MEDICAL COMPLICATIONS IN CHRONIC SCI

Rina Reyes, M.D.
Department of Rehabilitation Medicine
University of Washington
Medical Director, UW Medicine SCI Rehabilitation

Health Promotion in SCI

- Freedom from preventable disease
- Early detection of disease
- Limit or manage effects of disease or disability
- Goal: Improve HRQOL, participation, survival, rehospitalization

SCI HEALTH MAINTENANCE
Distinct Themes

- Missed/Delayed Diagnosis
- Treatment Considerations
- Unique conditions
- Functional impact
- Altered presentation
- Equipment needs

COVERED IN OTHER LECTURES:

- DVT and PE (Acute)
- CV: Hypotension/orthostatic hypotension
- Ventilatory failure
- Genitourinary
- Hypercalcemia
- GI/Abdominal
- Pressure Ulcers
REHOSPITALIZATION AFTER SCI

Tetraplegia
- Respiratory
- Model Systems
- 1995-2002
- Cardenas et al 2004

Paraplegia
- Pressure Ulcers

LEADING CAUSE = GENITOURINARY

PRIMARY CAUSE OF DEATH

General Population
- Heart disease
- Cancer
- Cerebrovascular disease

SCI (Model Systems)
- Pneumonia/respiratory 22%*
- Heart Disease 19.6%**
- Hypertensive & ischemic 7.8%
- Non-ischemic 11.8%
- Infection 10.4% (sepsis)

*#1 in tetraplegia
**#1 in paraplegia and AIS-D (all levels)

Preventive Care: Veterans with SCI
Weaver and LaVela

Hypertension 49% vs. 26%
Lipid Disorders
Diabetes 19% vs. 7%
Obesity
Infection Pneumonia, UTI, pressure sores
- Less likely to be vaccinated against flu
- More likely to have received pneumococcal vaccine
Cancer Bladder

OUTLINE:
Medical Complications of Chronic SCI

- Review by system:
 - Why these associated medical conditions occur
 - Key concepts marked with:
 - Pitfalls in work-up and treatment
 - Extra slides marked “For Your Review/Reference” for self-study

- Cardiovascular
- Respiratory
- Musculoskeletal
- Pain
- Late neurologic complications
- Spasticity
SCI: CARDIOVASCULAR COMPLICATIONS

SCI AND AUTONOMIC DYSFUNCTION

- T1-T7: heart and blood vessels
- More common in more complex and higher cervical level injuries

CARDIOVASCULAR COMPLICATIONS
Themes

- Autonomic dysregulation
- Blunted CV exercise response
- Increased prevalence of CV disease risk factors

AUTONOMIC DYSREFLEXIA (AD):

1. Paroxysmal episodes of hypertension
2. Possibly associated with characteristic signs and symptoms
3. Occurring as a response to a noxious stimulus
4. In susceptible patients: T6 or above

Cause: disconnection between supraspinal (brain) control and preganglionic sympathetic neurons in thoracolumbar cord
RISK FOR AUTONOMIC DYSREFLEXIA

Neurologic Level: T6 level or above
- 48-85% with SCI above T6
- Rarely reported with lower level injuries

ASIA Impairment
- Any (A&B more common)

Onset
- Rarely sooner than 2 months post-injury
- 92% had first episode within the first year

AD CLINICAL PRESENTATION:
Variable

Symptoms:
- Pounding headache
- Flushing above LOI
- Nasal Congestion
- Anxiety
- Blurred/spotty vision

Signs:
- Elevated BP
- Bradycardia (tachycardia less frequently)
- Sweating above LOI
- Piloerection
- Cardiac arrhythmia

Sorting Out the Features of AD

Above: Parasympathetic
- Headache
- Flushing
- Nasal Congestion
- Bradycardia

Injury Level

Below: Sympathetic
- Pallor/Cool extremity
- Piloerection
- Bladder/Intestinal sphincter contraction
AD: Differential Diagnosis

- Cardiac ischemia: atypical presentation possible
- Pre-eclampsia
- Intrathecal Baclofen Withdrawal
- Pheochromocytoma
 - Pitfall: exceedingly rare. For entire US population with chronic SCI (296,000), expect only 1 per year

