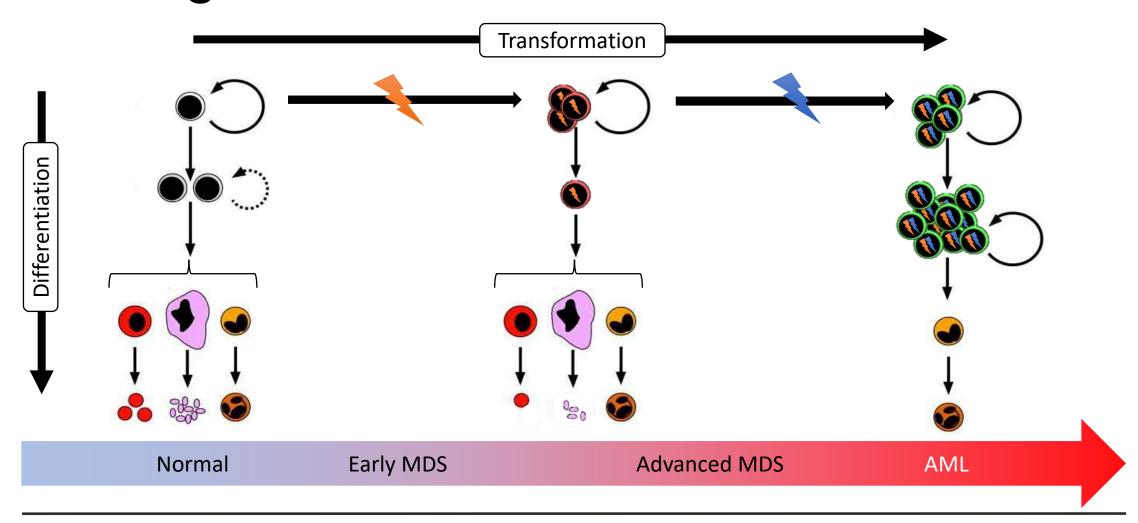
MDS Epidemiology

Age-Adjusted Incidence Rates for the 18 SEER Geographic Areas by Age and Race, 2009-2013

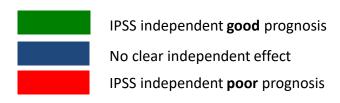
	Both_	Sexes	Ma	les	Fem	ales
Site	Rate	Count	Rate	Count	Rate	Count
Myelodysplastic Syndromes (MDS)						
By age						
Ages <40	0.1	335	0.1	164	0.1	171
Ages 40-49	0.7	459	0.8	233	0.7	226
Ages 50-59	2.4	1,406	2.7	781	2.0	625
Ages 60-69	9.3	3,653	11.5	2,131	7.4	1,522
Ages 70-79	30.2	6,539	40.3	3,861	22.2	2,678
Ages 80+	59.8	8,946	90.0	4,928	42.3	4,018
All Race Men > Wom	on	1,338	6.7	12,098	3.7	9,240
White Wite VVOIII		7,978	7.0	10,351	3.8	7,627
Black	4 . 1	1,617	5.3	806	3.4	811
Asian/Pacific Islander	3.7	1,420	4.8	777	2.8	643
American Indian/Alaska Native ^b	3.4	76	3.6	38	3.2	38
Hispanic ^c	3.5	1,644	4.4	866	2.9	778

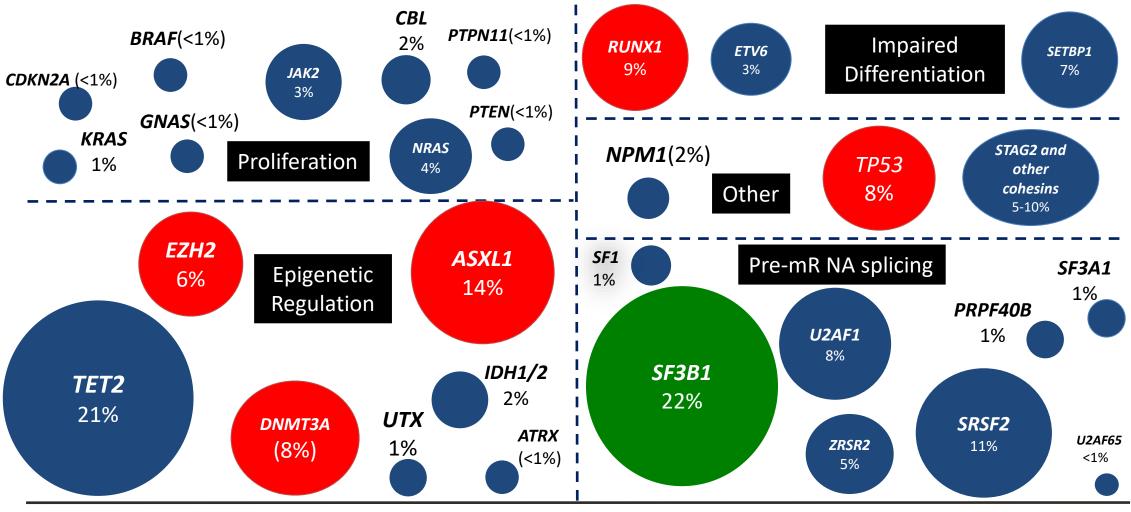
MDS Epidemiology

Age-Adjusted Incidence Rates for the 18 SEER Geographic Areas by Age and Race, 2009-2013

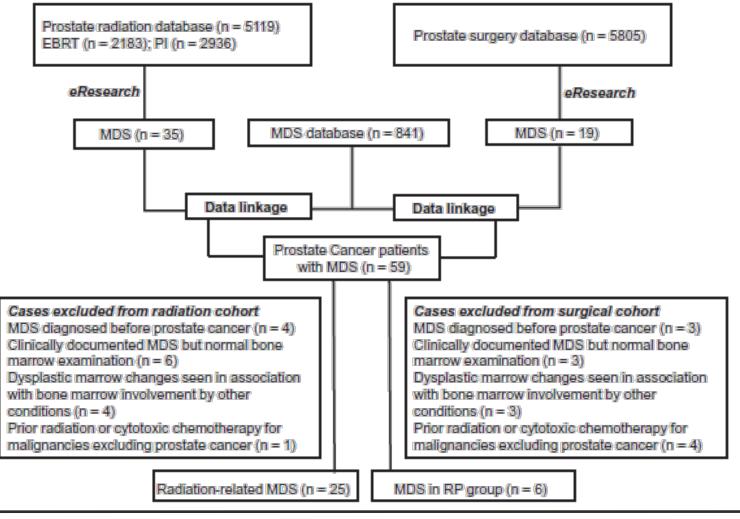

	Both	Sexes	Ma	les	Fem	ales
Site	Rate	Count	Rate	Count	Rate	Count
Myelodysplastic Syndromes (MDS)						
By age						
Ages <40	0.1	335	0.1	164	0.1	171
Ages 40-49	0.7	459	0.8	233	0.7	226
Ages 50-59	2.4	1,406	2.7	781	2.0	625
Ages 60-69	9.3	3,653	11.5	2,131	7.4	1,522
Ages 70-79	30.2	6,539	40.3	3,861	22.2	2,678
Ages 80+	59.8	8,946	90.0	4_928	42.3	4_018
By race			١.٨	/1 '1 .	A C '	
All Races	4 . 9	21,338	\/\ <i>\</i>	hite >	Atrica	an-
White	5.1	17 , 978	V V		/ 111100	411
Black	4.1	1,617		Λ		
Asian/Pacific Islander	3.7	1,420		Ame	rican	
American Indian/Alaska Native ^b	3.4	76		,		
Hispanic ^c	3.5	1,644	4.4	866	2.9	778

Pathogenesis of MDS


Pathogenesis of MDS



MDS Mutation Landscape



Cross-sectional analysis of 4,514 MDS patients in the U.S. in 2005-2007

Age (Median)	Newly diagnosed	71 years
	Established	72-75 years
Sex (Mean)	Male (Newly diagnosed)	55%
	(Established)	51-57%
Duration of MDS (Median)		13-16 months
MDS Status	Primary	88 – 93%
	Secondary	7 – 12%
Secondary	Chemotherapy	55 – 80%
Cause	Radiation	6 – 21%
	Chemical exposure	2 – 9%

MDS and Prostate Cancer Radiotherapy

MDS and Prostate Cancer Radiotherapy

	Risk regression mo	del 2§	Risk regression model 4	
Age	1.13 (1.06 to 1.19)	<.001	1.20 (1.12 to 1.29)	<.001
ВМІ			1.12 (1.03 to 1.23)	.01
Radiation vs RP	1.63 (0.59 to 4.53)	.35	1.40 (0.26 to 7.67)	.70

