Overview

1. Ankle and foot functional anatomy and biomechanics
2. Anatomic based differential diagnosis
 a. Epidemiology
 b. Clinical presentation
 c. Management strategies

KEY CONCEPT

Ankle: Functional Anatomy and Biomechanics

- Three joints
 1. Talocrural (tibiotalar)
 2. Distal tibiofibular
 3. Subtalar

Talocrural Joint

- Dorsiflexion
 - Very stable due to bony articulations
- Plantarflexion
 - Trochlea (of the talus) moves anteriorly in the tibial mortise, lessening bony stability
 - Creates more reliance on ligamentous stability
Talus

- **Body**
 - Three continuous facets for articulations
 - Superior: tibia
 - Lateral and medial: malleoli
 - Trochlea (superior surface)
- **Posterior process:**
 - Medial and lateral tubercles form a groove for the FHL tendon
 - Os trigonum: un-united lateral tubercle
- **Lateral process:**
 - Snowboarders fracture

Distal Tib-Fib Joint

- **Small amount of rotation**
- **Inferior tibio-fibular ligament**
 - The syndesmosis
 - “high ankle sprain”

Subtalar Joint

- **Between talus and calcaneus**
- **Anterior & posterior articulations** separated by the sinus tarsi
- **Inversion and eversion**
- **Excessive or delayed motion**
 - Risk factor for running injuries
- **Function:**
 - Shock absorption
 - Allows foot to accommodate to uneven ground
 - Transmits forces efficiently

Pronation

- **Triplanar motion**
 - Ankle dorsiflexion
 - Subtalar eversion
 - Forefoot abduction
- **Assists ankle and knee with impact shock absorption**
- **Making the foot a relatively mobile, adaptive structure**

Supination

- **Triplanar motion**
 - Ankle plantarflexion
 - Subtalar inversion
 - Forefoot adduction
- **Locks the hind and midfoot to act as a rigid lever**
 - At heelstrike and push-off
Pronation • Triplanar motion
 – Ankle dorsiflexion
 – Subtalar eversion
 – Forefoot abduction
• Assists ankle and knee with impact shock absorption
• Making the foot a relatively mobile, adaptive structure

Supination • Triplanar motion
 – Ankle plantarflexion
 – Subtalar inversion
 – Forefoot adduction

Pronation in the Kinetic Chain
primarily eccentric muscle contractions to provide joint control and shock absorption
• Ankle dorsiflexion
• Tibial internal rotation
• Knee flexion & adduction (valgus)
• Femoral internal rotation
• Hip flexion & adduction
• Pelvis rotates anteriorly

Supination in the Kinetic Chain
primarily concentric muscle contractions (gluteals!) to provide acceleration and propulsion
• Ankle plantarflexion
• Tibial external rotation
• Knee extension & abduction (varus)
• Femoral external rotation
• Hip extension & abduction
• Pelvis rotates posteriorly

Differential Diagnosis

- Ankle Pain

 - Lateral
 - Medial
 - Anterior
 - Posterior
Differential Diagnosis

1. Lateral Ankle Sprain
2. Peroneal tendon tendinopathy / subluxation
3. Lateral soft tissue impingement
4. Sinus tarsi syndrome (subtalar ligament sprain)
5. Osteochondral talus injury

Lateral Ligaments

- ATFL
 - Prevents:
 - Anterior talar translation in DF
 - Inversion when in PF
 - Weakest: most commonly torn
- CFL
 - Prevents inversion at talocural
- PTFL
 - Prevents posterior talar translation
 - Strongest
 - Taut only in extreme dorsiflexion; sprained only in severe ankle sprains

Lateral Ankle Sprain

- Inversion, supination, & plantarflexion
- Grading
 - I - ligamentous stretching, no gross tear
 - II - partial ligamentous tearing
 - III - complete ligamentous rupture
 - ATFL solely - 65%
 - ATFL + CFL - 20%

Provocative maneuvers

Palpate for tenderness:
- Ligaments
- Malleoli
- Talus
- Fibula - distal and proximal
- Maisonneuve fracture
- Base of the 5th metatarsal
- Peroneal tendons

Anterior drawer - ATFL
Talar tilt (inversion test) - CFL
Van Dijk 1996 JBJS Br
delay PxEx 5 days to improve sensitivity and specificity
Ottawa Ankle Rules

