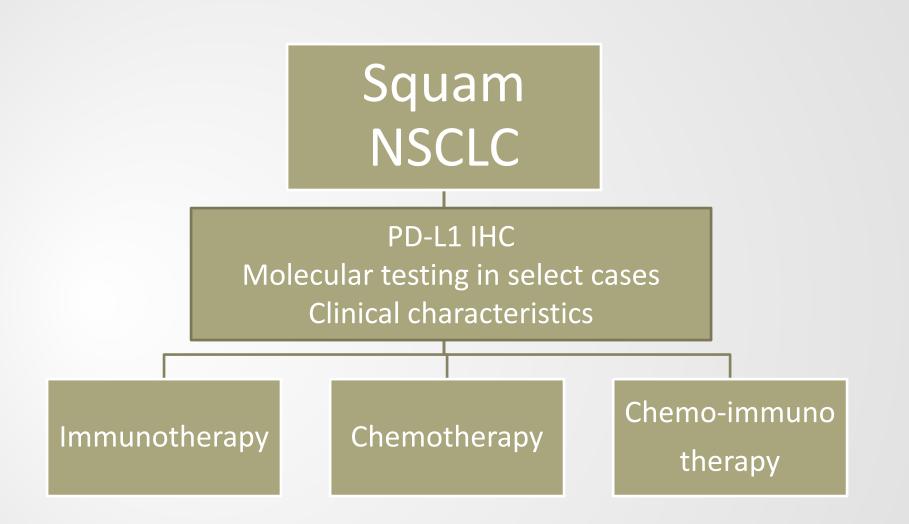
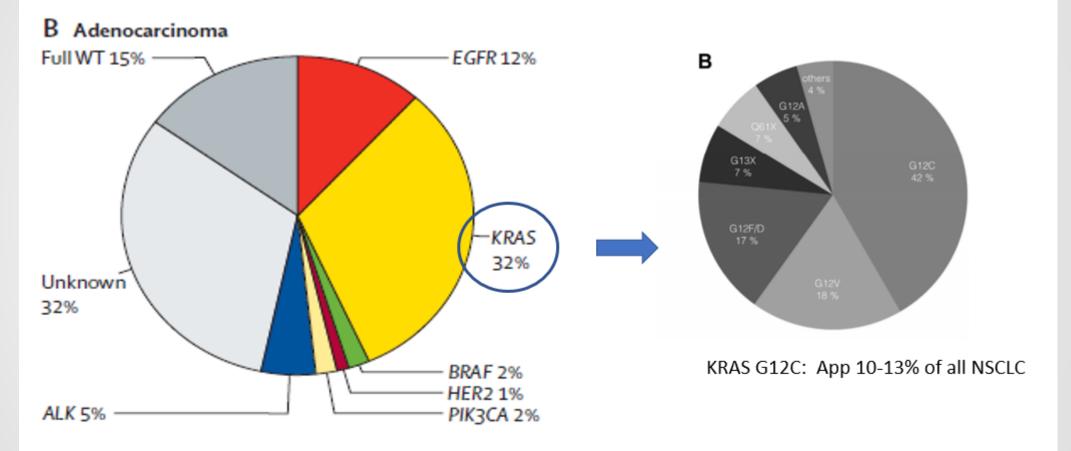

Comprehensive Hematology & Oncology Review : Metastatic NSCLC


Christina Baik MD, MPH University of Washington Seattle Cancer Care Alliance Fred Hutchinson Cancer Research Center

July 2021

Outline

- Targeted therapy
- Immune checkpoint inhibitor therapy
 - Monotherapy
 - Chemo-immunotherapy
- Chemotherapy



TARGETED THERAPY

Actionable molecular subtypes in lung adenocarcinoma (i.e. available FDA approved drugs in June 2021)

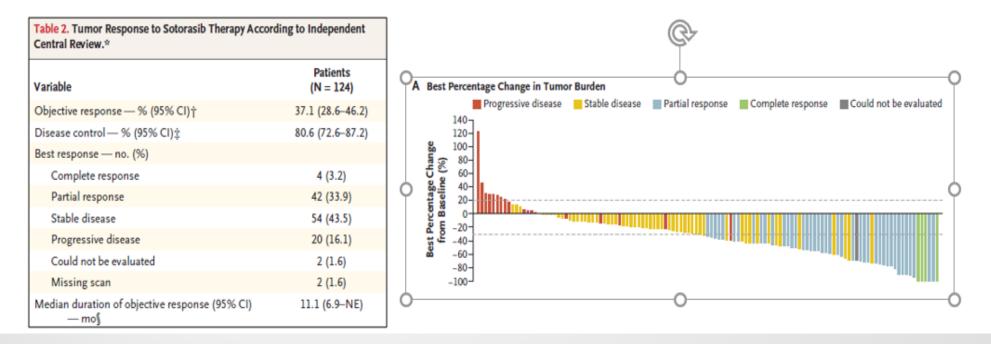
Alteration	Prevalence (estimates)
EGFR mutations, non-exon20 ins	15-20%
EGFR exon 20 ins	2-3%
KRAS G12C	10-13%
ALK rearrangement	3-5%
ROS1 rearrangement	1-2%
BRAF V600E mutation	1-2%
NTRK rearrangement	<1%
MET exon 14 skipping mutation	3-4%
RET rearrangement	1-2%

KRAS G12C

Barlesi et al. Lancet 2016;387:1415-26 Hong et al. NEJM 2020;383:1207 Scheffler et al. JTO 2019; 14(4):606-616

KRAS G12C

No targeted therapies for KRAS despite decades of investigation in KRAS (lack of an ideal small molecule binding pocket, high GTP affinity)

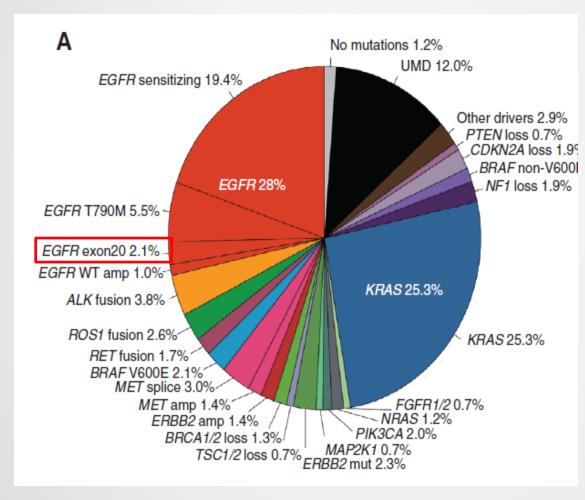

- New development in G12C
 - Glycine \rightarrow cysteine mutation favors GTP-bound KRAS (active conformation)
 - Discovery of a "switch-II pocket" at GDP-inactive state near cysteine residue
 - Several G12C inhibitors under investigation: Covalently binds to cysteine and switch-II pocket → maintains in the inactive GDP-bound conformation