MDS Risk Stratification

IPSS-R Cytogenetic Classification

Risk Group	Included karyotypes (19 categories)	Patients in group	Median survival (months)
Very good	del(11q), -Y	2.9%	60.8
Good	Normal, del(20q), del(5q) alone or with 1 other anomaly, del(12p)	65.7%	48.6
Intermediate	+8, del(7q), i17(q), +19, +21, any single or double anomaly not listed, two or more independent clones	19.2%	26.1
Poor	der(3q), -7, double with del(7q), complex (3 abnormalities)	5.4%	15.8
Very poor	Complex with ≥ 4 abnormalities	6.8%	5.9

Scoring the IPSS-R

Parameter	Categories and associated score							
Cytogenetic	Very Good	Good	Int	Poor	Very Poor			
risk group	0	1	2	3	4			
Marrow blasts	≤ 2%	> 2% - < 5%	5% - 10%	>10%				
IVIAITOW DIASES	0	1	2	3				
Hamaglahin	≥ 10 g/dL	8 - < 10 g/dL	< 8 g/dL					
Hemoglobin	0	1	2					
District count	≥ 100	50 - < 100	< 50					
Platelet count	0	0.5	1					
ANC	≥ 0.8	< 0.8						
ANC	0	0.5						

Scoring the IPSS-R

Prognostic variable	0	0.5	1	1.5	2	3	4
Cytogenetics	Very Good		Good		Int	Poor	Very Poor
BM Blast %	<=2		>2-<5%		5-10%	>10%	
Hemoglobin	=>10		8-<10	<8			
Platelets	=>100	50-<100	<50				
ANC	=>0.8	<0.8					

IPSS-R Risk Groups

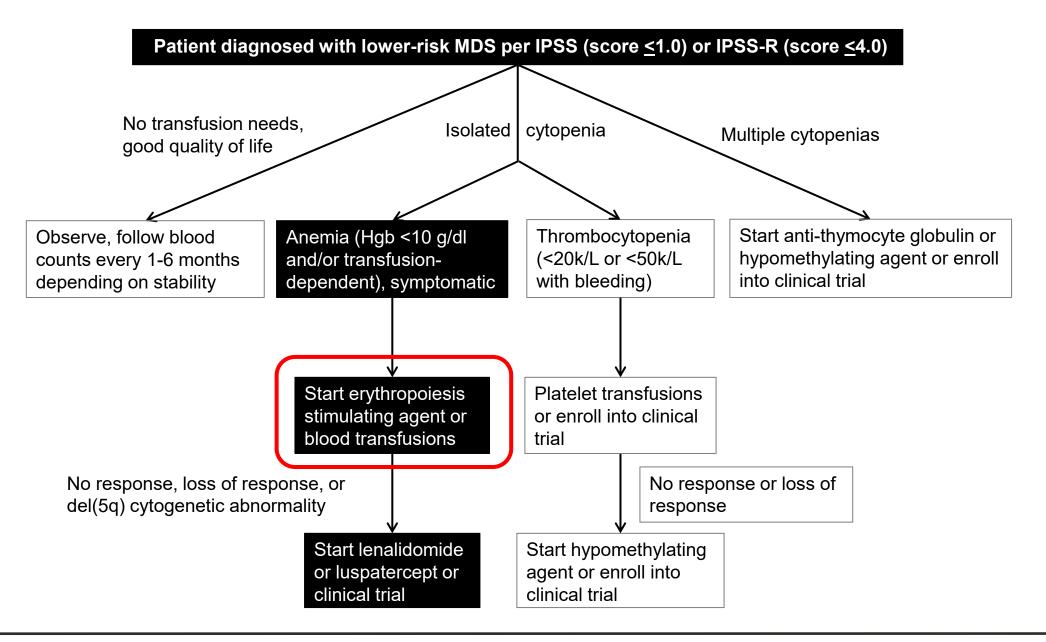
Risk group	Points	Patients	Median Survival (years)	Time until 25% develop AML (yr)
Very low	0 - 1.5	19%	8.8	NR
Low	> 1.5 - 3	38%	5.3	10.8
Intermediate	> 3 - 4.5	20%	3.0	3.2
High	>4.5 - 6	13%	1.6	1.4
Very High	> 6	10%	0.8	0.73

http://www.ipss-r.com

MDS Prognosis Made Easy!

Lower Risk

- MDS-SLD/MLD (RA, RCMD, RCUD)
- MDS-RS (RARS)
- MDS del (5q)
- MDS-U
- IPSS Low/Intermediate-1 (0-1.0)
- IPSS-R Very Low/Low/Intermediate (<3.5)


Higher Risk

- MDS-EB-1, MDS-EB-2 (*RAEB-1*, *RAEB-2*)
- IPSS Int-2/High (>1.5)
- IPSS-R Intermediate/High/Very High (>3.5)

Treatment of Lower-risk MDS

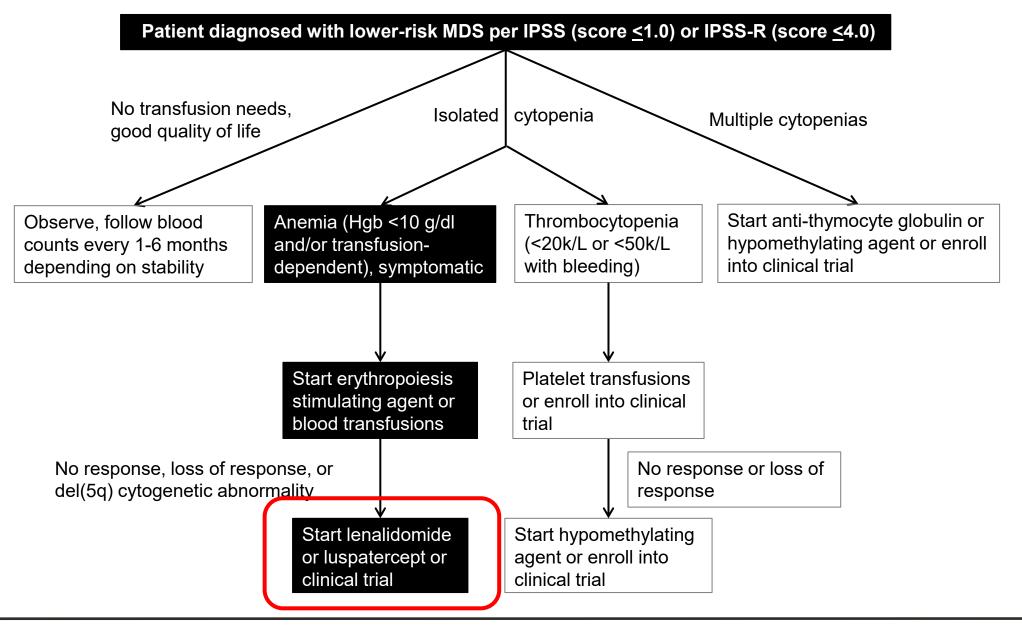
Erythropoiesis Stimulating Agents

- Number of published regimens:
 - Erythropoietin 150 to 300 U/kg daily
 - Erythropoietin ≥150 U/kg three times weekly
 - Erythropoietin 40,000 U once per week
 - Darbepoetin alpha 75-400 mcg once/week
 - Darbepoetin alpha 500 mcg every 2-3 weeks
- Higher doses may be more effective than lower doses
- Responses may take up to 12-26 weeks

ORR for ESAs in MDS

	Patients (%)		IWG respon	se		Duration of
		ts Response rate	CR/PR	HI-E	HI-N/P	response (median months, range)
Growth factors	100	39.5	9.1	66.8	24·1	18 (1–116)
EPO	57.3	39.4	6.1	93.9	_	17 (1–93)
EPO + GCSF	23.4	47.8	23.2	60.6	7.1	19 (2–62)
GMCSF	6.2	37.8	_	_	100	6 (1–18)
EPO + GMCSF	5.8	33.7	_	81.3	18.7	24 (1–116)
GCSF	3.0	47.9	_	4.5	95.5	3 (1–6)
IL3	3.0	17.0	_	_	100	3 (1–12)
IL6	1.3	38·1	_	_	100	5 (2–14)

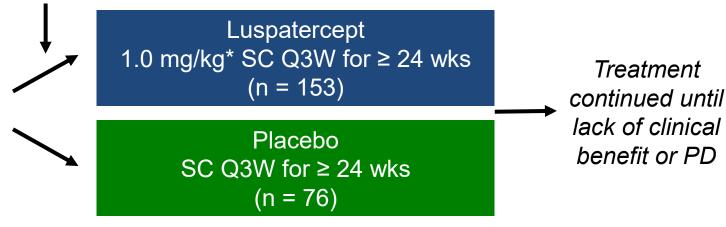
Overall Response Rate ~40%


Predictive Model for ESA + GCSF

Nordic MDS Group [N = 98]