Ankle Sprain: treatment

1. Reduce pain and swelling: PRICE
 a. Functional, removable brace (air splint) to control inversion/eversion generally recommended over rigid immobilization (walking boot), except for maybe grade III injuries
 b. WBAT if no associated fractures
2. Rehabilitation
 a. Restore ROM
 b. Restore neuromuscular control - esp. peroneals
 c. Strengthen
 d. Proprioceptive training - for balance and postural control (wobble board)
3. Functional training
 a. Once pain-free, full ROM, strength > 75%, adequate proprioception and balance
 b. To increase power and neuromuscular control in multiple planes
 c. Plyometrics, agility drills, closed chain single leg exercises
4. Return to sport
5. Surgical management: Rare (Modified Brostrom Procedure)
 a. For grade III injuries after rehab has failed and other causes of pain have been ruled out

Ankle Sprain: treatment

KEY CONCEPT

Chronic Pain and Functional Loss after Ankle Sprain

1. Inadequate rehabilitation
2. Other sources?
 a. Talar dome injury
 i. 7-22% of ankle sprains
 ii. Commonly missed on initial evaluation
 b. Other osteochondral injury
 c. Peroneal tendon involvement
 d. Lateral soft tissue impingement
 i. Scarring or synovial hypertrophy from severe sprain or recurrent strains
3. Imaging: MRI
Peroneal tendinopathy

1. Excessive pronation and eversion
2. Pain with resisted eversion
3. Treatment
 a. Rehabilitation
 b. Foot orthoses to limit pronation
4. Subluxation
 a. Can occur after acute dorsiflexion-eversion stress
 b. Peroneal retinaculum tears or incompetence
 c. Tendon subluxes anteriorly to lateral malleolus
 d. Treatment
 i. Injections
 ii. Limit weightbearing
 iii. Surgery

Differential Diagnosis

1. Deltoid ligament sprain
2. Posterior tibialis tendinopathy
3. FHL tendinopathy
4. Navicular stress fracture
5. Medial calcaneal nerve entrapment
6. L4 radiculopathy

Medial Ligaments

- Deltoid
 - Tibionavicular
 - Anterior tibiotalar
 - Posterior tibiotalar
 - Tibiocalcaneal
- Attaches medial malleolus to the talus, navicular, and calcaneus

Deltoid Ligament Sprain

1. Less common injury
2. Eversion stress or forced ER on planted foot
3. Associated fractures common
4. Rehabilitation and return to play course is protracted
Posterior Tibialis Tendinopathy
1. Passes behind medial malleolus and inserts on navicular
2. Controls descent of the medial longitudinal arch
3. Worsened by excessive pronation from rapid increase in training intensity or poor footwear
4. Provocative maneuver: resisted inversion
5. Management
 a. Rest, rehabilitation
 b. Proper footwear +/- orthosis that controls pronation
 c. Surgical if complete tear due to the effect on the arch

Medial Longitudinal Arch
1. Posterior Tibialis
 a) Dynamic stabilizer of MLA
2. Spring Ligament: plantar calcaneo-navicular ligament
 a) Connects calcaneus to navicular along plantar surface
 b) Supports the head of the talus
 c) Static stabilizer of MLA

Medial calcaneal neuropathy & Tarsal tunnel syndrome

Differential Diagnosis
Ankle Pain
Lateral | Medial | Anterior | Posterior
1. Anterior ankle impingement
2. High ankle (syndesmosis) sprain
3. EHL tendinopathy
4. Tibialis anterior tendinopathy
5. Osteochondral talar dome injury
6. L5 radiculopathy
Anterior Impingement
1. Soccer (kicking) and Ballet (plie/lunge)
2. Forced dorsiflexion
3. Bony lip develops on the anterior tibia or the anterior superior talus
4. Impinge on overlying soft tissue or each other
5. Provocative maneuver: extreme DF (lunge)
6. Management:
 a. Rest, rehabilitation, talocrural mobilization
 b. Surgical excision

Syndesmosis Sprain
1. High ankle sprain
2. Associated with fractures
3. Provocative maneuver: External Rotational Stress Test & Squeeze test
4. Grade III tears
 a. Tib-Fib widening on plain films
 b. Associated fracture
5. Management
 a. Grade I-II: rest, protracted rehabilitation
 b. Grade III: cast immobilization or surgical