Possible sentinel of more insidious pathology in otherwise asymptomatic patient

AD: TRIGGERS

USUALLY A PAINFUL STIMULUS

- **Bladder (75-82%):** distension, infection, stones, procedure
- **Bowel (13-19%):** distension from fecal impaction
- Pressure ulcers
- Ingrown toenails
- Abdominal emergencies
- Fractures/soft tissue injury
- Body positioning
- Labor, Delivery
- Genital: Ejaculation, epididymitis, testicular torsion
- Anesthesia induction
- Urodynamics (60-85% of individuals w/tetraplegia)
- DVT, pneumonia, tight clothing

AD TREATMENT:

Consortium for Spinal Cord Medicine

[Consumer and Health Care Provider Guides](www.pva.org)

AUTONOMIC DYSREFLEXIA COMPLICATIONS

- Subarachnoid or intracerebral hemorrhage
- Retinal hemorrhage
- Cardiopulmonary: AFib, MI, pulmonary edema
- Seizure
- Death
AUTONOMIC DYSREFLEXIA
INITIAL TREATMENT

Elevate head
Loosen constrictive clothing
Monitor BP, HR frequently
Systematic survey

Principle: Identify and eliminate offending stimulus

AD: SURVEY FOR CAUSATIVE FACTORS

BLADDER FIRST
• Confirm bladder is decompressed
• Indwelling catheter: check for kinks; irrigate or change
• No catheter: Ultrasound or instill 2% lidocaine jelly and insert catheter

BOWEL NEXT
• Rectal exam
• 2% lidocaine
• Manual evacuation

Other causes
Note: May need medications to control BP

AD: PHARMACOLOGIC TX

□ Indications:
 □ Per CPG: should be considered if SBP>150
 □ Relative HTN: SBP elevation > 20-40 mmHg over baseline
 □ Ideally, rapid-onset and short duration
□ Risks:
 □ Rebound hypotension once noxious stimulus is removed

AD: PHARMACOLOGIC AGENTS

□ Calcium channel blockers
□ Alpha blockers (e.g. prazosin)
□ Beta blockers
□ Direct arterial/venous dilators (e.g. nitroglycerin paste)
□ Indirect arterial/venous dilators
□ Ganglionic blockers
□ Sympatholytic agents

Guidelines don’t make a recommendation which med to use

Typical protocol:
□ First line: NTG ointment
□ Second line: hydralazine
CORONARY HEART DISEASE AND SCI

Conflicting (or weak) evidence: increased prevalence of CHD in SCI

Cardiovascular mortality elevated

- Frankel 1998: especially if level above T5
- Age ≤ 30 years old: 6x general population
- Age 31-60: 30% higher
- > 60 yrs: no significant difference

Recent systematic review: SCI is not an independent risk factor for carbohydrate and lipid metabolism disorders or cardiovascular morbidity and mortality

Wilt TJ et al January 2008

OTHER CARDIOVASCULAR RISKS IN SCI

Many CV risk factors may be more prevalent with SCI:

↓ cardiac output

- HTN
- Risk for silent ischemia
- ↓ Physical activity, exercise tolerance
- Lipid disorders
- Diabetes/
 Glucose intolerance?
- Obesity/
 ↑ % body fat

May result in increased risk for premature CHD

METABOLIC SYNDROME & SCI

- Definition of Metabolic Syndrome
 - IDF vs NCEP ATPIII vs WHO
- Prevalence estimates: studies support increase in SCI
 - 34-44.8% in SCI
 - Nash 2007, Maruyama, Castillo 2007

CORONARY HEART DISEASE AND SCI: Diagnosis

May be more difficult to diagnose:

- Atypical or absent symptoms of myocardial ischemia due to sensory loss, esp. above T5
 - Jaw pain/toothache
 - AD
 - Nausea, SOB, spasticity increase, fatigue
- Diagnostic testing considerations
 - Arm ergometry for paraplegia
 - Pharmacologic stress testing most practical
CORONARY HEART DISEASE AND SCI: Management Considerations

- Similar treatment options as in general population
- May need retraining in energy conservation strategies
- Low resting BP
- Modified cardiac rehab may be feasible
 - Stiens et al., PMR Clin NA 1995

CHD PREVENTION: Dyslipidemia and SCI

HDL<35
- 24-40% of SCI vs 10% in general population
- LDL no different

Treatment
- Evidence does not suggest different treatment threshold
- Lifestyle changes: ? Possible to increase activity level

CHD PREVENTION: Obesity

- Definition in SCI: 2 of 3 individuals with SCI overweight
- Decrease in fat-free body mass → BMI may be misleading
 - 13% greater fat per unit BMI
- ? Overestimation of resting metabolic rate by 14-27%