Danasakan	Points						
Parameter	+2	+1	-2	-3			
Serum Epo (mU/mL)	< 100	100 - 500		> 500			
RBC Transfusions	< 2 units/mo		≥ 2 units/mo				

Points	Patients	% Response
≥ 2	29	74%
-1 to 1	31	23%
< -1	34	7%


Luspatercept (Approved 4/3/2020)

- For the treatment of anemia
 - After ESA AND
 - Requiring >/=2 RBC units over 8 weeks IN
 - Very low- to intermediate-risk MDS-RS OR MDS/MPN-RS-T

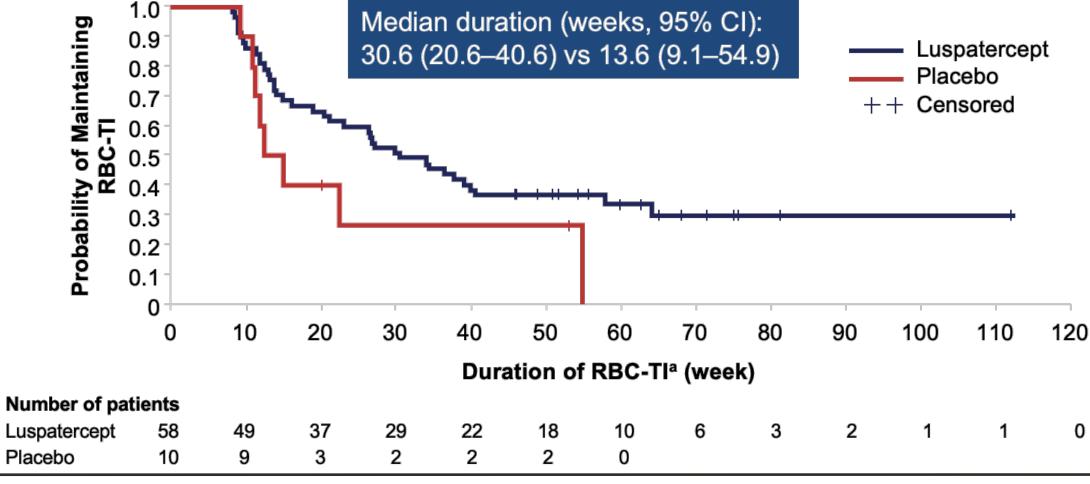
MEDALIST: Study Design

Randomized 2:1

- ≥ 18 yrs of age with non-del(5q)
 MDS and ring sideroblasts
- IPSS-R: very low/low/intermediate
- Refractory, intolerant, or ineligible for ESAs
- RBC transfusion dependent (N = 229)

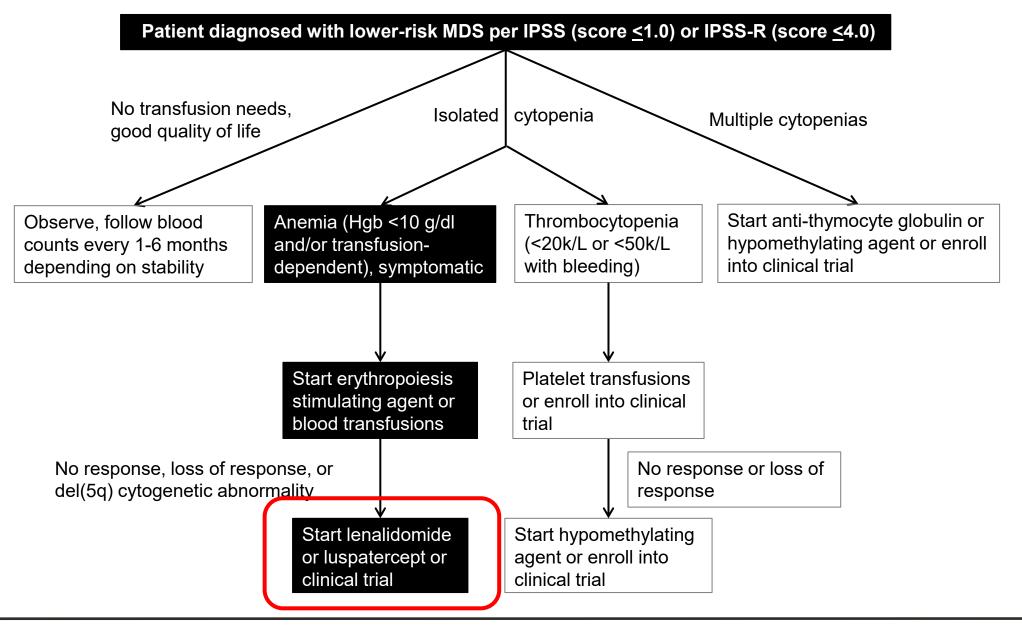
*Could be titrated up to 1.75 mg/kg if needed.

Primary endpoint: RBC TI for ≥ 8 wks between Wk 1 and Wk 24

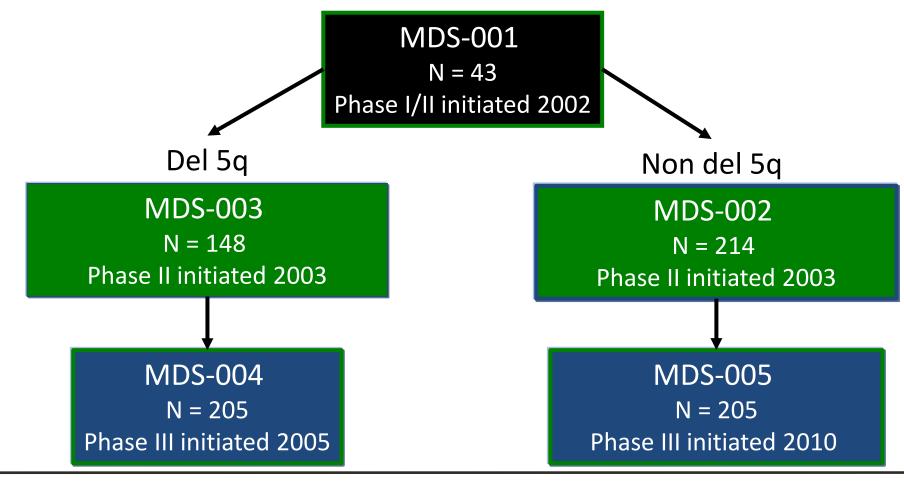

MEDALIST Trial: Primary Endpoint: RBC Transfusion Independence ≥ 8 Weeks

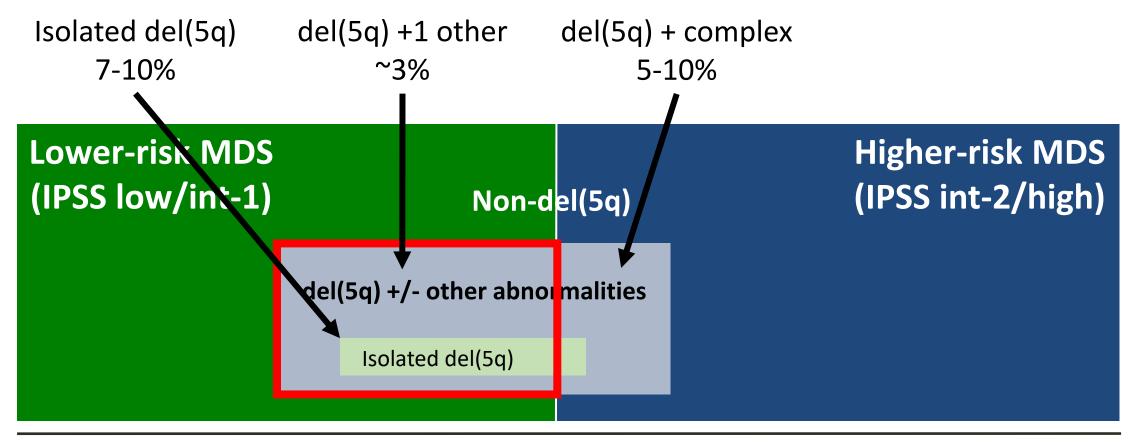
RBC-TI ≥ 8 weeks	Luspatercept Placebo (n = 153) (n = 76)	
Weeks 1–24, n (%)	58 (37.9)	10 (13.2)
95% CI	30.2-46.1	6.5–22.9
<i>P</i> -value ^a	< 0.00	001

^a Cochran–Mantel–Haenszel test stratified for average baseline RBC transfusion requirement (≥ 6 units vs < 6 units of RBCs/8 weeks) and baseline IPSS-R score (Very Low or Low vs Intermediate). CI, confidence interval.