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Sotorasib for Lung Cancers with KRAS p.G12C Mutation

F. Skoulidis, B.T. Li, G.K. Dy, T.J. Price, G.S. Falchook, J. Wolf, A. Italiano, M. Schuler, H. Borghaei, F. Barlesi, T. Kato, A. Curioni-Fontecedro, A. Sacher, A. Spira,
S.S. Ramalingam, T. Takahashi, B. Besse, A. Anderson, A. Ang, Q. Tran, O. Mather, H. Henary, G. Ngarmchamnanrith, G. Friberg, V. Velcheti, and R. Govindan



Skoulidis et al. NEJM June 2021

KRAS G12C

- Several G12C inhibitors in development
 - Adagrasib / MRTX849 (n=79): RR 45%, DCR 96% (Janne *et al*. LBA-03. EORTC-NCI-AACR, Oct 2020)
- Combinations are being evaluated: MEK inhibitor, immune checkpoint inhibitor, SHP2 inhibitor, chemotherapy, etc
- What about non-G12C? Various approaches being evaluated (select):
 - MEK inhibition with SHP2 inhibition (NCT03989115)
 - FASN (Fatty acid synthase) inhibitor, TVB-2640 (NCT03808558)
 - panKRAS inhibitor, BI1701963 (NCT04111458)
 - Cancer vaccines

EGFR exon 20 insertion

Amivantamab FDA approved in May 2021 Bispecific antibody (IV) to EGFR and MET

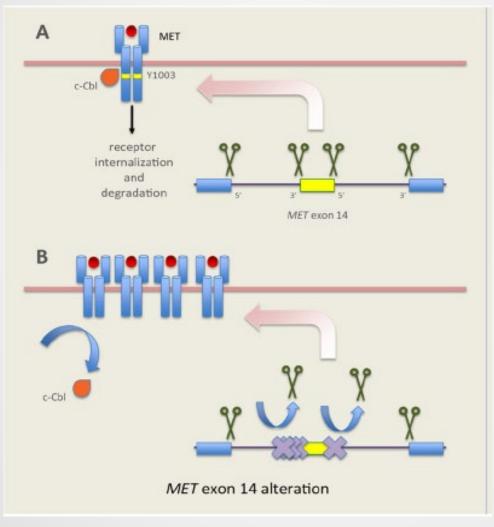
RR % (95%	% % CI)	mPFS, mos (95% Cl)	S	DOR, mos (95% Cl)	
40 (29-51)	8.3 (6.5-10).9)	11.1 (6.9-NR)	
		Toxicit	ies (%)		
	Rash			86	
	Infusion reaction			66	
	Paronychia			45	
	Hypoalbuminemia			27	
	Edema			18	

Jordan et al. Cancer Discovery 2017; 7(6):596-609 Sabari et al. WCLC 2021

MET exon14 skipping mutation

Clinical characteristics

3-4% of NSCLC


Older patients

 Often observed in patients with smoking history
 Present in 20-30% of sarcomatoid histology

Characteristic	<i>MET</i> Exon 14 (n = 28)
Median age (range), years	72.5 (59-84)
Sex	
Male	9 (32)
Female	19 (68)
Smoking history, pack-years*	
Never-smoker	10 (36)
≤ 10	3 (11)
> 10	15 (53)
Race	
White, non-Hispanic	28 (100)
Asian	0 (0)
Black	0 (0)
White, Hispanic	0 (0)
Unknown	0 (0)
Histology	
Adenocarcinoma	18 (64)
Pleomorphic with adenocarcinoma component	4 (14)
NSCLC, poorly differentiated	5 (18)
Squamous	0 (0)
Adenosquamous	1 (4)

Drilon et al. JTO 2017; 12(1):15-26 Awad et al. JCO 2016; 34:721-730

MET exon14 skipping mutation

Drilon et al. JTO 2017;12(1): 15-26

- cMET: Transmembrane receptor tyrosine kinase
- Binding to ligand results in receptor activation and cell survival and proliferation
- cMET is degraded when c-Cbl binds to exon 14 region and results in ubiquitination
- In MET exon14 skipping (splice) mutation, there is abnormal splicing resulting in skipping of exon 14 which is the site of c-Cbl binding → less degradation and sustained cMET activation

MET inhibitor: Capmatinib

	Previously treated (n=69)	Treatment naïve (n=28)
ORR % (95% CI)	41 (29-53)	68 (48-84)
DCR % (95% CI)	78 (67-87)	96 (82-100)
DOR months (95% CI)	9.7 (5.6-13)	12.6 (5.6-NE)

ORR, overall response rate; DCR, disease control rate; DOR, duration of response

Several other MET inhibitors under investigation: e.g. savolitinib

Most common treatment related AEs (≥10%, all grades), n (%)	All Patients N = 334	
	All Grade Grades 3/4	
Any	282 (84.4)	119 (35.6)
Peripheral edema	139 (41.6)	25 (7.5)
Nausea*	111 (33.2)	6 (1.8)
Increased blood creatinine [†]	65 (19.5)	0
Vomiting*	63 (18.9)	6 (1.8)
Fatigue	46 (13.8)	10 (3.0)
Decreased appetite*	42 (12.6)	3 (0.9)
Diarrhea	38 (11.4)	1 (0.3)

Garon et al. CT082 AACR 2020

MET inhibitor: Tepotinib

Patient characteristics (n=99)

