Acute Lymphoblastic Leukemia in Adults

Ryan Cassaday, MD cassaday@uw.edu Comprehensive Heme/Onc Review Course 2021

Fred Hutch · Seattle Children's · UW Medicine

Outline & Objectives

- Epidemiology and Classification
- Risk Stratification
- Front-line Treatment and Role of HCT
- Relapsed/Refractory Disease
 - Newly-Approved Therapies

Epidemiology and Classification

Leukemia in the U.S., 2021

	New Cases	Deaths
ALL	5,690	1,580
CLL	21,250	4,320
AML	20,240	11,400
CML	9,110	1,220
Other	4,800	5,140
Total	60,530	23,100

Siegel, et al. CA Cancer J Clin 2021;71:7-33.

Acute Leukemia Incidence by Age

Adult ALL: Lineage Assignment

- B-lineage:
 - Strong CD19 with ≥ 1 of the following also strong: CD79a, cytoplasmic CD22, or CD10

OR

- Weak CD19 with ≥ 2 of the following also strong: CD79a, cytoplasmic CD22, or CD10
- T-lineage:
 - Strong cytoplasmic CD3 (with antibodies to CD3 ϵ chain) OR
 - Strong surface CD3

Risk Stratification

Classical Risk Factors at Presentation

• Age > 35

- High WBC
 - B-lineage: >30,000
 - T-lineage: >100,000

Major Cytogenetic Categories in Adult ALL

t(9;22) (Ph+)	19%
Ph-	81%
Favorable	
High hyperdiploidy	10%
<u>Unfavorable</u>	
t(4;11)	7%
-7	6%
+8	10%
Low hypodiploidy/near triploidy	4%
Complex	5%
iAMP21	RARE
	Wetzler et al Rio

Wetzler, et al. Blood. 1999;11:3983-39. Moorman, et al. Blood. 2007;109:3189-97.

Early T-Cell Precursor (ETP)-ALL

- Distinct immunophenotype
 - Cytoplasmic CD3
 - Lack CD1a and CD8
 - Weak or absent CD5
 - Often co-express stem cell or myeloid markers → "subset" of biphenotypic leukemia
- Felt to have a relatively poor prognosis

Conceptualization of Measurable Residual Disease (MRD)

Bruggemann, et al. Blood. 2012;107:4470-81.

Measurement of MRD in ALL

Target	Method	% Pts.	Sensitivity	Pros	Cons
IG and TCR gene rearrangements	RQ-PCR	~90%	0.01-0.001	Sensitive	Laborious
Fusion transcripts (e.g. <i>, BCR-ABL1</i>)	RQ-PCR	~40%	0.01-0.001	Sensitive	Applicability
Leukemia immunophenotype	MFC	~95%	0.01	Rapidly Applicable	User expertise
IG and TCR gene rearrangements	NGS/HTS	Unk	0.00001	Most Sensitive	Role still unclear

Modified from Bruggemann, et al. Blood. 2012;107:4470-81.

NILG-ALL 09/00: Importance of MRD Status

In a multivariate analysis of patients with complete data (n = 93), only two factors were predictive of relapse:

- MRD^{pos}
- High WBC

Bassan, et al. Blood. 2009;113:4153-62.

MRD Predicts Outcome after Allo HCT: The Fred Hutch Experience

Non-Myeloablative HCT

Outcomes are anecdotally abysmal if MRD \geq 0.01%

Ram, et al. Haematologica. 2011;96:1113-20.

Bar, et al. Leuk Res Treatment. Epub 2014 Mar 23.