Recommendation:
- Basal energy requirement by 10% for low paraplegia, 25% high tetraplegia

RESPIRATORY DISEASE IN CHRONIC SCI
Importance of Respiratory Disorders in SCI Medicine

- Leading cause of death in 1st year and chronic SCI
 - Pneumonia accounts for 67.4%
 - 20% of deaths during first 15 years post-SCI
- NSCISC data: increased mortality in tetraplegia (9-18x) vs age-matched general population
- Contributor to high cost of care:
 - Skilled care is required outside of hospital
 - VA: double rate of PNA OP visits vs. non-SCI (Smith 2007)
 - Re-hospitalizations

Chronic SCI: Respiratory Disorders

- Pneumonia, (Secretion Management, Atelectasis)
- Ventilatory Failure
- Sleep-Disordered Breathing
- Venous Thromboembolic Disease

SCI: LUNG VOLUMES

<table>
<thead>
<tr>
<th>Lung Volume</th>
<th>SCI Effect vs. non-SCI</th>
</tr>
</thead>
<tbody>
<tr>
<td>TLC</td>
<td>↓</td>
</tr>
<tr>
<td>VC</td>
<td>↓</td>
</tr>
<tr>
<td>ERV</td>
<td>↓</td>
</tr>
<tr>
<td>FRC</td>
<td>↓</td>
</tr>
<tr>
<td>FEV1</td>
<td>↓</td>
</tr>
<tr>
<td>RV</td>
<td>↑</td>
</tr>
</tbody>
</table>

- Restrictive disease

Chronic SCI:
- FVC = 60-70% of normal

RESPIRATORY COMPLICATIONS: PNEUMONIA

- Aspiration: Dysphagia
- Ventilator-associated
- Community-acquired or viral
 - Streptococcal PNA most common
 - Yearly influenza vaccination recommended, unless contraindications
 - Consider pneumococcal vaccination
Late-Onset Respiratory Insufficiency After SCI

Symptoms
- Tachypnea, dyspnea
- Daytime somnolence, fluctuating mental status, increased positional influence on breathing
- Erythrocytosis

Treatment
- CPAP/BiPAP
- O2
- Mechanical ventilation/tracheostomy

Associated Factors
- Ventilator use with SCI
- Recurrent atelectasis/pneumonia
- VC < 2 L
- Nocturnal hypercapnia
- Mean SaO2 < 95%

SLEEP-DISORDERED BREATHING & SCI

SCI: 26-65%
- Acute tetraplegia: 83%
- Chronic tetraplegia: 25-40%

Primarily obstructive sleep apnea

Associated factors?
- Increased BMI and neck circumference
- But common in non-obese
- High motor level
- Age
- Baclofen or other antispasticity medication

CONSEQUENCES OF SLEEP APNEA

Presumed similar to general population
- Excessive daytime sleepiness; MVC's
- Cardiovascular: HTN; arrhythmias

Possible consequences in SCI:
- Poor participation in rehabilitation
- Impaired wound healing due to hypoxia or sleeping in chair
- Unexplained non-ischemic cardiac deaths

SLEEP-DISORDERED BREATHING & SCI

Ask about symptoms
- Daytime somnolence, morning headache
- Restorative sleep
- Snoring/gasping

Positive response should prompt evaluation
- Complete polysomnography

Dilemma: majority with SCI don’t complain of daytime somnolence

Treatment: same as general population
- CPAP, BIPAP, O2
- Reduce weight, ETOH
Reinstitution of VTE Prophylaxis in Chronic SCI

- Risk of DVT drops within 3 months of injury
- No unbiased estimate of how commonly DVT occurs in chronic SCI
- Kim (1994): 229 admissions with SCI>6 months duration
 - 43 patients underwent radionuclide venogram
 - 22 "clinically DVT-free": 1/22 with chronic DVT
 - 21 "DVT-suspected": 2/21 with chronic DVT and 4/21 with acute DVT
 - 9.3% incidence of acute DVT

- Frisbie and Sharma (2012)
 - Systematic review spanning 1956-2009
 - 0 - 18.7% using autopsy, imaging, clinical, ECG
 - Possible subclinical presentations with pulmonary HTN on Echo

VTE PROPHYLAXIS FOR CHRONIC SCI

- Rimler 2011:
 - 260 Plastic Surgery cases without VTE prophylaxis
 - No cases of VTE in 2 months post-operative time
 - 5 cases with VTE 2.5-37 months post-operative time
 - 4/5 had history of VTE

- Unclear: pharmacologic agent and dose; IVC filters?
- Awaiting new CPG

Possible Indications (CSCM CPG)

- Lower extremity fracture or lower limb surgery
- Other surgeries?
- Hospitalization due to acute medical illness?
- Anticipated prolonged bedrest (e.g. pressure ulcer)??