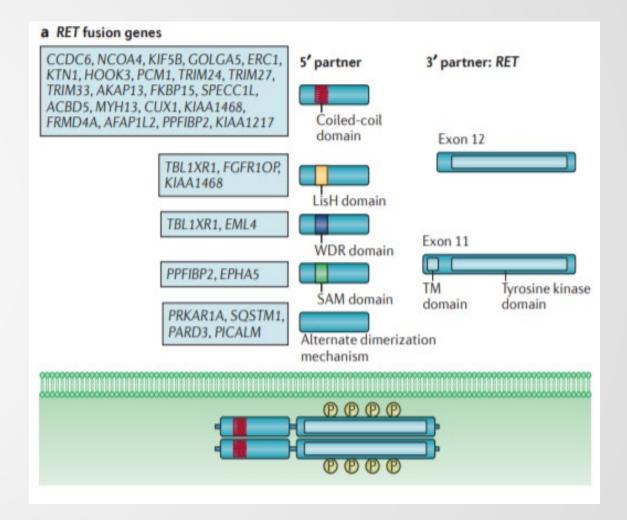
Median age: 74 (41-94)

45% never smokers

	Both tx naïve/prev treated
Overall response %	46 (36-57)
ODisease control rate %	89
DOR, <u>mos</u>	11 (7.2-NE)
CNS response %	55 (23-83), n=11

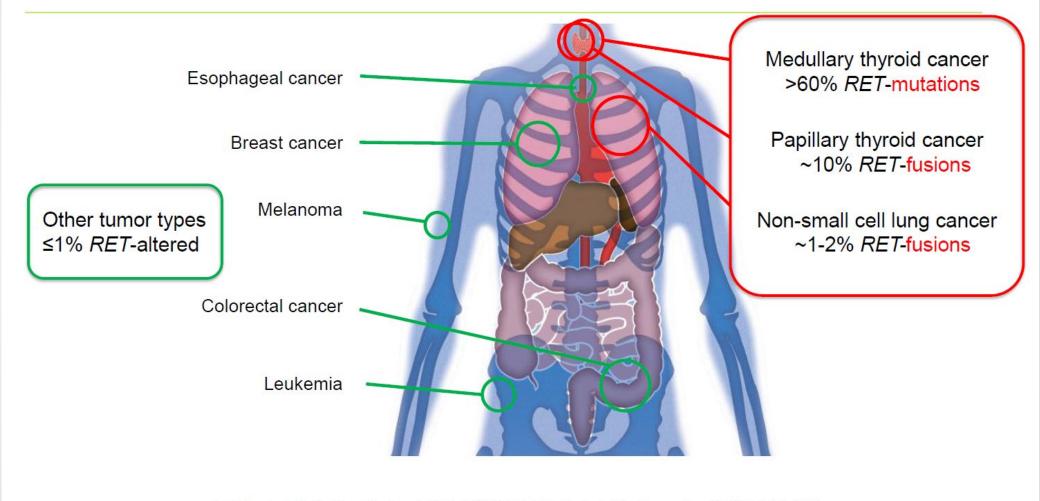
Most common treatment related Aes (%)		
	All	Grade 3 / 4
Peripheral edema	63	7
Nausea	26	1
Diarrhea	22	1
Elevated creatinine	18	1
Hypoalbuminemia	16	2
Amylase increase	11	2
Lipase	9	3

Paik et al. NEJM 2020; 383(1):931-943


RET rearrangement

Clinical characteristics

1-2% of all NSCLC
Mostly seen in never / minimal smokers


Mechanism of action

Receptor protein fuses with partner protein, inducing dimerization and activation

Drilon et al. Nat Rev Clin Onc 2018; 15:151

RET is a rare driver of multiple, diverse tumor types^{1,2}

1. Drilon A et al. Nat Rev Clin Oncol. 2018;15:151-67 2.Kato S, et al. Clin Cancer Res 2017;23:1988-1997.

Subbiah et al. AACR 2018

Selective RET inhibitors

	Selpercatinib	Pralsetinib	
Dose, frequency	Oral BID: >50kg 160mg, <50kg 120mg	Oral daily, 400mg	
Never smoker % (in trials)	72	62	
Median age (in trials)	61 (23-86)	60 (28-87)	
RR %, treatment naive	85 (70-94), n=34	66 (46-82), n=29	
RR %, previously treated	64 (54-73), n=105	65 (55-73), n=92	
Disease control rate %	93	90	
Progressive disease as best response %	4	4	
Duration of response, mos	17.5 (12-NR) in prev treated	NR (11.3-NR) overall	
CNS RR %	91 (59-100), n=11	56, n=9	
Adverse events <u>, ></u> grade 3	Hypertension (14%) Transaminitis (12-14%) Lymphopenia (6%)	Hypertension (10%) Neutropenia (10%) Anemia (8%)	
Drug discontinuation rate %	2	4	

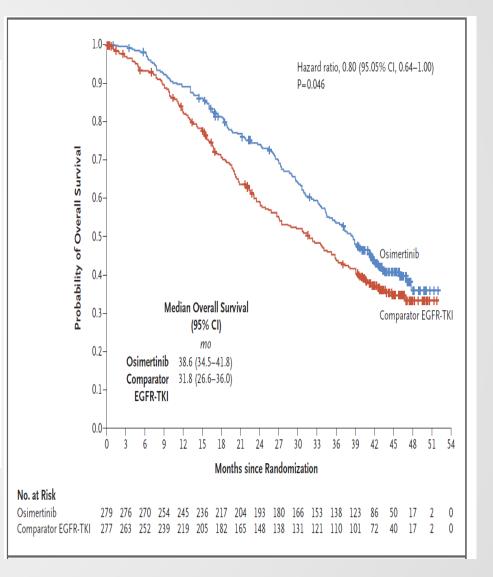
Drilon et al. NEJM 2020; 383(9):813-824 Gainor et al. ASCO 2020. Abs 9515

EGFR mutation+ NSCLC

- 10-15% NSCLC
- More common in never smoker, Asians, women
- Most common mutations: Exon 19 deletion and exon 21 L858R

FDA approved EGFR TKIs			
1 st generation	2 nd generation	<u>3rd generation</u>	
Erlotinib (+/- ramucirumab)	Afatinib	Osimertinib	
Gefitinib	Dacomitinib		