Risk Stratification in ALL: Summary

Old School

Age WBC at Diagnosis Cytogenetics

New School

MRD Molecular subclassification

WBC at Diagnosis

Cytogenetics

Front-Line Therapy

Contemporary Treatment

Group	Ν	Median age (range)	Ph+ (%)	T-cell (%)	CR	DFS at 3-9 yrs (%)
UKALL XII/ ECOG2993	1826	31 (15-65)	19	20	91	38
CALGB 19802	163	41 (16-82)	18	_	78	35
GIMEMA ALL 0288	778	27.5 (12–60)	22	22	82	29
GMALL 05/03	1163	35 (15–65)	24	24	83	35
GOELAMS 02	198	33 (15–59)	22	21	86	41
Hyper-CVAD	288	40 (15–92)	17	13	92	38
JALSG-ALL93	263	31 (15–59)	22	21	78	30
LALA-94	922	33 (15–55)	23	26	84	36

Rituximab Improves Outcomes in CD20+ B-ALL: GRAALL-2005/R

- CD20 positivity = expression on \ge 20% of blasts
- More patients in R group received HCT (34% vs 20%)
- Adjust for HCT in CR1 \rightarrow R group had significantly better EFS <u>and</u> OS

Maury, et al. New Engl J Med. 2016;375:1044-53.

Adult ALL: CNS Prophylaxis

- Without prophylaxis risk of CNS relapse is 35%
- With prophylaxis risk is 10%
- Risk factors include
 - **↑** WBC
 - 1 LDH
 - T-cell or mature B-cell phenotype (i.e., Burkitt)
- ? Need for cranial XRT if IT MTX is used

Post-Remission Therapy of Adult ALL

 Intensive multi-drug consolidation followed by maintenance chemotherapy spanning 2+ years

OR

Allogeneic hematopoietic cell transplantation

MRC UKALL XII/ECOG2993

Rowe, et al. Blood. 2005;106:3760-7. Goldstone, et al. Blood. 2008;111:1827-33.

UKALL XII / ECOG2993: Overall Survival

Goldstone, et al. Blood. 2008;111:1827-33.

UKALL XII/ECOG2993: Less Relapse but More NRM with Allo

YEARS

	3 months	6 months	1 year	2 years
High Risk				
Donor	1.5	7.3	26.0	35.8
No Donor	1.2	2.0	10.3	13.6
Standard Risk				
Donor	0.4	3.4	17.6	19.5
No Donor	0.3	1.2	5.3	6.9

Goldstone, et al. Blood. 2008;111:1827-33.

Donor vs No-Donor Meta-Analysis: Ph- ALL in CR1

	Deaths/Patients		Statistics		O.R. & 99% CI	
Stratum	Donor	No donor	(O-E)	Var.	(Donor : N	lo donor)
Age <35	337/731	717/1303	-55-9	241.8		0.79 (0.67, 0.94)
Age 35+	229/366	359/562	0.8	135.8		1.01 (0.81, 1.26)
WBC <10	219/458	445/804	-25.2	151.7		0.85 (0.69, 1.04)
WBC 10-29	97/207	214/373	-19.2	70.0	┼═┓╴	0.76 (0.56, 1.03)
WBC 30-99	118/215	212/368	-6.4	75·1	-#	0.92 (0.68, 1.24)
WBC 100+	121/196	186/284	-6-4	71.0	_	0.91 (0.67, 1.24)
Standard risk	369/770	755/1358	-45-1	257.7		0.84 (0.72, 0.99)
High risk	192/319	315/496	-12.8	118.3		0.90 (0.71. 1.14)
Overall	566/1097 (51.6%)	1076/1865 (57.7%)	-53-4	380·1	\$	0.87 (0.79, 0.96) 2P = 0.006
*- 99% or <>>	95% limits			0.2	0-6	1-7 5-0
					Donor better	No donor better

Test for heterogeneity (18 groups): $\chi^2_{17} = 16.8$; P = 0.5

Only sub-group with improved mortality with allogeneic HCT = Age < 35

Modified from Gupta, et al. Blood. 2013;121:339-50.

Comparison of RIC vs MAC: EBMT

- Characteristics:
 - Any ALL in CR1 or
 CR2
 - 45 years or older
 - MSD PBSCT or BMT from 1997-2007
- 127 RIC's vs 449 MAC's

Mohty, et al. Blood. 2010;116:4439-43.