Maisonneuve Fracture
- Rupture of anterior tibiofibular ligament, interosseus membrane, and medial deltoid ligament
- May result in proximal fibular fracture

TA and EHL tendinopathy
Multiple causes:
- dorsiflexion overuse secondary to talocrural joint restriction
- running downhill
- tight shoelaces
SPLATT

Split Anterior Tibialis Tendon Transfer
(spasticity management)

Surgically divide AT tendon to move the lateral half attachment to cuboid and 3rd cuneiform:
- to correct equino-varus deformity
- spastic gastroc/soleus and AT
- foot is plantarflexed, inverted, and supinated
- creates an eversion force
- in conjunction with achilles lengthening

Differential Diagnosis

Ankle Pain

- Lateral
- Medial
- Anterior
- Posterior

1. Achilles tendinopathy / rupture
2. Retrocalcaneal bursitis
3. Haglund’s syndrome
4. Posterior ankle impingement
5. Sever's disease
6. S1 radiculopathy

Achilles tendinopathy

1. Common in runners, particularly older age group
2. Most tender area 2-6 cm above the calcaneal insertion
3. Biomechanical factors
 a. Excessive pronation
 b. Subtalar joint restriction
 c. Limited ankle dorsiflexion
 d. Weak gastroc-soleus
4. Clinical diagnosis; MRI and US can evaluate for tear/rupture
5. Thompson’s test for rupture

Achilles Rupture: Thompson’s Test
Management of Achilles tendinopathy

- Rest, immobilization, rehabilitation
- Correct contributing biomechanical faults
- Eccentric calf strengthening
- Percutaneous procedures

Retrocalcaneal Bursitis

- Achilles tendon
- Calcaneus
- Normal bursa
- Swollen bursas

Haglund's syndrome

- Retrocalcaneal bursitis and achilles tendonitis in association with a retrocalcaneal exostosis or prominent posterior superior calcaneus (Haglund's deformity)
Haglund’s Syndrome

Posterior Impingement

Sever’s Disease

Foot: Functional Anatomy & Biomechanics

Rearfoot
- calcaneus, talus, soft tissues

Midfoot
- navicular, cuneiforms, cuboid, soft tissues

Forefoot
- metatarsals and phalanges

Lisfranc Chopart
Midfoot
- Navicular, cuneiforms, cuboid
- Very little motion, in isolation
- Working together
 - Accommodation to the ground
- Common injuries
 - Stress fractures
 - Ligamentous injuries

Forefoot
- Metatarsals & phalanges
- Tarsometatarsal joints = Lisfranc’s joints
- Base of 2nd metatarsal
 - in a recessed position as it articulates with the 2nd cuneiform
 - Thus, inherently more rigid → susceptibility to stress fractures
- 5th metatarsal
 - More mobile
 - Less common as a site of stress fx
 - When one does occur, healing may be protracted due to mobility

KEY CONCEPT

Differential Diagnosis

1. Achilles tendinopathy / rupture
2. Retrocalcaneal bursitis
3. Haglund’s syndrome
4. Posterior ankle impingement
5. Sever’s disease
6. S1 radiculopathy
Differential Diagnosis

1. Plantar fasciitis
2. Fat pad contusion
3. Calcaneal stress fracture
4. Tarsal tunnel syndrome
5. Medial calcaneal nerve entrapment
6. S1 radiculopathy

Plain films

- Rule out calcaneal stress fracture
- Spondyloarthropathy: "fluffy periostitis"
- Can visualize heel spurs
 - Of 125 pts with heel spurs, only 10% were symptomatic

Plantar Fasciitis

- 11-15% of all adult foot symptoms seeking medical care
- 10% of all running injuries
- Bilateral in 15-30%
- Peak incidence: Bimodal
 - General population: 40-60 yo
 - Runners: much younger
- Pain at the anteromedial process of medial calcaneal tubercle
- Worse with first few steps in a.m. and later at end of day
- 80% of resolve within one year

MRI

Plain films

MRI
Risk Factors (JBJS 2003)

- Decreased ankle DF (tight calves)
 - < 0° DF has 23x risk of > 10° DF
- Obesity
 - BMI > 30 has 6x risk of < 25
- Occupations requiring prolonged standing
- Repetitive microtrauma
 - In runners