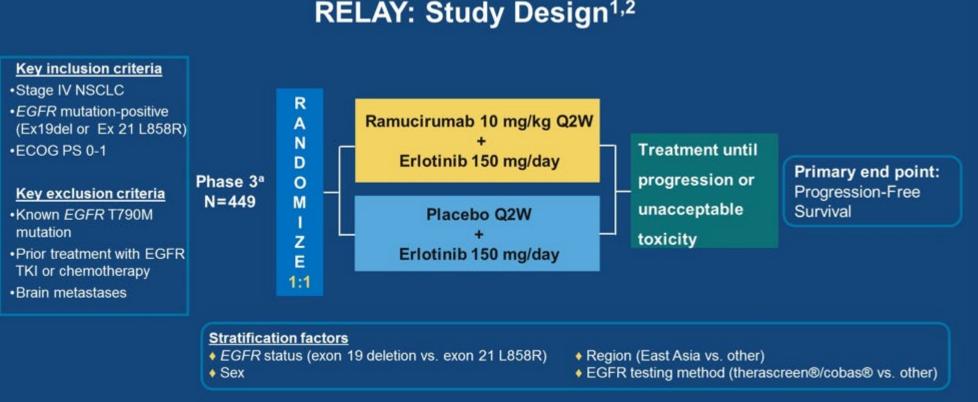
General principles


- TKI treatment is superior to platinum doublet in the first line setting
- Efficacy of 1st and 2nd gen TKIs are similar, although PFS with dacomitinib higher
- Using a 2nd gen TKI after a 1st gen TKI is not effective
- 50-60% of patients develop T790M resistance mutation after 1st and 2nd gen TKIs
- \rightarrow Only active FDA approved drug that is active against T790M is osimertinib

The NEW ENGLAND JOURNAL of MEDICINE

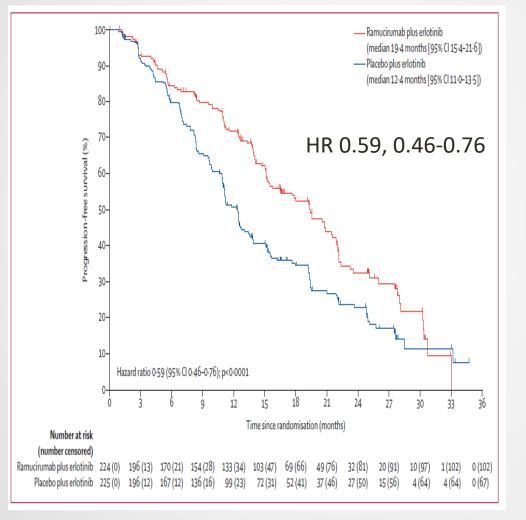
ORIGINAL ARTICLE

Overall Survival with Osimertinib in Untreated, EGFR-Mutated Advanced NSCLC


S.S. Ramalingam, J. Vansteenkiste, D. Planchard, B.C. Cho, J.E. Gray, Y. Ohe,
C. Zhou, T. Reungwetwattana, Y. Cheng, B. Chewaskulyong, R. Shah, M. Cobo,
K.H. Lee, P. Cheema, M. Tiseo, T. John, M.-C. Lin, F. Imamura, T. Kurata,
A. Todd, R. Hodge, M. Saggese, Y. Rukazenkov, and J.-C. Soria,
for the FLAURA Investigators*

Ramalingam et al. NEJM 2020; 382(1);41-50

Erlotinib + ramucirumah


Erlotinib and ramucirumab FDA approved in May 2020

RELAY: Study Design^{1,2}

Nakagawa et al. RELAY. Lancet Oncol 2019;20:1655-1669

Erlotinib + ramucirumab

Nakagawa et al.	RELAY. Lancet Oncol	2019;20:1655-1669
-----------------	----------------------------	-------------------

	Ram + E	Placebo + E
PFS (mos)	19.4 (15.4-21.6)	12.4 (11-13.5)
ORR %	76 (71-82)	75 (69-80)
DCR %	95 (92-98)	96 (93-98)
DOR (mos)	18 (13.9-19.8)	11.1 (9.7-12.3)

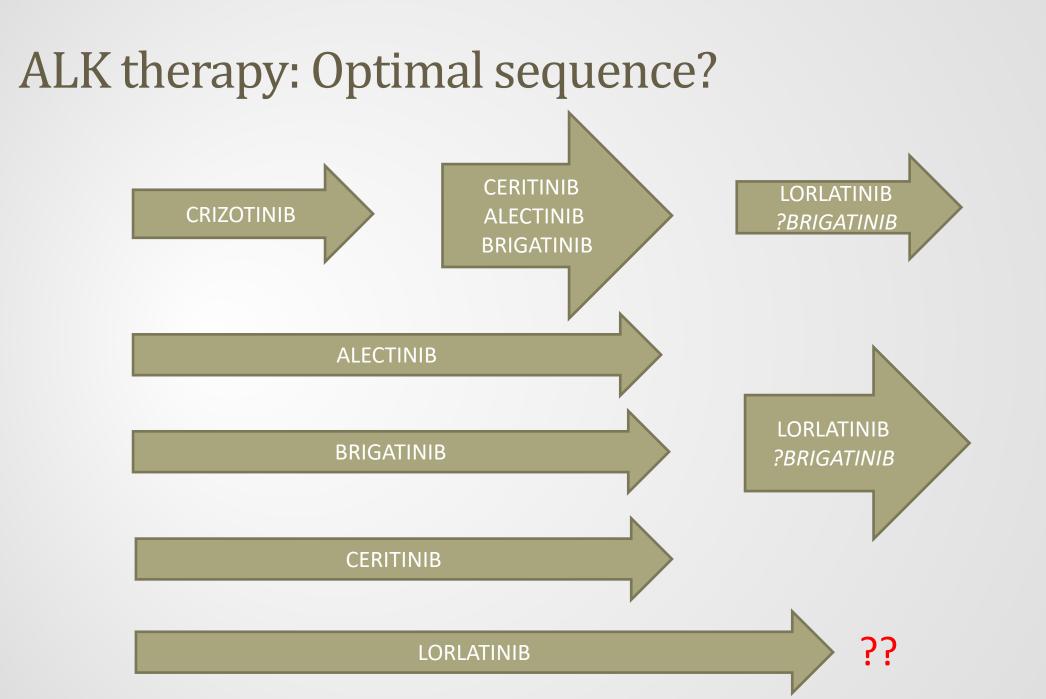
- Overall survival data immature
- There is a similar trial with bevacizumab which showed similar PFS benefit but no OS benefit (NEJ026, Maemondo et al. Abs 9506. ASCO 2020)

EGFR summary

- First line options:
 - Osimertinib upfront (has become the preferred approach in US)
 - Erlotinib +/- ramucirumab (no CNS met), afatinib, dacomitinib, gefitinib → osimertinib if T790M+ (about 50%)
- EGFR exon 20 insertion generally NOT sensitive to the above TKIs (trials ongoing with exon 20 targeting TKIs)
- Post-osimertinib:
 - Most of these patients will need chemo
 - Consider trial participation (Emerging resistance mechanisms: MET amplification, HER2 amplification, C797X mutation, etc)