Consider additional risk factors: cancer, prior DVT, CHF, age>70, obesity

MUSCULOSKELETAL CONDITIONS IN CHRONIC SCI
MUSCULOSKELETAL COMPLICATIONS IN SCI

Bone Health
- Osteopenia, osteoporosis, fractures
- Heterotopic ossification
- Charcot joint or spine

Neck and shoulder pain
- Rotator cuff tear: 71% of individuals with paraplegia with shoulder pain
- Arthropathy

Wrist pain
- Carpal tunnel syndrome/nerve entrapment
- Overuse injuries

SCI AND BONE LOSS

Time Course
- Rapid onset
- Peak: 10-16 weeks
- Continues after 1 year
- New homeostasis later

Knee BMD loss at 1.5-2 years post-injury
- M: 33%
- F: 50% or more

Lazo 2001: DXA
- Osteoporosis 60%
- Osteopenia 19.5%

SCI AND BONE LOSS

Patterns of Loss

Exclusively below level of injury in 1st 24 months
- Pelvis and lower limbs, usually preserves spine (F)
- Investigate any unusual osteopenia of spine or distal radius

Trabecular > Cortical bone

Pathophysiology
- Acute: Resorption > Formation
- Multifactorial: mechanical, hormonal, neurogenic

BONE LOSS AND SCI

- Manifests as increased incidence of fractures
 - MSCIS: 15 yrs = 39%
 - Lazo 2001 = 34%

- Distal femur > proximal tibia

- Fracture threshold – possibly 50% reduction in BMD at knee
 - Garland, Top Spinal Cord Inj Rehabil 2005
Prevention of Osteoporosis Following SCI

No consensus on prevention

Correct nutritional deficiencies
- Calcium, vitamin D (limited evidence in SCI)
- Ca may be beneficial in women w/ chronic SCI
- Ca 1000 mg/d likely beneficial if U Ca <250 mg/d and mid-normal PTH (North Am Menopause Society, Ott 2001)

Correct endocrine abnormalities: hypogonadism
- Low testosterone: earlier, higher prevalence by decade of life, greater rate of age-related decline (Bauman 2014)

Bone Loss Prevention Following SCI

With ACUTE, motor-complete SCI, current research shows no definite long-term benefit from:

- Standing frame
- Electrical stimulation of lower limb muscles
- Bisphosphonates

? Benefit from early intervention, longer duration, higher intensity/frequency

FRACTURE MANAGEMENT

CHRONIC SCI

Cause: can be minor injury

Fracture rate up to 40% in chronic SCI

- Paraplegics > tetraplegics
- 10x greater complete > incomplete injuries

Symptoms
- Soft tissue swelling, warmth, increased spasticity, AD
- High index of suspicion necessary
- Counsel patient on risk and symptoms

FRACTURES IN CHRONIC SCI: PITFALLS

- Missing a fracture after minor trauma
- Not considering DVT prophylaxis
- Skin breakdown under circumferential cast
- Unnecessary operative treatment of fractures best managed conservatively
- Failure to maximize patient’s function while wearing an immobilizer to treat fracture
MUSCULOSKELETAL COMPLICATIONS: Upper Limb

- High prevalence in all neurological categories
- Shoulder: approximately 50% (paraplegia)
- Contributors: MWC propulsion, transfers, assistive devices
- Shoulder protection (See CPG)
 - Limit overuse/impact
 - Minimize sustained overhead activities, transfers
 - Wheelchair seating
- Aggressive treatment of carpal tunnel syndrome may be indicated early
- Post-op limitations impact mobility

HETEROTOPIC OSSIFICATION

Neurogenic Heterotopic Ossification: Definitions

Pathologic ectopic ossification
- occurring within soft tissue planes surrounding neurologically affected joints
- occurs in individuals with CNS injury, burns

Etiology: Poorly understood. Role of trauma?