Treatment

- Rest- Limit offending activities
- Shoe modification- Heel cups, gel inserts, orthotics
- Night splints
- Taping
- Immobilization
- PF stretching
- Calf stretching
- Intrinsic foot strengthening
- Manual friction massage
- Corticosteroid injection/PRP

Differential Diagnosis

1. Posterior tibialis tendinopathy
2. Peroneal tendinopathy
3. Tarsal fracture (navicular)
4. Cuboid subluxation
5. Anterior tarsal tunnel syndrome

Navicular Stress Fracture

1. Common in runners
2. Vague midfoot pain
3. Tenderness over the proximal, dorsal surface of navicular
4. MRI or Bone Scan + CT
5. Management
 a. NWB (cast) x 6 weeks
 b. Post-immobilization rehab
 c. Worry about non-union central third
Cuboid Subluxation

1. Associated with peroneal tendinopathy
2. Caused by excessive traction of the peroneus longus
3. Commonly seen in overpronators
4. Cuboid is subluxed medially
5. Treatment
 a. Manipulation of the cuboid in an upward and lateral direction
 b. Treat peroneal tendon issue if present

Anterior Tarsal Tunnel Syndrome

- Entrapment of the deep peroneal nerve under the extensor retinaculum
- Aching and numbness of the dorsal midfoot, extending to the first web space
- Cause: poor fitting shoes

Differential Diagnosis

1. Metatarsalgia
2. Metatarsal stress fractures
3. Morton’s neuroma
4. Sesamoiditis / stress fracture
5. Turf toe
6. Gout
7. Hallux valgus
8. Hallux rigidus

Metatarsalgia

1. Diagnosis of exclusion
2. Potentially related to excessive pronation and further stress on the 1st and 2nd metatarsal heads
3. Management
 a. Metatarsal pad
 b. Orthosis with a cut-out for the painful metatarsal head
Metatarsal Stress Fractures

1. Common in runners & ballet, females > males
2. Second > third
3. 2nd metatarsal head is relatively immobile as it is tucked between the medial and lateral cuneiforms
4. Treatment
 a. Relative rest until pain free
 b. If walking is painful - NWB
 c. Stiff soled shoe or walking boot
 d. Average return to sport is 8 weeks (variable)

5th Metatarsal Fractures

1. Jones fracture
 a. Diaphyseal-metaphyseal jxn fracture
 b. Inversion/plantarflexion injury vs. overuse
 c. NWB cast x 6-8 weeks vs. screw fixation
2. Tuberosity at the base
 a. Peroneus brevis avulsion injury after an acute ankle sprain
 b. Immobilization for pain relief then protect mobilization and rehabilitation
3. Spiral fracture of the distal third
 a. Non-displaced: weight-bearing rest
 b. Displaced: 4-6 weeks of cast immobilization

Stress Fractures Summary

<table>
<thead>
<tr>
<th>High Risk</th>
<th>Low Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medial malleolus</td>
<td>Distal fibula</td>
</tr>
<tr>
<td>Navicular</td>
<td>Metatarsal shaft</td>
</tr>
<tr>
<td>Proximal 5th metatarsal</td>
<td></td>
</tr>
<tr>
<td>Sesamoids</td>
<td></td>
</tr>
</tbody>
</table>

Morton’s Neuroma

1. Swelling of nerve and scar tissue around the interdigital nerves
2. Usually between 3rd-4th MT
3. Toe pain and paresthesias, worsened with weightbearing and narrow fitting shoes
4. Metatarsal hypermobility may contribute
5. Management
 a. Metatarsal pad - to distribute forces more evenly
 b. Intrinsic strengthening to improve transverse arch
 c. Corticosteroid injection
 d. If excessive pronation, orthosis
 e. Surgical excision

Sesmoid injuries

1. Act as pulleys for the FHB tendons and stabilize the first MTP joint
2. Bipartite sesmoid prevalence: 30%
3. Potential injuries
 a. Stress fracture
 i. Difficult to see on plain films
 ii. Prone to non-union
 iii. NWB X 6 weeks
 b. Sesmoiditis
 i. Sprain of bipartite sesmoid
 ii. Sprain of sesmoid-MT articulation

Turf Toe

1. First MTP joint sprain
2. Excessive forced dorsiflexion
3. Incidence increased with the use of non-slip artificial turf
4. Plain film appropriate to r/o fracture
5. Management
 a. Relative rest, protected weightbearing
 b. Taping and stiff-soled shoes