ALK rearranged NSCLC

FDA approved ALK inhibitors			
<u>1st generation</u>	2 nd generation	3 rd generation	
Crizotinib	Alectinib	Lorlatinib	
	Ceritinib		
	Brigatinib		


General principles

- Second generation TKIs are active after crizotinib but unclear if active after another 2nd gen TKI (although there is some data for brigatinib after alectinib)
- Lorlatinib active after crizotinib and modestly active after second generation TKIs
- All of the above TKIs are approved as first line therapy

ALK first line therapy

Drug	Progression free survival (median, mos)
Crizotinib (1)	10.9
Ceritinib (2)	16.6
Alectinib (3,4)	~ 35
Brigatinib (5,6)	~24-29
Lorlatinib (7)	Not reached

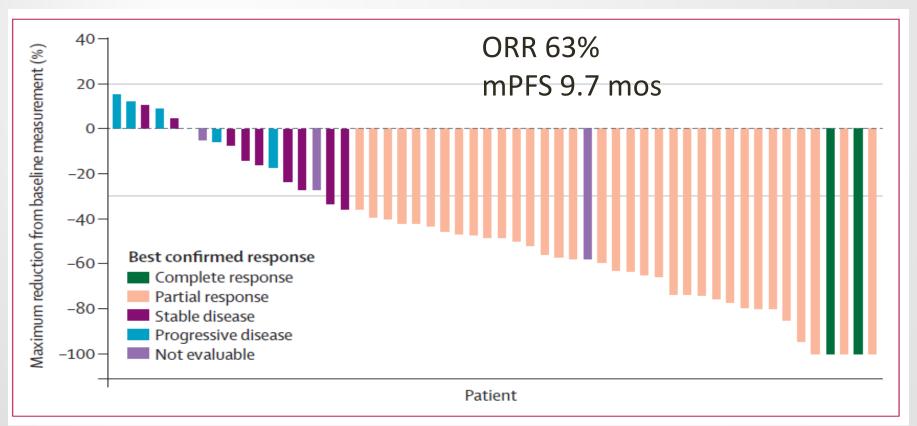
- (1) Solomon et al. NEJM 2014; 371: 2167-2177
- (2) Soria et al. Lancet 2017;389:917-29
- (3) Peters et al. NEJM 2017. DOI: 10.1056/NEJMoa1704795
- (4) Camidge *et al*. JTO 2019; 14(7): 1233-1243
- (5) Camidge et al. DOI: 10.1056/NEJMoa191071
- (6) Camidge et al. Doi.org/10.1200/JCO.20.00505
- (7) Shaw et al. Doi.org/10.1056/NEJMoa2027187

Toxicities

CRIZOTINIB	CERITINIB	ALECTINIB	BRIGATINIB	LORLATINIB
Diarrhea	Diarrhea	Myalgia	Diarrhea	Increased cholesterol / triglyceride
Nausea	Nausea	Constipation	HTN	Peripheral edema / neuropathy
Visual changes	Abdominal cramps	Peripheral edema / Weight gain	Early pulmonary toxicity (uncommon)	Cognitive changes (usually mild)

ROS1 rearranged NSCLC

- First line options: Crizotinib, Entrectinib, (Ceritinib off label)
 - Entrectinib and ceritinib not active in crizotinib pre-treated (different from ALK in which ceritinib is active after crizotinib)
- Lorlatinib active after crizotinib but not FDA approved (ORR 26.5, 12.9-44.4; median PFS 8.5mos)

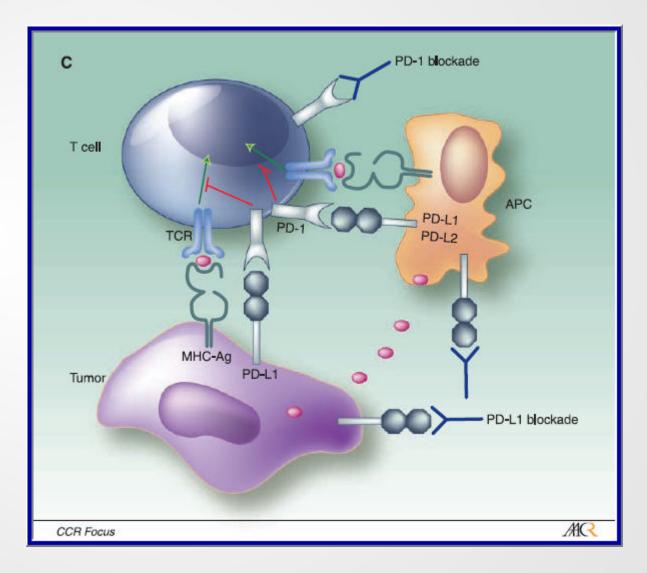

	RR, %	PFS, mos	CNS RR
Crizotinib (n=50)	72 (58-84)	19.2 (14.4-NR)	N/A
Entrectinib (n=53)	77.4 (64-88)	19.0 (12.2-36.6)	79% (n=19)

Shaw et al. NEJM 2014; 371: 1963 Doebele et al. OA02.01 WCLC 2018 Ou et al. WCLC 2018 Dziadziusko et al. JCO 2021

