

Outline

- Epidemiology
- Cause
- Levels
- Evaluation & Management
- Rehabilitation Program
- Prosthetic Systems
- Questions

VETERANS HEALTH ADMINISTRATION

Epidemiology

- "Prevalence" is determined by the number of people living with amputations and looks at how many people are affected
- "Incidence" refers to the number of new cases, usually per year, per population at risk.

VETERANS HEALTH ADMINISTRATION

Prevalence

- There are 1.2 to 1.9 million people in the United States living with limb loss, excluding finger tip and toe amputations
- One in every 200 people in the U.S.

Incidence

- Limb Loss Research and Statistics Program, 2008:
 - 185,000 Americans undergo amputation each year.
- Dillingham, 2002:
 - 1,199,111 hospital discharges that involved amputation or congenital limb deficiency from 1988 through 1996
 - 133,235 amputations per year
 - 1996 annual rate of 52 amputations per 100,000 US population.
 - Upper limb amputation incidence rate was 5/100,000
 - Lower limb amputation incidence rate was 47/100,000

VETERANS HEALTH ADMINISTRATION

Causes

- Trauma
- Congenital
 - deformities dysmelia
 - shortened limb phocomelia

 - absence of upper limb amelia
- Cancer
 - tumors osteogenic sarcoma, ewing's sarcoma
- Disease related Dysvascular
 - Emboli from meningococcemia may cause auto-amputation of limbs or digits and can affect all 4 limbs

VETERANS HEALTH ADMINISTRATION

Causes- By Age

- Birth-15 years old:
 - Most common: Congenital disorders
- 15 45 years old:
 - Most common: Trauma
- 70% of Upper Limb Amputation occurs in individuals younger than 64 years old
- Large number of individuals leading very active lives with upper limb amputation

Congenital Upper Limb Deficiency

- 4.1 / 10,000 live births
- Most cases have no hereditary implications
- Craniofacial anomalies are associated with limb deficiencies
 - 5 associated conditions:
 - 1. TAR syndrome: thrombocytopenia with absence of radius
 - 2. Fanconi's Syndrome: anemia, leukopenia
 - 3. Holt-Oram Syndrome: congenital heart disease
 - 4. Baller-Gerold Syndrome: craniosynostosis
 - 5. VACTERL: Vertebral defects, Anal atresia, Cardiac defects, Tracheoesophageal fistula, Renal dysplasia, Limb Deficiency

VETERANS HEALTH ADMINISTRATION

Levels- ISPO Classification

- Digit Amputation
- Partial Hand
- Wrist disarticulation
- Transradial (57%)
- Elbow disarticulation
- Transhumeral (23%)
- Shoulder disarticulation
- Forequarter

VETERANS HEALTH ADMINISTRATION

Wrist Disarticulation Amputation

- Advantages:
 - Maximum Pronation/Supination
 - Maximum leverage for lift/push
- Disadvantages:
 - Bulky distal end
 - Poor prosthetic cosmesis
 - Need 3-4 cm for wrist unit

VETERANS HEALTH ADMINISTRATION

Trans-radial Amputation

- Long = 55-90 % of radius intact
 - Ideal length for function and cosmesis
 - Maintains most of pron/sup and leverage
- Short = 35-55 % of radius intact
 - Still very functional and fittable
- Very short = 0-35 % of radius
 - Difficult socket fit and limited function

VETERANS HEALTH ADMINISTRATION

13

Elbow Disarticulation Amputation

- Advantages:
 - Maximum leverage for lift/push
 - Humeral condyles assist with suspension
- Disadvantages:
 - Bulky distal end
 - Poor prosthetic cosmesis
 - Must use external elbow joints
 - Need 4-5 cm for electric elbow

VETERANS HEALTH ADMINISTRATION

1.4

Trans-humeral Amputation

- Long = 50-90 % of humerus intact
 - Ideal length for function and cosmesis
- Short = 30-50 % of humerus intact
 - Limited leverage for lift/push
 - Socket design now limits shoulder motion
- Very short = Humeral neck = 0-30 % intact
 - Fit as shoulder disarticulation

VETERANS HEALTH ADMINISTRATION

15

Shoulder Disarticulation Amputation

- Difficult socket design
- Difficult to achieve functional prehension
- Heavy prosthesis may not be tolerated
- Patient may choose to be independent without prosthesis if other hand intact

VETERANS HEALTH ADMINISTRATION

Forequarter Amputation

- Loss of entire limb and scapula
- Most commonly caused by tumor resection
- Lightweight cosmetic prosthesis is the most practical device

VETERANS HEALTH ADMINISTRATION

17

Bilateral Upper Limb Amputation

- Fit the longer residual limb with a prosthetic device for functional prehension (pinch and gross grasp)
- Fit the remaining limb as an assist for longer limb
- Use any and all available assistive devices to achieve independence in self-care and ADL's