Histology
- Osseous, not just calcification
- Histologically and biochemically indistinguishable from normal bone or callous

Mechanism of Heterotopic Ossification Formation
Patterns of HO in SCI

Sites of ossification:

- Extra-articular: between connective tissue/muscle layers
- Most common:
 - Hip (anteromedial): 90% between ASIS and lesser trochanter
 - 2nd: Knee (medial epicondyle)
 - Other: shoulder, elbow

Located below neurologic level (unless patient also has TBI or other causative factor)

Patterns of HO in SCI

Time course

- Onset 1-6 months
- Peak 2 months
- May occur years later

Maturation is centripetal

Risk/associated factors

- Male
- Older age
- Complete injury
- DVT
- Spasticity
- Pressure ulcer

HO Incidence in SCI

- Overall: 10-53%
- Most cases: incidental radiographic finding only
 - Occasionally worked up as a sarcoma
- 10% of cases severe
 - Large amount of ossification
 - Significant ROM and functional limitation
 - 5-8% ankylosis

HO: Clinical Presentation & Differential Dx

Clinical Presentation

- Acute
 - Warmth, swelling, erythema
 - +/- Fever (esp nocturnal); pain

- Indolent
 - Decreased joint ROM (most common sign)

Differential

- HO
- DVT
- Trauma (e.g. fracture or ligament disruption)
- Hemarthrosis
- Cellulitis
- Septic joint
- Contracture
HO: ONSET OF DX ABNORMALITIES

TIME POST-INJURY

2-3 WEEKS:
Lab +/- bone scan abnormalities

1-4 MONTHS:
Clinical presentation (peak 2 months)

AT CLINICAL PRESENTATION:
Alk phos, bone scan, and x-rays are typically all abnormal

↑ ESR
? Early alk phos
1st, 2nd bone scan phases

3.5-6 weeks: alkaline phosphatase
4-5 wks: Fever, swelling
5-6 wks: ultrasound, bone scan 3rd phase
7 weeks: plain radiographs

Alkaline Phosphatase and HO

- Elevated acutely in all patients with clinically significant HO
- ↓ specificity
- Peak value at about 10 weeks
- Level may not correlate with severity or maturity of HO
- Other markers: CRP, ESR, CPK

Diagnosis of HO in SCI

- Triple Phase Bone Scan = gold standard
- Radiographs
 - No visible calcification for 7-10 days after bone scan becomes positive
 - Earliest findings can be seen 1 month post-injury
 - May have no visible calcifications at onset of symptom
- Other
 - Ultrasound: “zone phenomena”
 - MRI: hyperintense T2 early; contrast enhancement and muscle swelling
Triple-Phase Bone Scan

- Increased vascularity at 17 days
- Bone uptake at 24 days
- Best available indicator of maturity

Potential Complications: HO

- ROM Loss
 - Prevents sitting
 - Unequal seated pressure distribution
 - Impact on self-care ability, UE use
- Pressure ulcer
- Peripheral nerve entrapment
- DVT

Treatment of HO in SCI

- NSAIDs: For early osteoid stage
- ROM
- Etidronate
 - Chemiabsorbs to Ca hydroxyapatite crystals
 - NO effect on osteoid development, inhibits matrix mineralization
- XRT: not typically primary treatment but effective

Surgical Treatment for HO

<table>
<thead>
<tr>
<th>Timing</th>
<th>Outcomes</th>
<th>Considerations</th>
</tr>
</thead>
<tbody>
<tr>
<td>• HO should be "mature" (usually 6-18 months) • Severe functional limitation (especially wheelchair seating)</td>
<td>• Most patients gain enough range to sit • Most have some recurrence</td>
<td>• ??XRT • ?? Adjuvant etidronate + NSAIDs • High complication rate! • excess bleeding • Infection</td>
</tr>
</tbody>
</table>
PAIN & SCI

Prevalence: 63-91% (Donnelly 2005)

- Higher rate: GSW or lower level injury
- Moderate-Severe: 25-60%
- Severe, disabling in 20-30% (Bryce et al 2001)
- MSCIS data (Cardenas 2005):
 - % with pain: 81% at 1 year post-SCI; 83% at 25 years
 - Pain interfering with activities: 70% year 1; 51% at 25 years

Most common sources:

- Neuropathic: central, radicular
- Musculoskeletal: carpal tunnel, shoulder
- Less common: visceral

PAIN & SCI

- Taxonomy
 - ISCI-BPDS
 - IASP
 - Nociceptive: MSK, visceral, skin
 - Neuropathic: Above-, at-, below-level pain
 - Cardenas (Neurologic vs. MSK)
 - Neuro: SCI pain, transition zone, radicular, visceral
 - MSK: mechanical spine, overuse
 - Bryce-Ragnarsson classification system