BRAF V600E

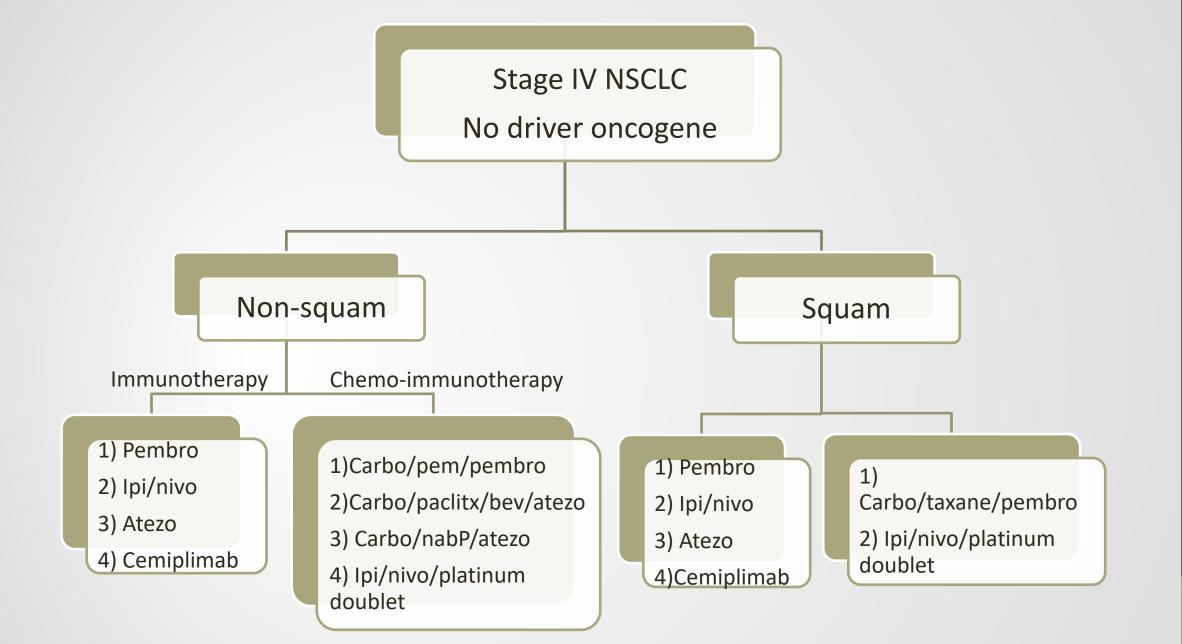
- Occur in 1-4% of NSCLC
- Present regardless of smoking history
- Dabrafenib (BRAFi) + trametinib (MEKi) only approved regimen

(Planchard et al. Lancet Oncol 2016; 17: 984-993)



NTRK rearrangement

- NTRK+ NSCLC is rare (<1%), although not clearly characterized
 - DNA based next-generation sequencing is often used but likely limited sensitivity
 - Limited data on clinical characteristics but seen more commonly in light smokers but also observed in patients with smoking history
- Two FDA approved drugs (for all solid tumor with NTRK fusion without resistance mutations):
 - Larotrectinib (ORR 80%, 95% CI 61-85; PFS not reached. Drilon et al. NEJM 2018)
 - Entrectinib (ORR 57%, 95% CI 43-71; PFS 11.2 mos, 95% CI 8.0-14.9. Demetri *et al* ESMO 2018)

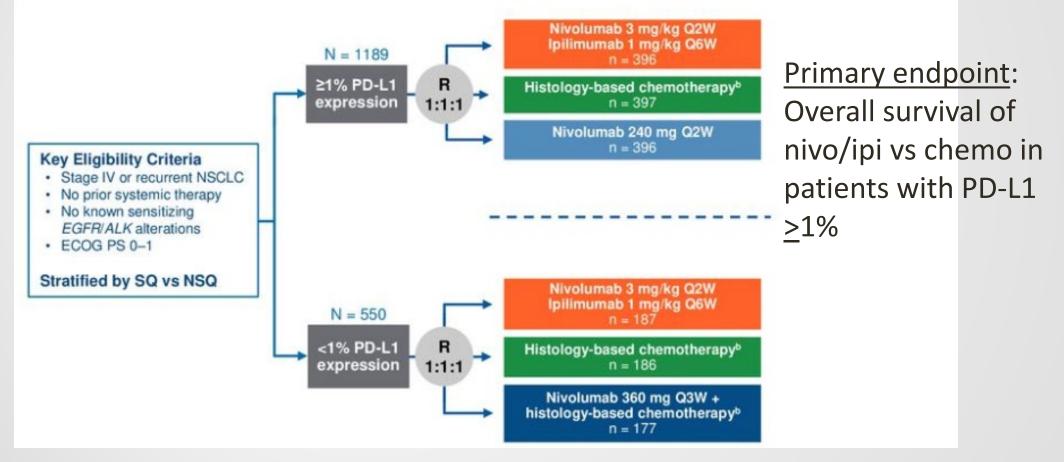

Targets with FDA approved drugs (as of June 2021)								
EGFR (non- exon20 ins)	EGFR (exon20 ins)	ALK fusion	ROS1 fusion	BRAF V600E	NTRK fusion	MET exon14	RET fusion	KRAS G12C
Erlotinib Gefinitb Afatinib Dacomitinib Osimertinib	Amivanta- mab (May 2021)	Crizotinib Alectinib Ceritinib Brigatinib Lorlatinib	Crizotinib Entrectinib	Dabrafen + trametini	Entrectinib		b Selpercatinib Pralsetinib	Sotorasib (May 2021)
			Inv	estigation	al (select)			
EGFR (exon2	20 ins)	HER2		ŀ	(RAS		MET amplification	on
Poziotinib TAK788 (mo	bocertinib)				MRTX849 Many others		Tepotinib Capmatinib Sym015 Savolitinib	

Immune checkpoint inhibitors (ICIs)

