The Neurogenic Bladder
Brandon Haynes, MD
Resident Physician
Department of Urology

Jelena Svircev, MD
Assistant Professor
Department of Rehabilitation Medicine

Outline
• Anatomy and Bladder Physiology
• Bladder Dysfunction in SCI
• Patient Assessment and Work-up
• Bladder Management and Treatment
• Complications of the Neurogenic Bladder

UROLOGY
• Anatomy
• Upper urinary tract
 – Kidneys
 – Ureters
• Lower urinary tract
 – Bladder
 – Urethra

Lower Urinary Tract
Bladder
 Detrusor: multi-layered smooth muscle, thickest at the base and bladder neck
 Urethra: 3-4 cm in women, ~20 cm in men

Urethral sphincters:
 Internal: primary continence mechanism (increased muscle tone during filling)
 External: striated muscle under voluntary control

Kidney
Ureter
Bladder
Urethra
Sphincters
Muscular bladder wall
Ureters
Bladder
Sphincter muscles
Urethra
Bladder filling

- During filling:
 - minimal rise in bladder pressure due to viscoelastic properties of bladder wall (allow for compliance)
 - Increase in urethral sphincter EMG activity

Bladder emptying

- During emptying:
 - Urethral sphincter EMG activity stops
 - drop in urethral sphincter pressure
 - Detrusor contraction (strong enough and long enough)
 - urethral sphincter should remain open throughout voiding
 - should be no/minimal PVR

Bladder volumes

- First sensation of bladder filling: 100-200ml
- Sensation of bladder fullness: 300-400ml
- Urgency: 400-500ml
Neuroanatomy of Voiding

- Innervation of the bladder and urethra is complex
- Involvement of both
 - Somatic Nervous system
 - Autonomic Nervous system

Neuroanatomy of Voiding

- Cerebral cortex and cerebellum
 - inhibitory action on voiding reflex
- Pontine micturition center
 - generation of the normal voiding reflex
 - coordination of detrusor and sphincters
- Spinal cord: ascending and descending tracts
 - augmentation of reflex
- Peripheral innervation
 - Bladder: S2-4 (pelvic n.), T10-L2 (hypogastric n.)
 - Bladder neck: T10-12
 - External sphincter: S2-4 (pudendal n.)

Parasympathetic Efferents

- Parasympathetic cholinergic innervation stimulates detrusor contraction and bladder outlet relaxation
- pelvic nerves (S2-4)
Sympathetic Efferents

- Sympathetic innervation facilitates urine storage.
- Detrusor relaxation and bladder outlet contraction.
- (T10-L2) hypogastric plexus.

Somatic Efferents

- Somatic innervation via pudendal nerve (S2-S4) provides volitional control to striated muscle of external urethral sphincter.

Lower Urinary Tract Receptor Types

- Detrusor cholinergic (Ach) receptors ➔ parasympathetic control ➔ bladder contraction
- Detrusor Beta-adrenergic (NE) receptors ➔ sympathetic control ➔ bladder relaxation, facilitates storage and filling
- Bladder neck/proximal urethra alpha-adrenergic (NE) receptors ➔ sympathetic control ➔ facilitates storage and filling

Bladder Dysfunction in SCI

- Anatomy and Bladder Physiology
- Bladder Dysfunction in SCI
- Patient Assessment and Work-up
- Bladder Management and Treatment
- Complications of the Neurogenic Bladder
Spinal lesion above sacral cord
- Detrusor Hyperreflexia
- Urge Incontinence
- Hypocontractility
- Sphincter Dysynergia
- Diminished sensation
- Incomplete emptying

Spinal lesion at sacral cord
- Areflexia
- External urethral sphincter laxity
- Diminished sensation
- Large residuals
- Stress incontinence

Bladder behavior after SCI

<table>
<thead>
<tr>
<th></th>
<th>"Hyper-reflexic" blader</th>
<th>"Flaccid" bladder</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uninhibited detrusor contraction with bladder filling</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Location of SCI</td>
<td>Above level of sacral cord</td>
<td>At or below level of conus medullaris</td>
</tr>
<tr>
<td>Neurologic exam</td>
<td>Intact BC reflex normal anal sphincter tone</td>
<td>Absent BC reflex Absent anal sphincter tone</td>
</tr>
<tr>
<td>Risks</td>
<td>High detrusor pressure, detrusor-sphincter dysynergia (DSD), vesico-ureteral reflux, hydronephrosis, upper tract deterioration</td>
<td>Low risk for high detrusor pressure Low risk for DSD, lower but present risk for upper tract deterioration</td>
</tr>
</tbody>
</table>

Detrusor sphincter dyssynergia (DSD)
- Failure of urinary sphincter relaxation during bladder contraction
- Occurs in individuals with suprasacral lesions
- Can cause high intravesical pressure
Clinic Evaluation