- Survey for treatable cause
- Awaiting a clinical practice guideline

Treatment of Neuropathic Pain in SCI: Pharmacologic

- Anticonvulsants: Gabapentin, pregabalin (more on this shortly)
- Antidepressants: Amitriptyline — mixed efficacy in SCI pain, side-effects
- Opioids: IT MS and clonidine: combo effective?
- IV MS reduced evoked allodynia but not spontaneous pain
- Alfentanil (µ receptor): decreased spontaneous AND evoked pain
- NMDA receptor antagonists: Ketamine
- Local anesthetics (Na channel blockers): TR or IV lidocaine; but mexiletine not effective

Treatment of Neuropathic Pain in SCI: Non-pharmacologic

- Modalities
- biofeedback/relaxation
- CBT
- Exercise
- Hypnosis
- PT
- TENS
- Spinal Cord Stimulation, DREZ ablation, electrical stimulation
Pain & SCI: Evidence-Based Treatment

Siddall 2006: proposed treatment algorithm

Teasell 2010: Meta-Analysis

- Strongest evidence:
 - gabapentin and pregabalin
 - Subarachnoid lidocaine, IV ketamine, IV morphine (short-term benefit, not practical for home use)
- Limited evidence or lack of evidence
 - TCAD – except for neuropathic pain in setting of depression
 - Tramadol
 - Opioids – conflicting conclusions re: efficacy for neuropathic pain

Guy 2014: Anticonvulsants for neuropathic pain post-SCI

- Gabapentinoids – large effect in 4 of 6 studies
- Lamotrigine – effective with incomplete SCI
- Valproate and Levetiracetam – ineffective
- Carbamezepine – effective for moderate to intense pain (?)SCI studies

Late Neurologic Complications of SCI

Post-traumatic cyst (39-59%): focal intramedullary cystic degeneration

Post-traumatic syringomyelia (3-4%): > 2 segments; rare early dx

- Signs/symptoms – clinical surveillance recommended
 - Loss of temperature/pain sensation, hyperhidrosis, change in tone, new weakness or change in bowel/bladder control or respiratory function, increased pain, new AD, Charcot joint
- Diagnosis: MRI
- Treatment:
 - Monitoring for expansion – clinical, radiographic (distinguish from myelomalacia)
 - Minimize valsala and Trendelenberg position
 - When to consider surgery? Long-term outcomes of

Myelomalacia

Motor Control Loop
Neuroscience: Exploring the Brain, 2nd ed.

Spasticity Overview
Treatment in SCI
Spasticity

Definition (Lance)

- A motor disorder characterized by velocity-dependent increase in tonic stretch reflexes/muscle tone with exaggerated deep tendon jerks, resulting from hyperexcitability of the stretch reflex, as one component of the UMN syndrome.

Presentation

- Resistance to stretch: velocity (speed)-dependent
- Abnormal movements
- Exaggerated reflexes
- Intermittent or sustained involuntary muscle movements (e.g., clonus)
- Flexor or extensor spams or posturing

Prevalence in SCI:

- 65%-78% of persons with SCI
- Problematic in 28%-43%
- Medications needed in 43%-49%

UMN SYNDROME:

Positive and Negative Components

<table>
<thead>
<tr>
<th>POSITIVE</th>
<th>NEGATIVE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overactivity or presence of co-contraction</td>
<td></td>
</tr>
<tr>
<td>Spasticity</td>
<td></td>
</tr>
<tr>
<td>Athetosis</td>
<td></td>
</tr>
<tr>
<td>Hyperreflexia (DTR, autonomic, cutaneous)</td>
<td></td>
</tr>
<tr>
<td>Release of primitive reflexes</td>
<td></td>
</tr>
<tr>
<td>Dystonia</td>
<td></td>
</tr>
<tr>
<td>Underactivity/absence of motor function</td>
<td></td>
</tr>
<tr>
<td>Weakness</td>
<td></td>
</tr>
<tr>
<td>Paralysis</td>
<td></td>
</tr>
<tr>
<td>Fine motor loss</td>
<td></td>
</tr>
<tr>
<td>Fatigue</td>
<td></td>
</tr>
<tr>
<td>More important factors affecting patient function</td>
<td></td>
</tr>
</tbody>
</table>

Spasticity: Ways to Evaluate

For Your Reference/Review

<table>
<thead>
<tr>
<th>Subjective assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surveys</td>
</tr>
<tr>
<td>Penn Spasm Frequency Score</td>
</tr>
</tbody>
</table>