UKALL XII/ECOG2993: Auto x 1 vs POMP x 2 years

Goldstone, et al. Blood. 2008;111:1827-33.

Summary: Role of HCT in CR1 for ALL

Level I evidence supporting matched related-donor myeloablative allogeneic HCT in CR1 for adults with ALL (UKALL XII/ECOG 2993), though overall benefit is modest

Autologous HCT is not superior (and is likely inferior) to prolonged maintenance therapy

Reduced-intensity/non-myeloablative allogeneic HCT may be reasonable in pts ineligible for high-intensity conditioning, based on retrospective/registry data

Improved risk-stratification methods can help determine which patients are most likely to benefit from allogeneic HCT in CR1 (particularly MRD)

MRD and Transplant for Ph-, KMT2A- ALL: The Cassaday Approach

 * Assuming (1) reliable MRD testing and (2) patients can complete a *relatively* full course of treatment and (3) remain MRD negative
 ^ Assuming patients are eligible for and interested in HCT

Specific Scenarios: Adolescents and Young Adults (AYA)

EFS of Young Adults (16-21 yo) on CCG and CALGB Trials for ALL (1988-1995)

Stock, et al. Blood. 2008;112:1646-54.

Pediatric vs. Adult Therapy for ALL: Reasons for Different Outcomes

Therapies are different

Doctors are different

Patients are different

EFS by MRD Status: C10403

- Of 263 patient who achieved remission, only 20 (8%) underwent HCT in CR1
 → reserve HCT for MRD+?
- Increased BMI and Ph-like associated with worse outcome

Stock, et al. Blood. 2019;133:1548-59.

Specific Scenarios: Ph+ ALL

The Philadelphia Chromosome: t(9;22) Translocation

Management of Ph+ ALL: Summary

The basics:

• Include TKI with chemotherapy

Controversial topics:

- Is one particular TKI superior?
- How much chemo is necessary?
- HCT in CR1 for all patients?

SWOG 0805: HyperCVAD + Dasatinib

- All patients with matched donor were "encouraged" to undergo allogeneic HCT followed by dasatinib maintenance
- If no HCT, dasatinib-based maintenance therapy

Lower-Intensity Options: Likely Safer, but Less Effective?

GIMEMA LAL1205: Dasatinib + Prednisone EWALL-PH-01:

Dasatinib + Low-Intensity Chemo

Foa, et al. Blood. 2011;118:6521-8.

Rousselot, et al. Blood. 2016;128:774-82.

T315I mutations at relapse are COMMON

Specific Scenarios: ALL In The Elderly

Outcomes with Different Approaches for Older Patients with ALL

Approach	N	CR Rate	Early Death Rate	Survival (Median/2-yr)
Population-Based Studies	N/R	40%	N/R	6-30%
Palliative Treatment	94	43%	24%	7 mo
Intense chemotherapy designed for younger adults	519	56%	23%	14%
Prospective studies specifically for older adults	447	71%	15%	33%

Author's Conclusion: "Palliative, supportive treatment in acute leukemia does not, in general, reduce the risk of early death and does not improve quality of life compared to moderate intensive chemotherapy."

Reviewed by Gökbuget. Blood. 2013;122:1366-75.

Relapsed/Refractory ALL

Outcome of Relapsed ALL: UKALL XII/ECOG2993

Modified from Fielding, et al. Blood. 2007;109:944-50.

HCT in MRD^{Neg} CR2+ Comparable to MRD^{Neg} CR1

Patients who achieve MRD^{Neg} CR1 are significantly more likely to achieve MRD^{Neg} CR2+ if they relapse.

Revised from Cassaday, et al. Leuk Lymphoma. 2016;57:2109-118.