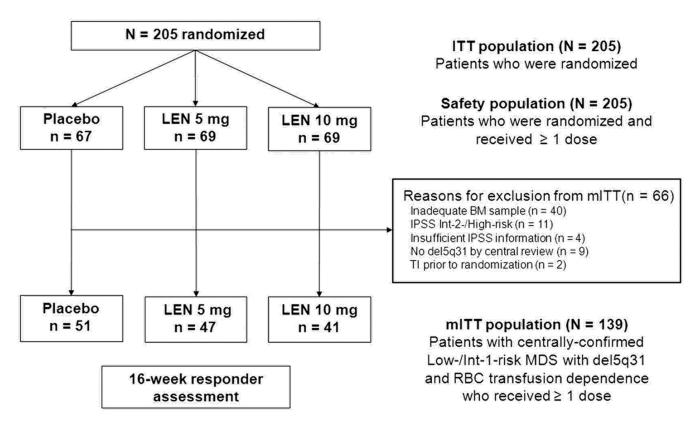
MEDALIST Trial: Duration of RBC-TI Response in Primary Endpoint Responders


Fenaux P et al. *N Engl J Med*. 2020 Jan 9;382(2):140-151. Fenaux P et al. ASH 2018. Abstr 1. NCT02631070.


Development of IMIDs for MDS

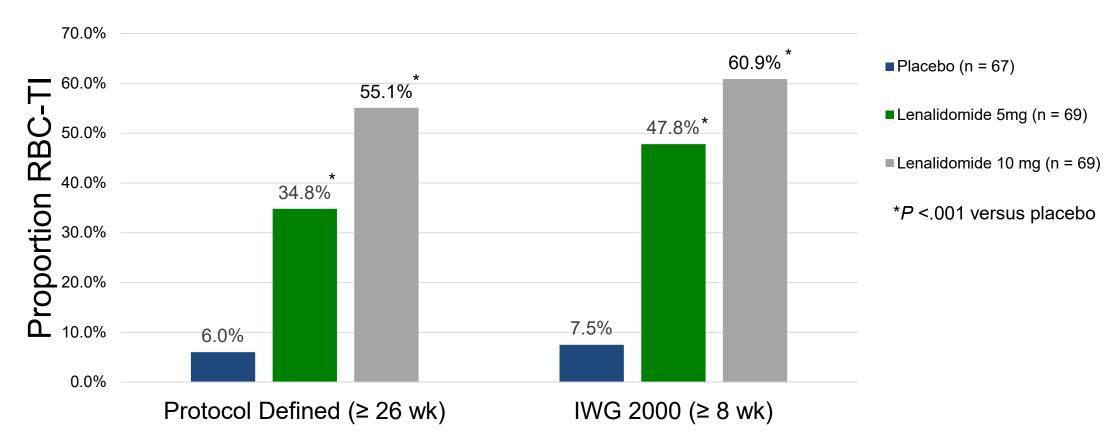

US FDA Indication for Lenalidomide

Warning: This figure is not to scale!

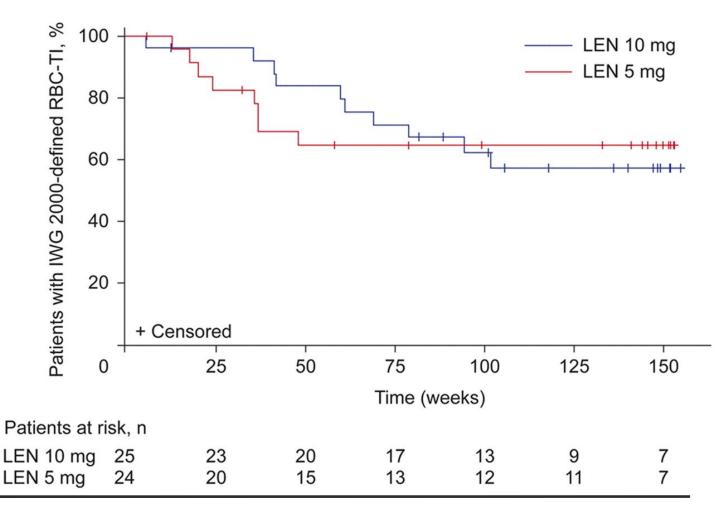


MDS-004 Study

 RBC-Transfusion dependent anemia

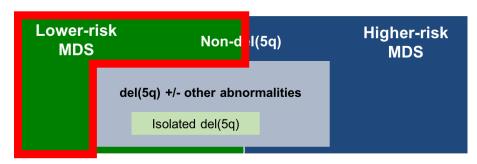

- Lenalidomide
 - 10 mg/day days 1 21
 - 5 mg/day days 1 28
 - Placebo

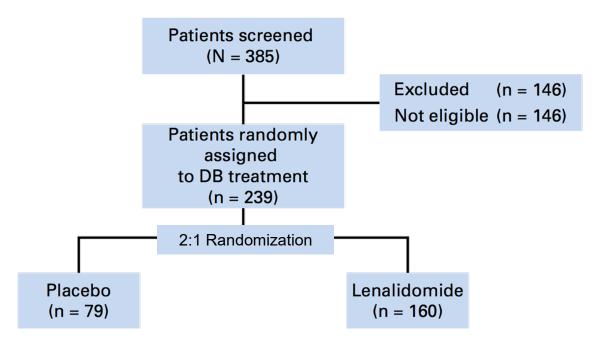
MDS-004 Study: Erythroid Response by RBC-TI



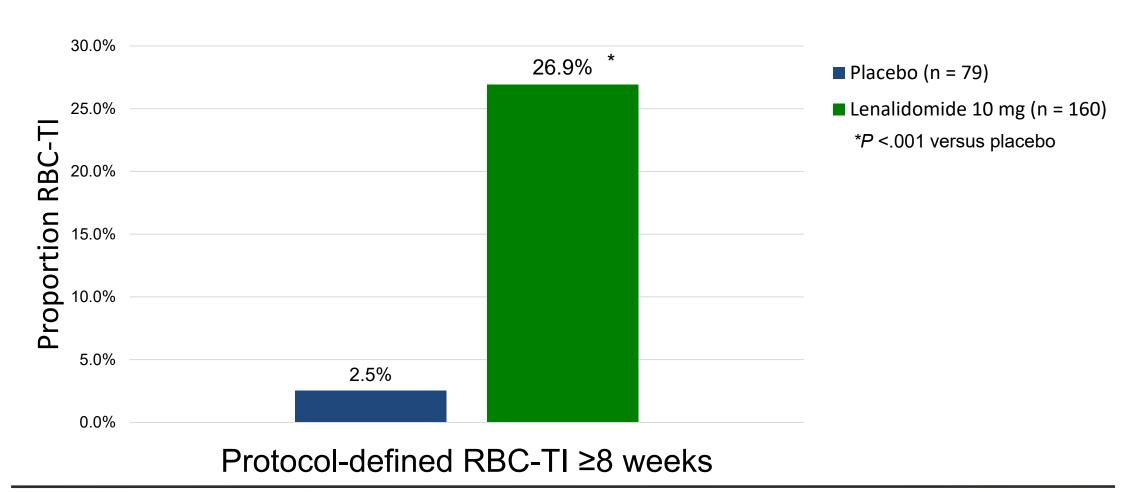
52% pre-treated with ESA, median time from diagnosis to enrolment 2.7 years (0.2-17.2)

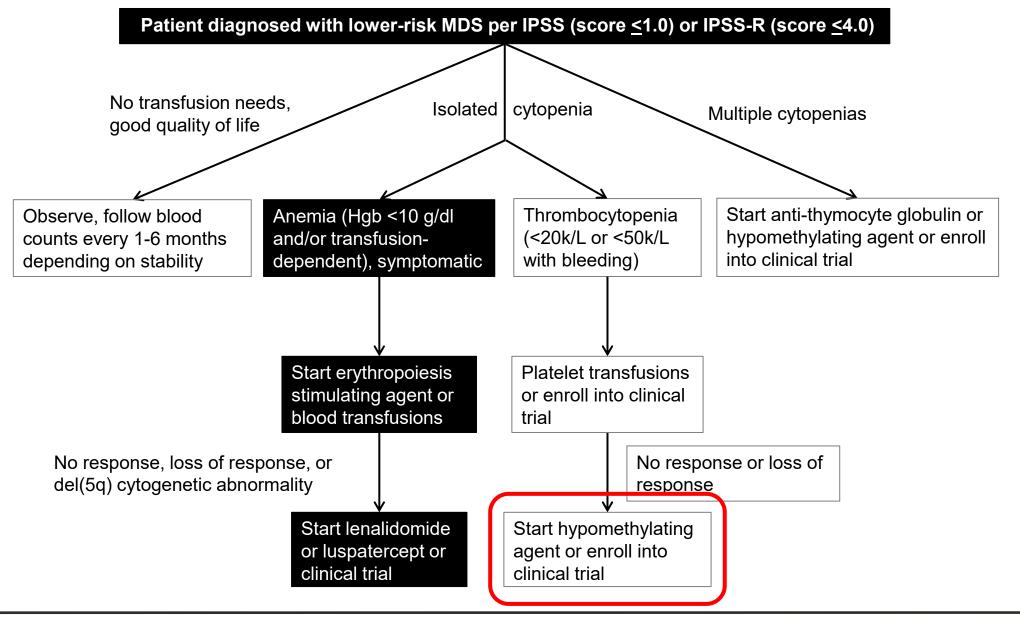
MDS-004 Study: Response Duration


- Median (95% CI) duration of RBC-TI:
 - LEN 5mg: NR weeks (41.3-NR)
 - LEN 10mg: NR weeks (82.9-NR)
- 30% patients on LEN 10mg had a major cytogenetic response (20% minor)