“Objective” assessment

- Clinical/Qualitative
- Modified Ashworth Scale
- Tendon Tap
- SCATS, SCI-SET
- Pendulum Test
- Electrophysiologic/Quantitative

Functional assessment

- Goal (walking) analysis
- Transfers

PENN SPASM FREQUENCY SCORE (PSFS)

- 0 No spasms
- 1 Mild spasms induced by stimulation
- 2 Infrequent spasms occurring 1x/hour
- 3 Spasms occurring >1x/hour
- 4 Spasms occurring >10X/hour

MODIFIED PSFS

- 1 Mild
- 2 Moderate
- 3 Severe

SPASTICITY EVALUATION: MODIFIED ASHWORTH SCORE

<table>
<thead>
<tr>
<th>Score</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No increase in muscle tone</td>
</tr>
<tr>
<td>1</td>
<td>Slight increase in muscle tone, followed by minimal resistance throughout the remainder of the range of motion</td>
</tr>
<tr>
<td>1+</td>
<td>Slight increase in muscle tone, followed by resistance throughout the remainder of the range of motion</td>
</tr>
<tr>
<td>2</td>
<td>More marked increase in tone, through most of the range of motion but joint ends moved</td>
</tr>
<tr>
<td>3</td>
<td>Considerable increase in muscle tone, passive movement is difficult</td>
</tr>
<tr>
<td>4</td>
<td>Affected part is rigid in flexion or extension</td>
</tr>
</tbody>
</table>

Spasticity Management Model

- Ablative surgery (non-reversible)
- Intrathecal medications (reversible)
- Oral medications – systemic tx
- Blocks – focal pharmacotherapy
- Modalities
- Stretching, casting, bracing
- Eliminate nociception

More likely: simultaneously using multiple approaches

FOCAL TREATMENT OF SPASTICITY

- Effectively creating a LMN syndrome to treat UMN symptoms
- Preferred to control regional spasticity and avoid systemic adverse drug effects
- Short duration (< ½ day):
 - Local anesthetic: lidocaine and bupivicaine
- Longer duration (2-5 months):
 - Chemical neurolysis: destruction of nerve
 - phenol 3.7%
 - ETOH 45-100%
 - Motor point block: effort to block nerve trunk after sensory branches or to block a particular muscle
 - Neurotoxin chemodenervation
 - Botulinum neurotoxin (BoNT)

BOTULINUM NEUROTOXIN DENERSVATION

- What is Botulinum Toxin?
 - Proteins synthesized by Clostridium botulinum, responsible for Botulism
 - At least 7 antigenically distinct serotypes with similar mechanisms of action; different receptors
 - Inhibits Ach release from presynaptic terminal of neuromuscular junction
- Goal: reduce force of contraction of overactive muscle
- Onset 2-6 days, peak 1-4 weeks, duration approximately 3 months (2-6 months)

BOTULINUM TOXIN MECHANISM OF ACTION

For Your Reference/Review
BOTULINUM TOXIN INJECTIONS

Considerations – For Your Review/Reference

- **Concerns**
 - excessive weakness
 - spread of medication: 2009 FDA mandated new label warning and “risk mitigation strategy” for all BoNT:
 - weakness, hoarseness, dysarthria, loss of bladder control, breathing difficulties, dysphagia, double/blurred vision, drooping eyelids
 - dosage limitations: prioritize use!
 - drug cost and insurance coverage issues
 - Antigenicity: avoid boosters
 - Note that there is no clear dose equivalence formulas when converting from one serotype to the other

BOTULINUM TOXIN FORMULATIONS

- FDA-approved indications
 - Note: doses are NOT equivalent across preparations

Botulinum Toxin A:
- onabotulinumtoxinA – upper limb spasticity in adults, cervical dystonia, strabismus and blepharospasm, wrinkled face, spasmodic torticollis, hemifacial spasm, preventive tx of chronic migraines
- abobotulinumtoxinA – glabellar frown lines, cervical dystonia
- incobotulinumtoxinA – cervical dystonia, blepharospasm

Botulinum Toxin B
- rimabotulinumtoxinB - Cervical dystonia

ORAL MEDICATIONS

Baclofen

- **Mechanism and site of action:**
 - pre- and postsynaptic GABA B receptors
 - dorsal spinal cord and brainstem
 - depresses monosynaptic and polysynaptic reflexes that facilitate spasticity