Approvals for Relapsed/Refractory ALL

- Purine analogues
 - Nelarabine (T-ALL)
 - Clofarabine (age ≤ 21; ≥ 2 prior therapies)
- Liposomal vincristine (> 2 prior therapies; Ph- only)
- *ABL* kinase inhibitors: ponatinib (Ph+ with T315I or no other option)
- CD3-CD19 BiTE: blinatumomab
- CD22 antibody-drug conjugate: inotuzumab ozogamicin
- CD19 CAR-T cells: tisagenlecleucel (age ≤ 25 ; refractory or $\geq 2^{nd}$ relapse)

Blinatumomab = Bispecific T-Cell Engager

Kapoor, et al. Clin Cancer Invest J. 2014;3(6):577-8.

Blinatumomab for Rel/Ref B-ALL

- Given as 24-hr continuous infusion: 4 weeks on, 2 weeks off
- Side-Effects: neurologic toxicity, cytokine release syndrome

Kantarjian, et al. New Engl J Med. 2017;376:836-47.

Blinatumomab for MRD

- 78% achieve complete MRD response
- CRS and severe neurotoxicity are uncommon (~10%)
- If no HCT after complete MRD response to blin, 30% alive and in remission (median f/u 5 years)

Gökbuget, *et al. Blood*. 2018;131:1522-31. Gökbuget, *et al. Leuk Lymphoma*. 2020;61:2665-73.

Inotuzumab Ozogamicin = Anti-CD22 ADC

Thomas. Blood Lymph Cancer: Targets and Therapy. 2014;4:1-8.

Inotuzumab Ozogamicin for Rel/Ref B-ALL

- Dosing:
 - 1-hr IV infusion
 - Days 1, 8, &15
 - Every 21 (C1) to 28 (C2+) days
- Side effects:
 - SOS/VOD
 - Elevated ALT/AST
 - Cytopenias

Kantarjian, et al. New Engl J Med. 2016;375:740-53.

Tisagenlecleucel = CD19 CAR-T Cells

Maus & June. *Clin Cancer Res.* 2016;22(8):1875-84.

Tisagenlecleucel in Children and Young Adults with Rel/Ref B-ALL

- Multicenter, single-arm phase II trial (ELIANA)
- 107 pts screened → 92 enrolled
 → 75 treated
 - Median age = 11 yr
 - Median prior therapies = 3 (range: 1-8)
- CR/CRi rate within 3 mo:
 - Treated: 81% (all MRD^{Neg})
 - ITT: 66% (all MRD^{Neg})
- Toxicity:
 - 77% developed CRS
 - 47% admitted to ICU
 - 13% had Grade 3 neuro events
 - 19 deaths, 4 <u>not</u> due to relapse

Maude, et al. New Engl J Med. 2018;378:439-48.

KTE-X19: An Approved CAR-T for Adult B-ALL?

- 71 enrolled, 65 had manufactured product, 55 treated (attrition rate = 23%)
- 39 treated patients (71%; 95% CI = 57-82%) achieved remission, 38 (97%) were MRD-
- Median duration of remission = 12.8 mo (95% CI = 8.7-NR)
- 10 (18%) underwent allogeneic HCT after KTE-X19 infusion
- Grade 3+ CRS = 24%; Grade 3+ neurologic events = 25%; treatment-related death = 4%

Shah, et al. Lancet. E-pub online: 4 June 2021.

ALL in Adults: Summary

- Disease risk primarily defined by WBC, cytogenetics, and response to therapy (MRD)
- Several standard options for front-line therapy
- Allogeneic HCT in CR1 reserved for high-risk patients—MRD may be best tool to determine this
- Single-agent options for relapsed/refractory disease:
 - B-ALL: inotuzumab ozogamicin, blinatumomab (including MRD), tisagenlecleucel
 - T-ALL: nelarabine
 - Ph+: ponatinib
 - Ph-: liposomal vincristine

THANK YOU

Seattle Cancer Care Alliance

Fred Hutch · Seattle Children's · UW Medicine