MDS-005 Study


- RBC-Transfusion dependent anemia
- R/R or unlikely to respond to ESA
- Lenalidomide
 - 10 mg/day days 1 28
 - Placebo

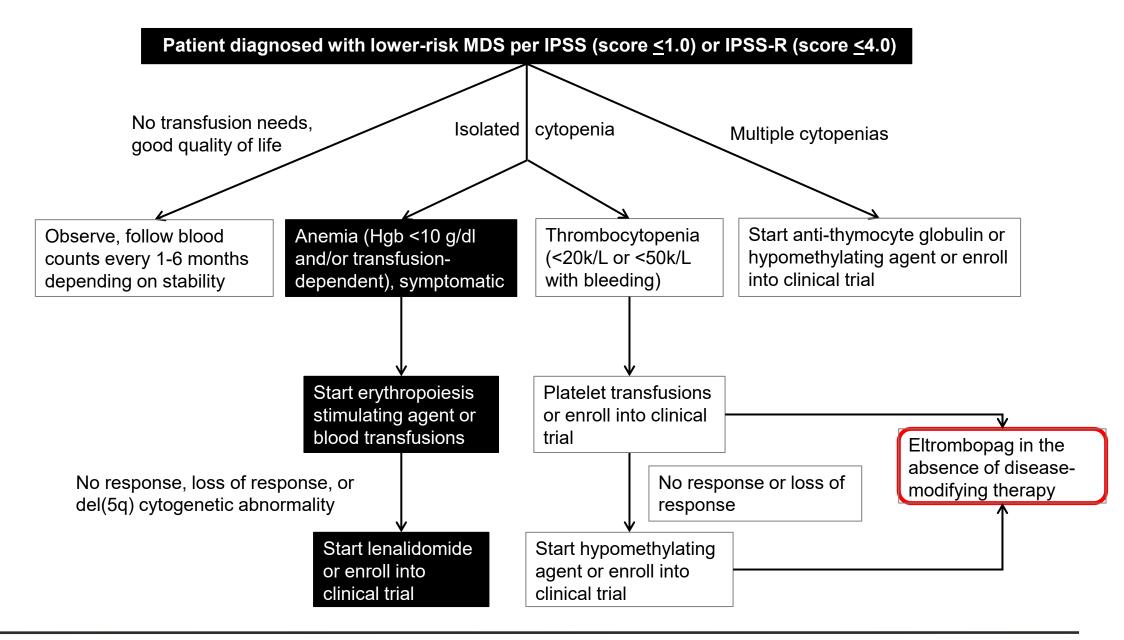


Somatic mutations (n = 198)		
SF3B1	58.6%	
TET2	33.3%	
ASXL1	23.2%	
DNMT3A	13.6%	

MDS-005 Study: Erythroid Response by RBC-TI

Low-Dose HMA for LR-MDS

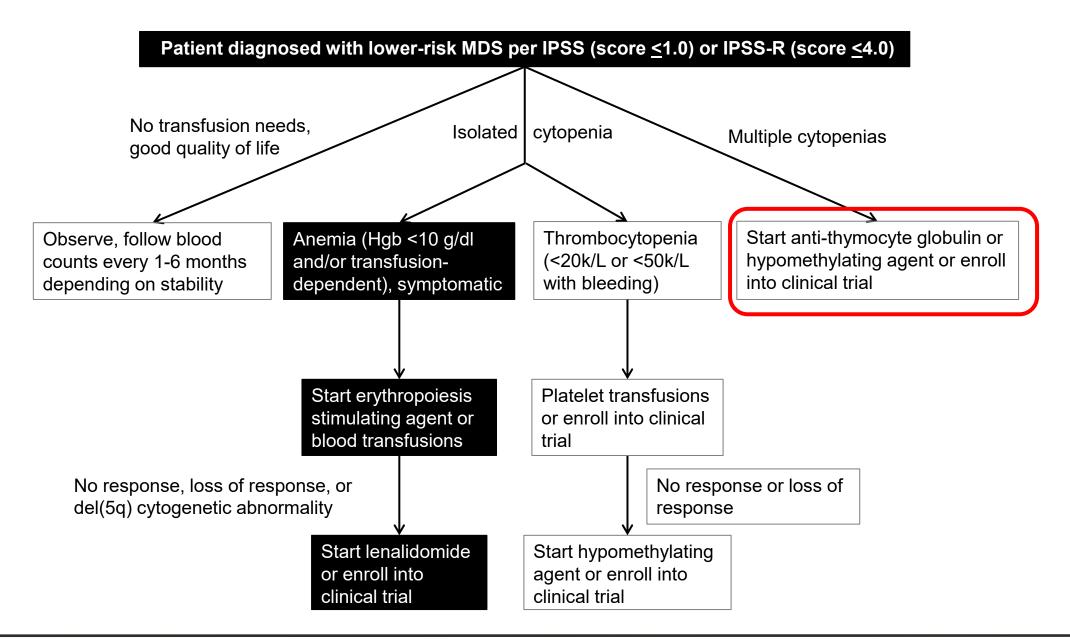
- Regimens:
 - DAC 20 mg/m2 IV D1-3 every 4 weeks
 - AZA 75 mg/m2 IV/SC D1-3 every 4 weeks
- Response assessment by modified IWG 2006
- Between 11/2012 and 10/2015, 91 pts with LR-MDS treated and evaluable for response
- Median duration of follow-up = 14 months (range: 2-30 months)


Low-Dose HMA for LR-MDS

Response	N (%)
CR	33 (36)
mCR	8 (9)
HI	13 (14)
ORR	54 (59)
SD	31 (34)
PD	6 (7)

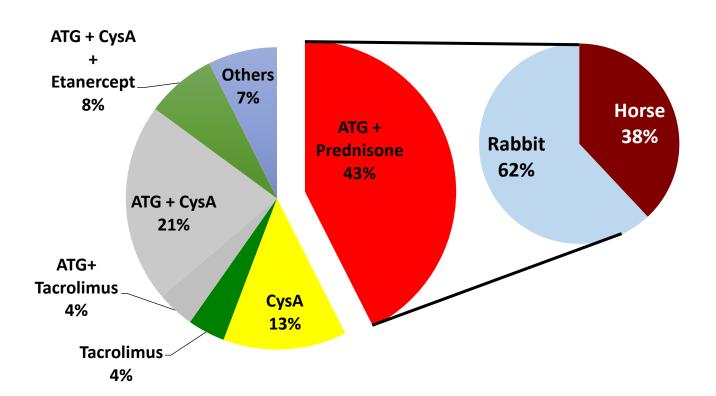
 Median time to best response: 2 months (range: 1-20)

 Median number of cycles received: 9 (range: 2-32)



Eltrombopag for MDS

- ASPIRE randomized (2:1), placebo-controlled, phase 2 trial
 - High-risk MDS/AML (145 patents randomized)
 - Primary endpoint: Clinically relevant thrombocytopenic events (CRTE)
 - Grade 3 hemmorhage
 - Transfusion for platelets <10K
 - Average weekly CRTE proportions from weeks 5–12 were significantly lower with eltrombopag (54%) than with placebo (69%, OR 0.20, 95% CI 0.05–0.87; p=0.032).
 - Did not show disease progression
- Low-risk MDS (n=30)
 - 11 (44%) of 25 patients evaluable for response responded
 - 6 with bi-lineage responses
 - Liver enzyme elevations were seen that required dose interruption
 - The most frequent treatment-related AE's were nausea and vomiting (20%), skin lesions (20%), headaches (17%), and discoloration of the sclerae (17%)