- **Pharmacokinetics:**
 - Peak: within 2 hours
 - t1/2 = 3.5 hours (2-6 hours)

ORAL MEDICATIONS:

Alpha-2 Adrenergic Agonist

Tizanidine

- Structurally similar to clonidine, but only 1/10th to 1/50th cardiovascular potency
- Site of action: Spinal and supraspinal → spasticity of spinal and cerebral origin
- Mechanism: Reduces excitatory AA (glu, asp), substance P release from presynaptic spinal interneurons; facilitates inhibitory AA (glycine)
- Depresses polysynaptic reflexes (not monosynaptic)
- **Pharmacokinetics**
 - Peak: 1 hour
 - t1/2 = 2-4 hours
ORAL MEDICATIONS: Dantrolene

- Hydantoin derivative; only FDA-approved peripherally acting antispasticity agent
- Mechanism:
 - Blocks Ca release from sarcoplasmic reticulum
 - Decreases strength of contraction
- Pharmacokinetics:
 - t1/2 = 15 hours po, 12 hours IV
 - Peak 3-6 hours
 - Active metabolite peaks 4-8 hour

ORAL MEDICATIONS BENZODIAZEPINES

- DIAZEPAM
 - Mechanism: centrally-acting, do not directly bind to GABA receptors, but induce release of GABA from GABA A neurons
 - Antiepileptic, hypnotic, anxiolytic, antispasticity properties
 - Central site of action: brainstem reticular formation > spinal polysynaptic pathway
 - Increases presynaptic inhibition of afferents at spinal cord level
 - Depresses monosynaptic and polysynaptic transmission

INTRATHECAL BACLOFEN PUMP

- Indication: Approved by FDA to manage severe spasticity resulting from spinal cord or cerebral (brain) disease or injury
- Delivers precise, programmable dose of liquid baclofen directly into the intrathecal space
- Intrathecal delivery 100x more potent than po (Dralle 1985); can minimize systemic adverse side-effects

Medical Complications in SCI: Summary

- Not well recognized or understood by physicians outside of PM&R
- PM&R physicians need to provide expertise
- Identifying correct diagnosis
- Recommending treatments that take into account the physiologic alterations after SCI

- Bladder Management for Adults with SCI
- Preservation of the Upper Limb following SCI
- Respiratory Management Following SCI
- Depression Following SCI*
- Neurogenic Bowel Management in Adults with SCI*
- Outcomes Following Traumatic SCI*
- Acute Management of Autonomic Dysreflexia, 2nd Edition*
- Pressure Ulcer Prevention and Treatment Following SCI*
- Prevention of Thromboembolism in SCI, 2nd Edition
- Early Acute Management in Adults with Spinal Cord Injury
- Sexuality and Reproductive Health in Adults with SCI
* Consumer Guide available

Practice Question #1
- Which of the following conditions comprises the leading cause of death for individuals with paraplegia?
 - A) cancer
 - B) heart disease
 - C) respiratory disease
 - D) sepsis

Practice Question #2
- During an episode of autonomic dysreflexia, which of the following is expected to be present below the level of SCI?
 - A) piloerection
 - B) sphincter relaxation
 - C) skin flushing
 - D) extremity warming
Practice Question #2

- During an episode of autonomic dysreflexia, which of the following is expected to be present below the level of SCI?
- A) piloerection
- B) sphincter relaxation
- C) skin flushing
- D) extremity warming

Practice Question #3

- Characteristic features of bone loss after SCI include which of the following?
- A) Predilection for cortical rather than trabecular bone
- B) Onset is 12 months after injury
- C) Occurs almost exclusively below the level of SCI
- D) The greatest loss and highest fracture risk is at the hips

Practice Question #4

- Which of the following lung volumes is unchanged or increased after SCI?
- A) Residual volume
- B) Total lung capacity
- C) Vital capacity
- D) FEV₁
Practice Question #4

- Which of the following lung volumes is unchanged or increased after SCI?
 - A) Residual volume
 - B) Total lung capacity
 - C) Vital capacity
 - D) FEV₁

Practice Question #5

- What would you advise a 50 y/o M with CS AIS A tetraplegia regarding his risk for heart disease as a result of his SCI versus the general population?
 - A) His SCI is an independent risk factor leading to greater cardiovascular morbidity.
 - B) Arm ergometry is the most appropriate exercise tolerance test.
 - C) He is likely to experience typical cardiac pain.
 - D) His HDL levels are more likely to be <35.