FDA approved ICIs in metastatic NSCLC

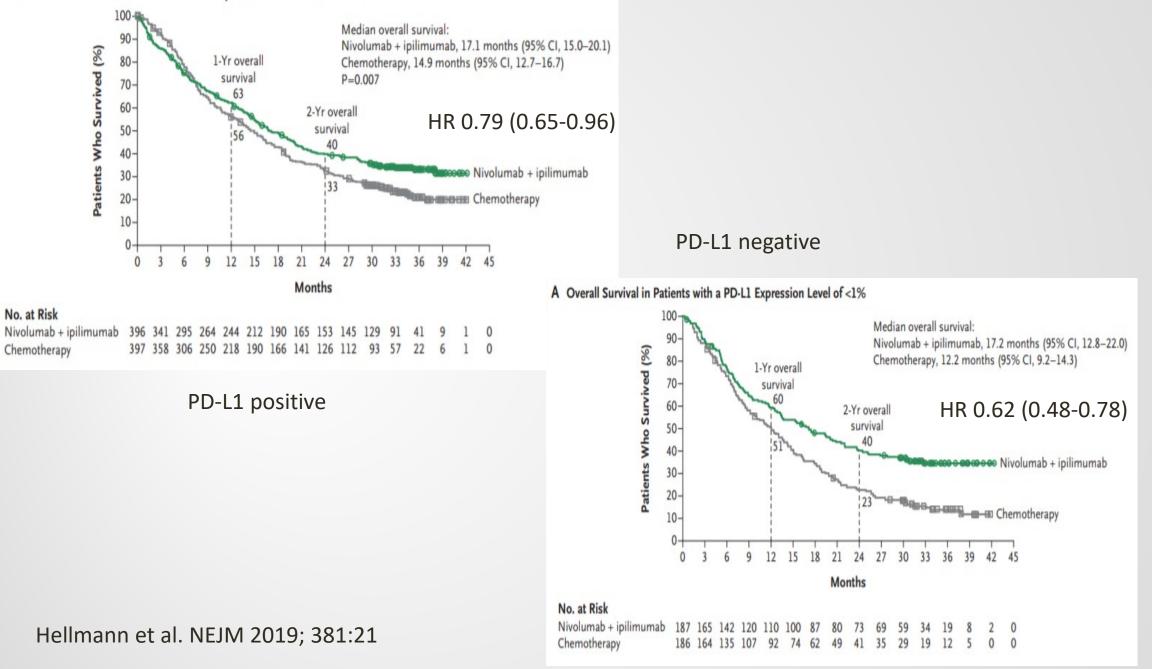
	Type of drug	First-line	Later line (post chemo)
Pembrolizumab	Anti-PD1	Monotx: <u>></u> 1% PD-L1 (IHC 22C3) With chemo: No PD-L1 requirement	<u>></u> 1% PD-L1
Nivolumab	Anti-PD1	In combination with ipilimumab in \geq 1% PD-L1 (IHC 28-8) With ipi and chemo: No PD-L1 requirement	No PD-L1 requirement
Atezolizumab	Anti-PD-L1	Monotx: Tumor PDL1 ≥50%, immune PD-L1 ≥10% (IHC SP142) With chemo: no PD-L1 requirement	No PD-L1 requirement
Cemiplimab	Anti-PD1	Monotx: Tumor PD-L1 >50% (IHC 22C3)	N/A
Ipilimumab	Anti-CTLA4	In combination with nivolumab in <u>></u> 1% PD-L1 (IHC 28-8)	N/A

Anti-PD(L)-1 vs platinum doublet chemo


	PD-L1 (Assay)	ORR (%)	PFS (months)	OS (months)
Pembrolizumab (KN24)	<u>></u> 50% (22C3)	44.8 vs 27.8	10.3 vs 6.0	30 vs 13 (HR 0.63, 0.47-0.86)
Pembrolizumab (KN42)	<u>≥</u> 1% (22C3)	27 vs 27	5.4 vs 6.5	16.7 vs 12.1 (HR 0.81,0.71-0.93)
Atezolizumab	≥50% TC or ≥10% IC (SP142)	38.3 vs 28.6	8.1 vs 5.0	20 vs 13 (HR 0.59, 0.40-0.89)
Cemiplimab	<u>></u> 50% (22C3)	37 v 21	6.2 v 5.6	NR vs 14 (HR 0.57,0.42-0.77)

TC, tumor cells IC, immune cells

Sezer et al Lancet 2021;397:592-604 Herbst et al NEJM 383:1328-39 Reck et al. NEJM DOI:10.1056/NEJMoa1606775 Mok et al. Lancet 2019;393:1819-30

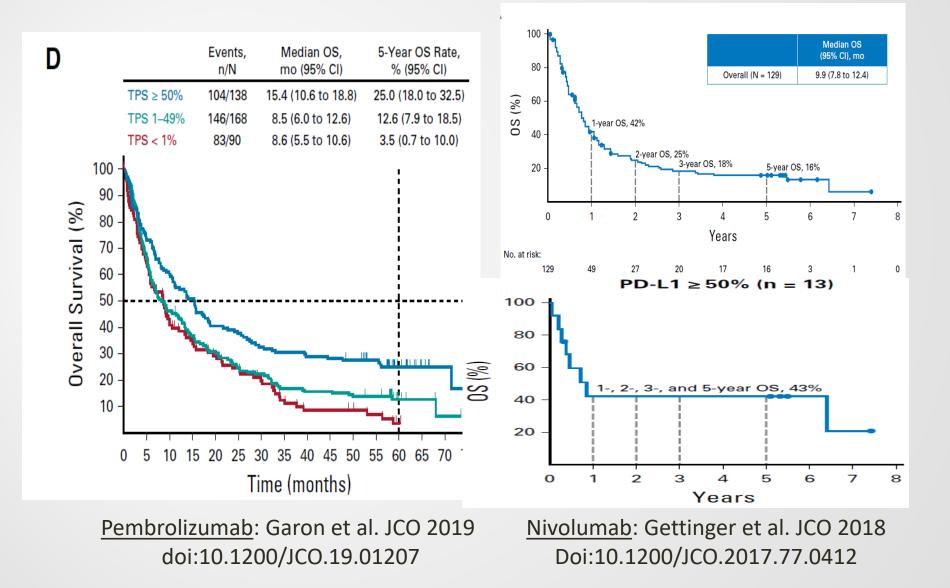

First line ipilimumab and nivolumab

CheckMate 227 Part 1 Study Designa

Hellmann et al. NEJM 2019; 381:21

A Overall Survival in Patients with a PD-L1 Expression Level of 1% or More

Subgroup	No. of Patients	Median Ov	verall Survival	Unstratified	Hazard Ratio	o for Death (95% CI)	
BP		Nivolumab +					
		ipilimumab (N=396)	Chemotherapy (N=397)				
		m	onths				
All patients	793	17.1	14.9		•	0.79 (0.65-0.96)	
Age							
<65 yr	406	19.7	16.0	•	_	0.70 (0.55-0.89)	
65 to <75 yr	306	16.6	14.5	-		0.91 (0.70-1.19)	
≥75 yr	81	13.5	11.4		-	- 0.92 (0.57-1.48)	
Sex							
Male	515	18.7	14.0			0.75 (0.61-0.93)	
Female	278	16.6	16.2	_		0.91 (0.69-1.21)	
ECOG score							
0	269	24.4	17.5			0.66 (0.48-0.89)	
1	519	14.6	12.7			0.89 (0.73-1.09)	
Smoking status							
Never smoked	107	15.2	19.6			1.23 (0.76-1.98)	
Current or former smoker	674	18.1	14.1		•	0.77 (0.64-0.92)	
Tumor histologic type							
Squamous	236	14.8	9.2			0.69 (0.52-0.92)	
Nonsquamous	557	19.4	17.2			0.85 (0.69-1.04)	
Liver metastases							
Yes	156	9.5	11.9			- 1.05 (0.74-1.49)	
No	637	19.9	16.3	_	•	0.76 (0.63-0.92)	
Bone metastases							
Yes	208	13.4	10.0		•	0.75 (0.55-1.03)	
No	585	18.8	16.7	_	-	0.81 (0.67-0.99)	
CNS metastases						, , ,	
Yes	81	16.8	13.4			0.68 (0.41-1.11)	Hellmann et al. NEJM
No	712	17.1	14.9	_	•	0.82 (0.68-0.98)	2010.201.21
			0.25	0.50	1.00	2.00	2019; 381:21
			-				
			Nivol	umab + Ipilimu Better		otherapy etter	