Anti-thymocyte Globulin for MDS

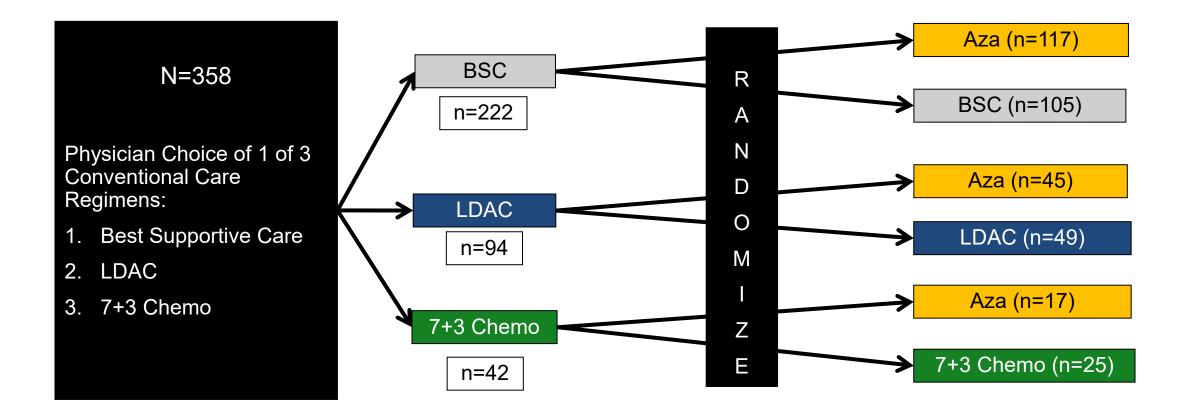
A retrospective cohort, International, multi-center, study

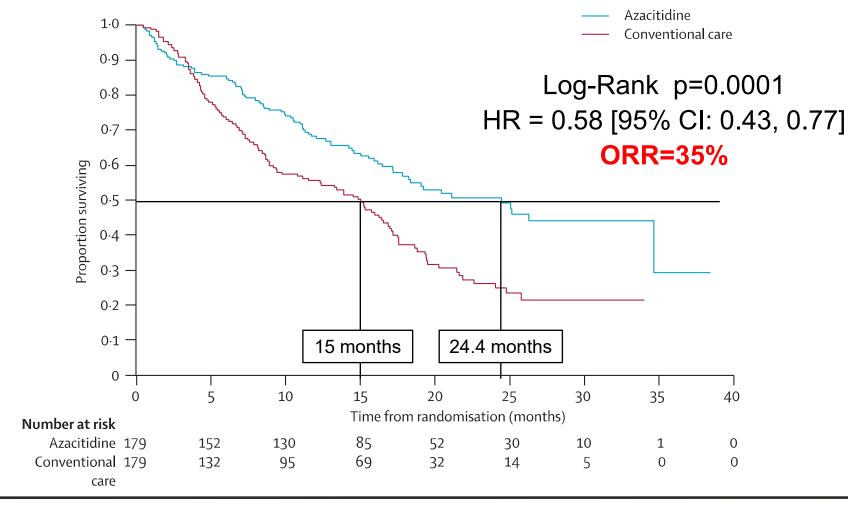
Anti-thymocyte Globulin for MDS

166 patients treated with ATG

Response	%	95%CI
CR	11.2	6.5-18.4
PR	5.6	2.5-11.6
HI	32.0	24.1-41.0
SD	39.2	30.7-48.4
PD	12.0	7.1-19.3
ORR	48.8	39.8-57.9

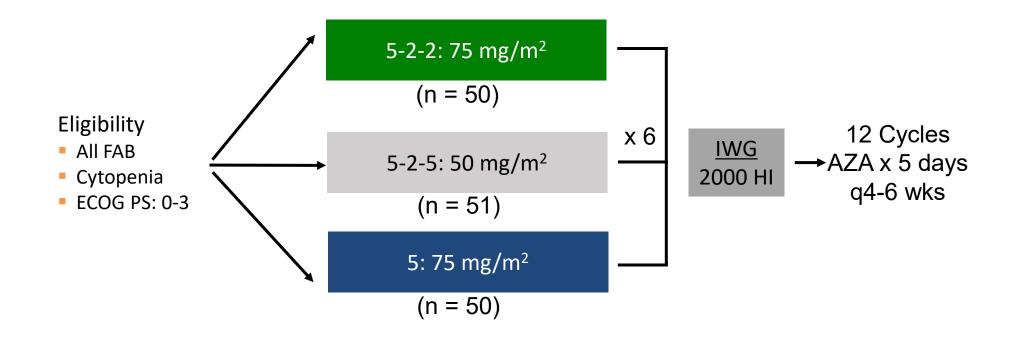
Treatment of Higher-risk MDS

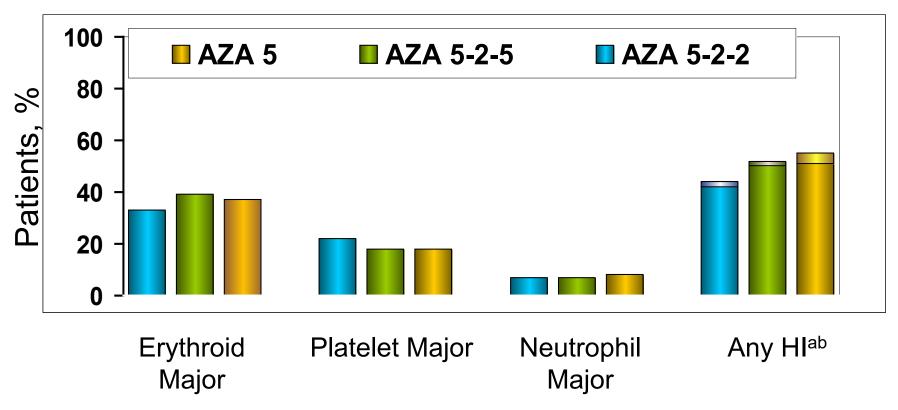

Patient diagnosed with higher-risk MDS per IPSS (score ≥1.5) or IPSS-R (score >4.5) Treatment of Declines HCT and/or Desires HCT, good HCT CI unsuitable donor, poor HCT score Higher-risk MDS CI score **Immediate** hypomethylating agent-Initiate search for based clinical trial or MRD or 8/8 URD monotherapy x >6 cycles Hematologic No response Older patient, improvement or better Younger patient, higher lower blast percentage, blast percentage, goodintermediate/poor-risk risk cytogenetics Continue Clinical trial with novel cytogenetics hypomethylating agent(s) or consider therapy until loss of cytotoxic therapy or response/progression best supportive care **Immediate** Intensive, AML-type hypomethylating induction agent-based therapy chemotherapy until time of HCT Suitable donor Suitable donor Suitable donor not identified identified not identified Continue Monitor, hypomethylating consider post-**HCT** therapy until loss of remission response/progression therapy


Hypomethylating Agents

- Azacitidine and decitabine
 - Favorable toxicity profile
 - Outpatient administration
 - Delay progression of MDS to AML
 - Shown survival advantage over conventional care (azacitidine)

AZA-001 Randomization Schema


AZA-001 Overall Survival


Randomized Phase II Study of Alternative AZA-002 Dose Schedules

Study Design (N = 151)

AZA-002: Hematologic Improvement



^a Patients counted only once for best response in an improvement category.

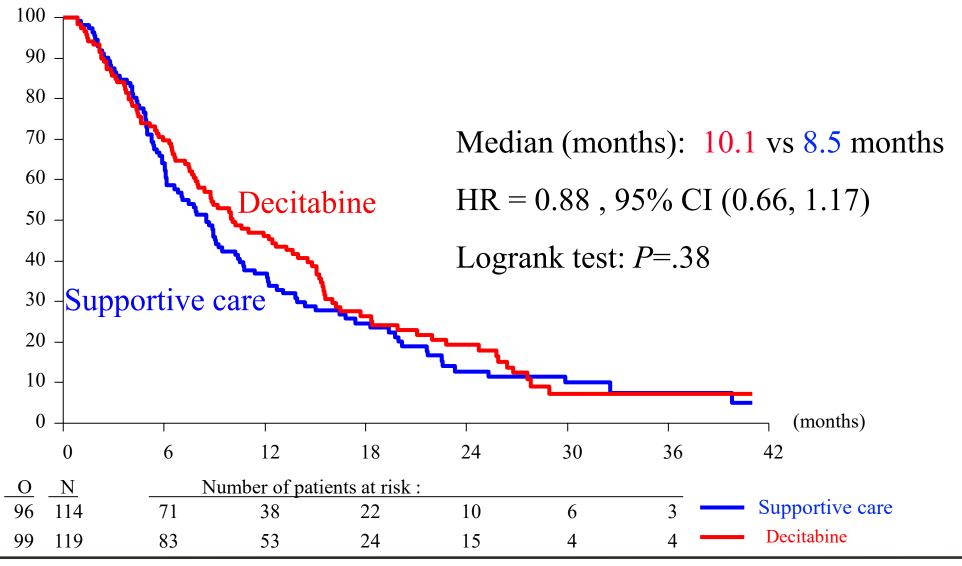
^b Minor improvement at top of HI columns.