- **History**
 - medications that impact voiding function
 - muscle relaxants, anti-depressants, anti-cholinergics, etc
- **GU neurology evaluation**
 - assess for sensation, bulbocavernosal reflex, and anal tone
- **Urinalysis/culture**
- **Post void residual urine**

Assessment of SCI

- **Annually:**
 - Urinalysis ➔ if indicated: culture and sensitivity
 - Serum Cr
 - Screening of upper tracts with Renal U/S
 - hydronephrosis, stones, parenchymal abnormality
 - Further diagnostic imaging (CT scan, renal scan) only when clinically indicated
Urodynamic

- Can answer specific question such as:
- Is detrusor overactivity the cause of incontinence?
- Is bladder outlet obstruction contributing to urinary retention?
- Is there evidence of detrusor sphincter dysynergia?
- Is bladder compliance impaired?

Bladder management Goals

- maintain low intravesical pressure
- complete emptying
- minimize/eliminate incontinence
- Don’t make bladder emptying dependent on others
Intermittent catheterization (IC)

- Individual should have:
 - Adequate hand function
 - Ability to empty bladder q4-6h
 - Adequate storage of urine between caths
 - Sufficient motivation/cognition to keep volumes less than 500 ml per cath

Indwelling catheters

- Urethral or suprapubic
- Used if intermittent catheterization is not possible or refused
- Well tolerated but higher risk of infection and urethral complications (false passage, urethral erosion, periurethral abscess, etc)

Indwelling catheters

- Changed monthly
- Must be well secured which avoids traction and kinking of catheter

Condom catheters

- Must have:
 - Reflex voiding at safe intravesical pressures with low residual volumes or
 - Intervention to decrease outlet resistance (sphincterotomy)
Bladder Management Algorithm

| Does bladder consistently empty to < 300 cc with spontaneous voids? |
|--------------------------|--------------------------|
| **NO** | **YES** |
| Good hand, cognitive function? |
| **NO** | **YES** |
| Spontaneous voiding |
| **Continent and able to self-take?** |
| **YES** | **NO** |

Detrusor overactivity “spastic bladder” Treatments

- **Anticholinergic medications** (oxybutynin, tolterodine, solafenacin, etc) inhibit detrusor contractions and increase bladder storage
- **Bladder onabotulinum toxin A injection**

Onabotulinum toxin injection

- FDA approved for symptoms due to neurogenic overactivity
- Blocks release of Ach from presynaptic nerve terminals, resulting in detrusor paralysis
- Duration of efficacy: 6-12 mos
- **Minimal side effects:** UTI and bleeding

Bladder Chemodenervation

- Treats detrusor overactivity
- Improves bladder compliance and increases bladder capacity
- Research underway to examine potential improvements in autonomic dysreflexia symptoms and patient-reported UTI frequency
Bladder Chemodenervation

Common urologic complications in spinal cord injury

Urinary tract infections (UTI):
- 50-80% in first year post-injury
- 20% annual incidence after acute period

UTI

- 3 criteria should be met for an individual to be considered as having a UTI:
 1. Significant bacteriuria
 2. Pyuria
 3. Signs and symptoms of UTI:
 fever, chills, cloudy or malodorous urine, malaise, incontinence, increase spasticity, autonomic dysreflexia

Anatomy and Bladder Physiology
Bladder Dysfunction in SCI
Patient Assessment and Work-up
Bladder Management and Treatment
Complications of the Neurogenic Bladder
UTI: Diagnosis
- Urine culture and sensitivity obtained prior to starting therapy
- If there are known/suspected renal stones or recurrent/persistent UTIs, imaging is recommended

UTI: Treatment
- Mild/moderately ill individuals are started empirically with oral antibiotics
- Antibiotics tailored to culture sensitivity
- Review of prior urine cultures may guide in selection of empiric antibiotics
- Treatment should last 7-10 days
- Asymptomatic bacteriuria SHOULD NOT be treated

Stone Formation Risk Factors in SCI
- Immobility ➔ increased bone turnover and calcium delivery to kidneys
- Urinary stasis due to impaired emptying
- Foreign bodies (catheters) serve as stone nidus
- Recurrent infections

Renal Stones
- Generally all stones treated in patients with SCI
- Increasing stone burden, renal insufficiency, and/or recurrent infection necessitate treatment
- Multiple surgical options for stone treatment
Hydronephrosis

- vesico-ureteral reflux
- obstructing stones
- obstructing tumors
- ureteral stricture, scarring, or external compression

Hydronephrosis Treatment

- Decrease bladder pressures (increase CIC frequency or place indwelling foley catheter)
- Treat obstructing stone, tumor, or stricture
- If persists, urodynamics may be next step to further define cause

Autonomic Dysreflexia

- Occurs in injuries at level T6 and above
- Due to impairment of sympathetic efferents
- Bladder (distension, infection, etc) often nidus of AD symptoms
- Ensure bladder decompression during episode