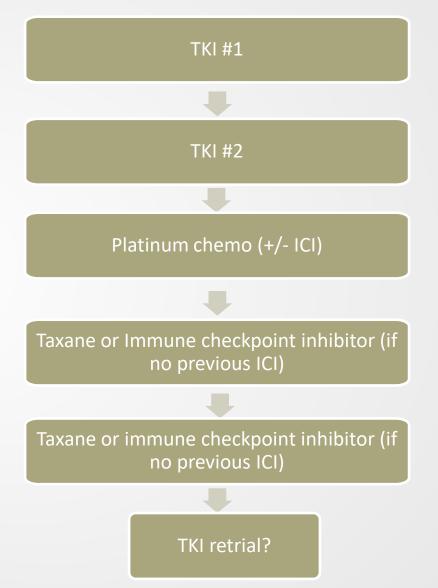

FDA approved ipilimumab / nivolumab for NSCLC with PD-L1 >=1% (IHC 28-8) in May 2020

Chemo-immunotherapy

Regimen (ref)	n	ORR (%)	PFS (mos)	OS (mos)			
Non-squamous NSCLC							
Carboplatin / pemetrexed +/- pembrolizumab(1,6)	616	47.6 v 18.9	8.8 v 4.9 (HR 0.52,0.43-0.64)	22 vs 10.7 (HR 0.49, 0.38-0.64)			
Carbo/paclitax/bevacizu mab +/- atezolizumab(2)	692	63.5 v 48	8.3 v 6.8 (HR 0.62, 0.52-0.74)	19.2 v 14.7 (HR 0.78 <i>,</i> 0.64-0.96)			
Carbo/nabP +/- atezo (3)	724	49.2 v 31.9	7.0 v 5.5 (HR 0.64, 0.54-0.77)	18.6 v 13.9 (HR 0.79, 0.64-0.98)			
		Both hi	stology				
Platinum chemo +/- ipi/nivo(4)	719	38 v 25	6.7 v 5.0 (HR 0.68, 0.57-0.82)	15.6 v 10.9 (HR 0.66, 0.55-0.80)			
Squamous NSCLC							
Carbo/paclitx or nabP +/- pembro(5) nabP, <i>nab</i> -paclitaxel	559	57.9 v 38.4	6.4 v 4.8 (HR 0.56 <i>,</i> 0.45-0.70)	15.9 v 11.3 (HR 0.64, 0.49-0.85)			

(1)Gandhi NEJM 2018;378:2078 (2)Socinski NEJM 2018;378:2288 (3) West et al LancetOnc 2019; 20:924 (4)Reck ASCO 2020;Abs9501 (5)Paz-Ares NEJM 2018; 379:2040 (6) Gadgeel et al. JCO 2020

We are starting to see long term survivors


Summary - Immune checkpoint inhibitor

- Pembrolizumab / atezolizumab / cemiplimab monotherapy is a reasonable option for PD-L1 high tumors as first-line therapy (but no head-to-head data vs chemo-immunotherapy)
- In PD-L1 1-49% patients, I prefer chemo-immunotherapy since the benefit of pembro alone does not appear to be significantly better compared to chemo alone (my personal opinion)
- I also prefer chemo-immunotherapy in high PD-L1 patients if high response rate is desired (e.g. symptomatic disease burden) or never smokers
- When to use ipi/nivo? Perhaps in patients intermediate / low or negative PD-L1 expression who want to avoid chemo (but FDA approved only in PD-L1 expressed patients)

Brief overview of chemotherapy (for patients not eligible for immunotherapy first line e.g. active autoimmune disease)

- A few pearls on chemo / anti-angiogenetic therapy
 - Platinum doublet is standard of care in immunotherapy ineligible patients
 - Pemetrexed only approved for non-squamous histology
 - Bevacizumab contraindicated in squamous histology (cases of fatal hemoptysis)
- Squamous cell carcinoma:
 - Platinum + gemcitabine
 - Platinum + taxane (no bevacizumb)
 - Cisplatin + gemcitabine + **necitumumab**
- Non-squamous cell carcinoma:
 - Platinum + pemetrexed → maintenance pemetrexed
 - Platinum + paclitaxel + bevacizumab ightarrow maintenance bevacizumab
- Later line chemo (post-immunotherapy):
 - Docetaxel +/- ramucirumab in both histologies (no history of hemoptysis)

+ Molecular target

Data for frontline TKI:

- Strongest for: EGFR, ALK
- No randomized data but very compelling: ROS1, RET, NTRK, BRAF V600E
- Data not entirely clear but reasonable: MET exon14, EGFR exon20, KRAS G12C

No targetable genetic alteration, good PS (my personal practice)

No smoking hx, PD-L1 >=50%, PD-L1 <50%, high disease burden +smoking hx + smoking hx Chemo-Chemoimmunotherapy ICI immunotherapy Or monotherapy Ipi/nivo Platinum doublet chemo Platinum doublet or Taxane based Taxane based chemo Taxane based chemo chemo

Stage IV NSCLC – final thoughts

- Complete molecular testing as much as possible
 - All non-squamous histology
 - Squamous histology if light smoking history, small specimen, younger
- Blood based molecular testing is helpful but recognize that has limited sensitivity, especially in patients with low disease burden / intrathoracic only disease → complete tissue testing as much as possible if blood based test is negative
- Oncogene driven NSCLC (especially EGFR, ALK, ROS1, RET): Immune checkpoint inhibitor monotherapy has low activity, even in PDL1 high patients. Exhaust TKI options first before considering immunotherapy based treatments
- Emerging data indicate that the combination of TKI + immunotherapy is associated with high rates of toxicities
- Use of immunotherapy continues to evolve stay tuned