Randomized Phase III Study of Low-Dose Decitabine for Patients With Higher-Risk MDS EORTC-06011

EORTC-06011 Reason for going off-protocol

	Supportive care N=114 (100%)	Decitabine N=119 (100%)
Normal completion	19 (16.7%)	31 (26.1%)
Progression of disease	55 (48.2%)	40 (33.6%)
Toxicity	NA	19 (16.0%)
Prolonged cytopenia	NA	5 (4.2%)
Death	17 (14.9%)	11 (9.2%)
Refusal	14 (12.3%)	6 (5.0%)
Protocol violations	5 (4.4%)	3 (2.5%)
Ineligible	1 (0.9%)	1 (0.8%)
Other	3 (2.6%)	3 (2.5%)

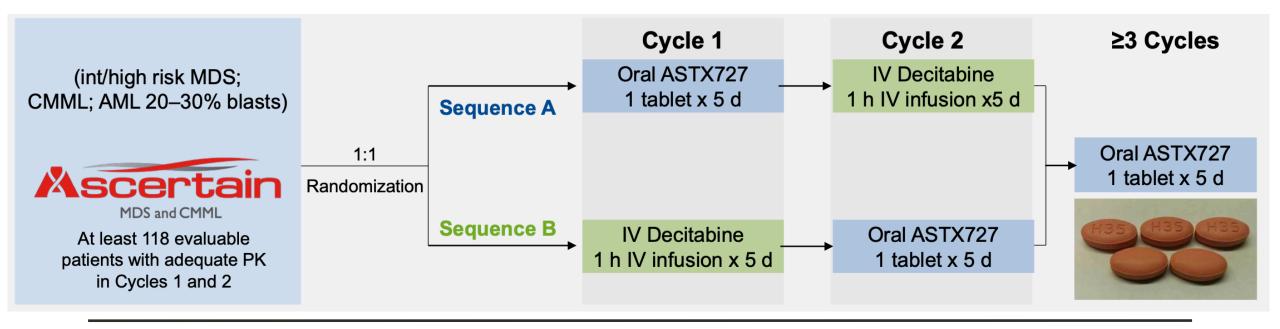
Median time to off-study:


112 days

VS

180 days

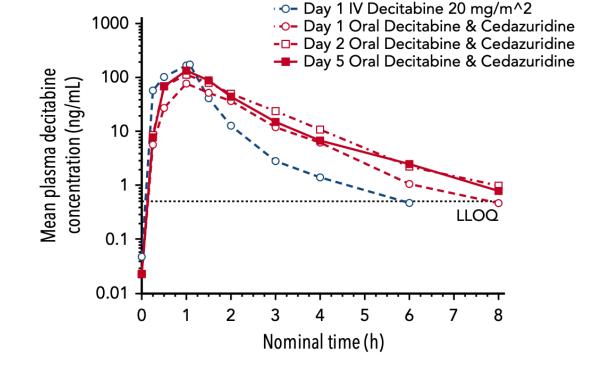
EORTC-06011 Overall Survival



No survival advantage for DAC?

- Number of treatments courses given
- Different populations and comparator groups
 - MDS duration
 - Cytogenetic risk groups
 - Performance status
- How the drug was given
- There is a true difference between aza and dac

Oral Decitabine (Approval 7/7/2020)


- 35mg decitabine/100mg cedazuridine vs deciatibine (20 mg/m²)
 - ASTX727-01-B (N=80) Phase 1/2
 - ASTX727-02 (N=133) Phase 3

Oral Decitabine

- ASTX727-01-B
 - CR rate of 18% (95% CI, 10%-28%)
 - Median duration of CR 8.7 (range, 1.1-18.2) months
- ASTX727-02 (Ascertain)
 - CR rate of 21% (95% CI, 15%-29%)
 - Median duration of CR 7.5 (range, 1.6-17.5) months
- Both studies showed similar:
 - Side effect profiles/toxicity
 - PK data between oral and IV formulation

 Comparison of disease response between oral and IV was not possible because all patients received decitabine-cedazuridine starting in cycle 3

Treatment of Higher-risk MDS

Patient diagnosed with higher-risk MDS per IPSS (score ≥1.5) or IPSS-R (score >4.5)

Declines HCT and/or unsuitable donor, poor HCT CI score

Immediate hypomethylating agentbased clinical trial or monotherapy x >6 cycles

Hematologic improvement or better

> Continue hypomethylating therapy until loss of response/progression

Clinical trial with novel agent(s) or consider cytotoxic therapy or best supportive care

No response

Initiate search for MRD or 8/8 URD

Older patient, lower blast percentage, intermediate/poor-risk cytogenetics

Desires HCT, good HCT CI

score

Younger patient, higher blast percentage, goodrisk cytogenetics

Immediate hypomethylating agent-based therapy until time of HCT

Intensive, AML-type induction chemotherapy

Suitable donor not identified

Continue hypomethylating therapy until loss of response/progression Suitable donor identified

HCT

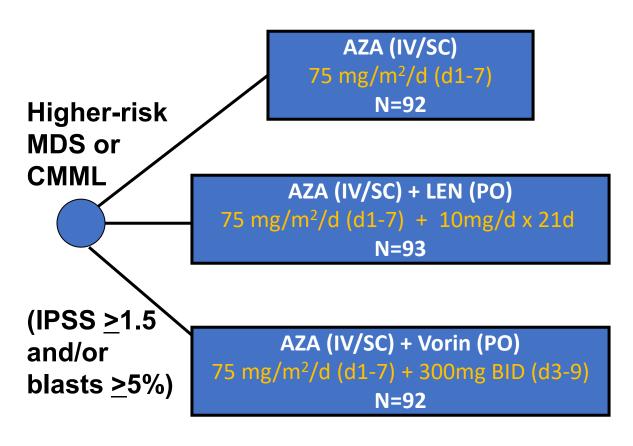
Monitor.

consider postremission therapy

Suitable donor

not identified

Oral C-DEC?


@AaronGerds
Cleveland Clinic

!WARNING!

- Oral azcitidine (ONUREG®) is not IV/SQ azacitidine (Vidaza®)
- Oral aza is approved for maintenance therapy in AML
- There is a randomized phase III trial in lower-risk MDS
 - 216 patients with lower-risk MDS and RBC transfusion—dependent anemia.
 - RBC transfusion independence was achieved in 30.8% of the oral azacitidine group vs 11.1% of the placebo group (P = .0002)
 - Early excess death was observed in the oral azacitidine group in association with baseline severe neutropenia

North American Intergroup Randomized Phase 2 MDS Study S1117: Study Design

Groups: SWOG, ECOG, Alliance, NCIC

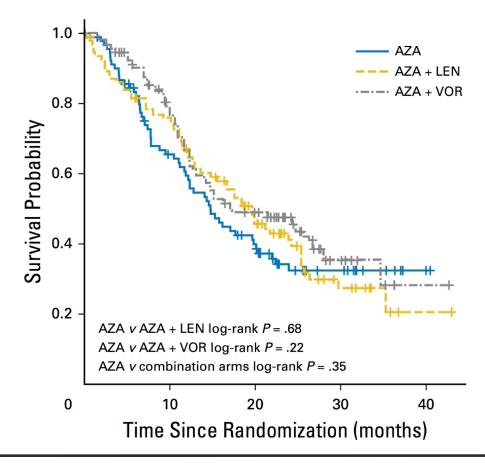
Total Sample Size: 282/277

Primary Objective: 20% improvement of ORR (CR/PR/HI) based on 2006 IWG Criteria

Secondary Objectives: OS, RFS, LFS

Power 81%, alpha 0.05 for each combo arm vs. AZA

06/2012 - 06/2014



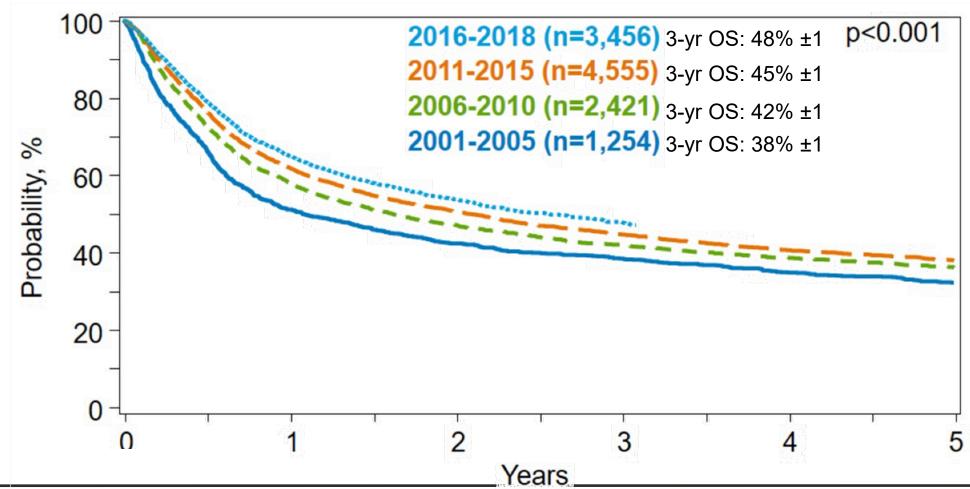
North American Intergroup Randomized Phase 2 MDS Study S1117: Response

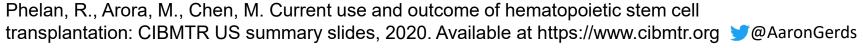
Response Variable	AZA	AZA+LEN (P-value vs. AZA)	AZA+VOR (P-value vs. AZA)	Total n=277
Median Tx Duration (Wks)	25	24	20	22
Overall Response Rate (%)	38	49 (.16)	27 (.16)	38%
CR/PR/HI (%)	24/0/14	24/1/ <mark>25</mark>	17/1/9	22/1/16%
CMML ORR (%)	5 (28)	13 (68) (.02)	2 (12) (.41)	37%
ORR Duration (median)	10 months	14 months (.41)	15 months (.31)	14 months

North American Intergroup Randomized Phase 2 MDS Study S1117: OS All Patients

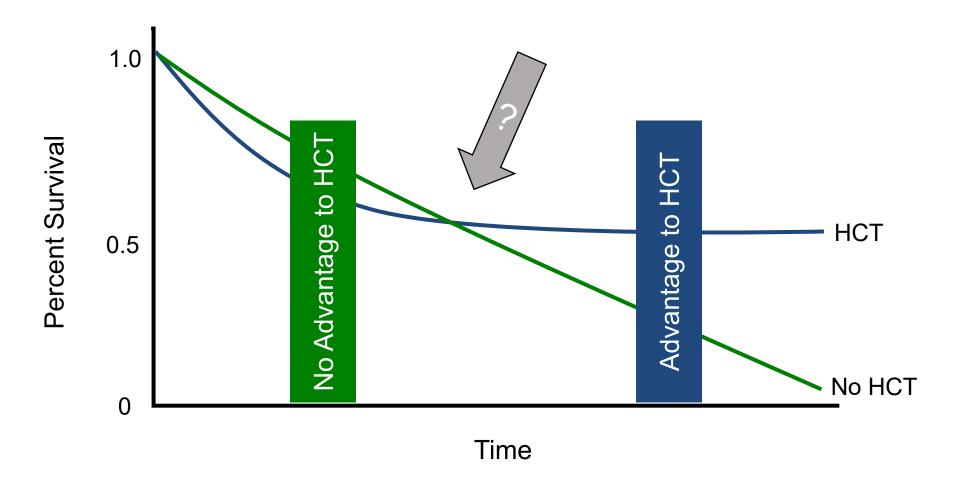
Azacitidine and...

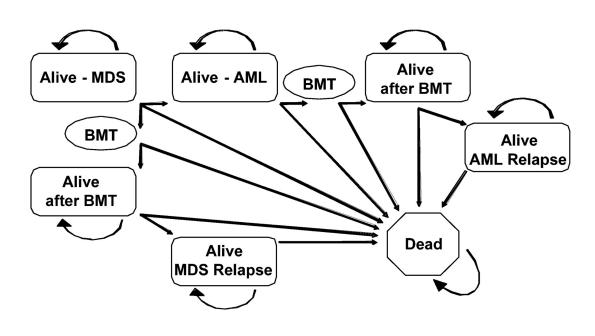
Venetoclax


- Phase 1b in78 patients with treatment-naïve MDS
- Median age was 70 years, and 91% had an ECOG score of 0 to 1
- Serious AEs were reported in 73% of patients. These included neutropenia (49%), pneumonia (6%), and diverticulitis (5%)
- 39.7% CR and 39.7% with marrow CR
- Median time to CR was 2.6 months
- Median duration of response was 12.9 months
- Phase III, placebo-controlled VERONA trial is ongoing
- Enasidenib/Ivosidenib
- Others!



Blood and Marrow Transplantation for MDS


OS after HCT for MDS, 2001-2018



Allogeneic HCT for MDS

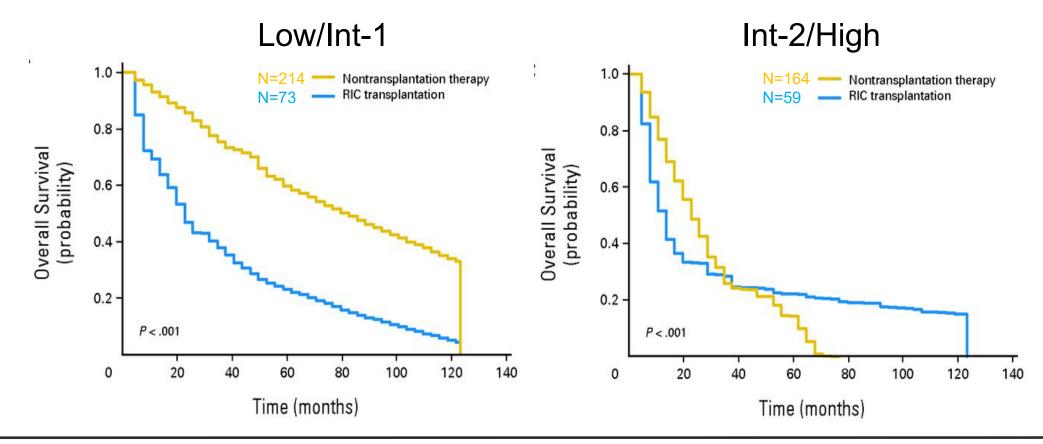
Markov Modeling in HCT

- Retrospective comparison
 - All Primary MDS
 - Marrow Grafts
 - HLA-identical donors
 - Myeloablative
- 184 Delayed transplant MDS
- 260 Transplant MDS at time of diagnosis
- 230 Transplant at progression to tAML

Decision Analysis

Estimated Life expectancy (years) after HCT for MDS (age < 60)

		Immediate HCT	HCT in 2 years	HCT at progression
IPSS RISK	Low	6.51	6.88	7.21
	Int-1	4.61	4.74	5.16
	Int-2	4.93	3.21	2.84
	High	3.20	2.75	2.75


Decision Analysis

Estimated Life expectancy (years) after RIC-HCT for MDS (age ≥ 60)

			Non-HCT	Early HCT
IPSS RISK	Low/Int-1	Overall LE	6.42	3.17
		QALE: TI	5.42	2.92
		QALE: TD	3.83	2.92
		Overall LE	0.24	3.00
=	Int-2/High	QALE: HR-MDS	1.25	2.75
		QALE: GvHD	1.25	1.83

Timing of HCT by IPSS Using RIC

- de novo MDS 60-70 years of age
- Survival measured from start of therapy
- HLA Matched Donors
- Bu x 2 days or 2-4 Gy TBI (no T-cell depletion)

Summary – Myelodysplastic Syndromes

- 1. Organization, in general
- 2. Diagnosis and Classification
- 3. Epidemiology
- 4. Pathogenesis
 - a. Clonal Process
 - b. Secondary MDS
- 5. Risk stratification
 - a. IPSS-R
- 6. Treatment of Lower-risk MDS
 - 1. ESAs
 - 2. IMIDS
 - 3. Immunosuppressive therapy

- 7. Treatment of Higher-risk MDS
 - 1. Hypomehtylating agents
- 8. Transplantation for MDS
- 9. Discussion

Discussion

Thanks!

Mikkael Sekeres, MD, MS
Jaroslaw Maciejewski, MD, PhD
Sudipto Mukherjee, MD, PhD
Hetty Carraway, MD, MBA
Anjali Advani, MD
Matt Kalaycio, MD
Ronald Sobecks, MD
Betty Hamilton, MD
Aziz Nazha, MD
Bhumika Patel, MD
Yogen Saunthararajah, MD
Babal Jha, PhD

Tracy Cinalli, RN Chondra Robinson, RN **Christine Cooper, RN** Andrea Smith, RN **Eric Parsons, RN** Samjhana Bogati, RN Yolanda Curry, RN Megan Nelson, RN Rachel Bordwell, RN, NP Raychel Berardinelli, RN, NP Kaylee Root, BA Jodi Campo, RN, NP Barb Tripp, RN, NP Alicia Bitterice, RN, NP Meghan Scully, RN, NP Ben Pannell, BA Eric Wiedenfeld, BA Matthew Polefko, BA Allison Unger, BA George Lucas, BA Abigail Snow, BA Enhxi Myrtaj, BA

Diane Banks, BA
Katarina Paulic, BA
John DeSamito, MD
Renee Gagnon, BA
Olivia Kodramaz
Caitlin Swann, PharmD
Madeline Waldron, PharmD
Kelly Gaffney, PharmD
Jenna Thomas, PharmD

And Our Patients!!!