VETERANS HEALTH ADMINISTRATION

10

Evaluation of the Patient

Detailed History:

- Cause of amputation
- Hospital course, time frame
- Repeated surgical procedure
- Skin grafts, muscle flaps
- Nerve injury (brachial plexus, peripheral nerve)
- Other injuries (ortho, spine, brain)

VETERANS HEALTH ADMINISTRATION

19

Evaluation of the Patient

Pain History:

- Pain prior to amputation
- Pain related to surgery/procedures
- Phantom sensations
- Phantom pain
- Pain management

VETERANS HEALTH ADMINISTRATION

Evaluation of the Patient

Social History:

- Social support system and involvement
- Work history
 - Contact/Discussions with employer
- Patient concerns about family, friends, employer
- Financial issues
- Education level

VETERANS HEALTH ADMINISTRATION

21

Evaluation of the Patient

Psychological History:

- Prior psychological issues (depression, previous disabilities, high risk-takers)
- Current feelings about amputation
- Future concerns about function
- Body image issues
- Concepts about prosthesis
- Previous experience with prosthesis

VETERANS HEALTH ADMINISTRATION

22

Evaluation of the Patient

Avocational Activities History:

- Family Responsibilities
- Sports / Fitness
- Intimacy / Sex
- Driving
- Outdoor activities (swimming)
- Hobbies

VETERANS HEALTH ADMINISTRATION

23

Evaluation of the Patient

Physical Exam:

- Single limb vs. Multiple limb involvement
- Dominant vs. Non-Dominant limb loss
- Single limb loss Examine remaining limb first in detail proximal and distal
- Check spinal alignment

VETERANS HEALTH ADMINISTRATION

Evaluation of the Patient

Physical Exam of the involved limb:

- Level of amputation, bone length
- Residual limb circumference
- Skin and soft tissue integrity
- Skin grafting or scarring, Adherent skin
- Tenderness to palpation
- Sensation throughout

VETERANS HEALTH ADMINISTRATION

25

Evaluation of the Patient

Physical Exam of the involved limb:

- Shoulder girdle muscles: (trapezius, rhomboids, pectoralis, serratus anterior, latissimus dorsi, supraspinatus, infraspinatus, subscapularis, deltoid)
- Shoulder A/PROM: glenohumeral joint (flexion/extension, abd/adduction, int/ext rotation) scapulo-thoracic rotation and stability
- Cervical spine mobility

VETERANS HEALTH ADMINISTRATION

26

Evaluation of the Patient

Physical Exam of the involved limb:

- Strength testing at elbow, wrist
- A/PROM testing at elbow, wrist
- Any remaining segments of hand

VETERANS HEALTH ADMINISTRATION

27

Management

Understand differences b/w UE and LE limb loss

- Fewer peers
- Less prosthetic fabrication experience
- Many fewer experienced therapists
- Multiple choices of prosthetic components and operating systems with large variation in cost
- Easier to function with remaining limb

Management

Education – Pre-prosthesis training program:

- Need for early therapy to mobilize joints and maintain strength
- Regain independence in self-care and mobility
- Residual limb shaping and shrinking
- Pain control
- Psychological issues
- Peer support

VETERANS HEALTH ADMINISTRATION

20

Management

Pre-prosthesis training program:

- Limb shaping with figure 8 ace wrap/shrinker
- Wound care and healing issues
- Strengthening of residual limb muscles for potential myoelectric control
- Strengthening of proximal muscles for potential body powered control
- ROM exercises at wrist, elbow, shoulder

VETERANS HEALTH ADMINISTRATION

20

Management

Education – Prosthesis:

- Discuss fitting/fabricating prosthesis and component selection
- Discuss prosthesis timeline
- Explain cosmetic vs. functional issues
- Inquire about insurance coverage for prosthesis
- Clarify patient concerns or misconceptions about prosthesis

VETERANS HEALTH ADMINISTRATION

31

Management

Prosthesis training program:

- Independent with ADLs using adaptive equipment
- · Desensitizing techniques for residual limb
- Scar management
- Pain control
- Return locus of control

VETERANS HEALTH ADMINISTRATION

Management

Long term Management:

- Lifetime comprehensive management by amputee clinic team
- Skin tolerance issues
- Return to driving
- Return to work/school
- Return to avocational activities and sports

VETERANS HEALTH ADMINISTRATION

33

Prosthetic Systems

Why are we ordering a prosthesis?

- Prehension
- -Movement
- -Symmetry
- Balance
- -Cosmesis

Control Options

- Passive prosthesis
 - Cosmetic, allows passive positioning of joints or TD
- Body powered prosthesis
 - Uses proximal body movements to position joints/TD
- Myoelectric prosthesis
 - Uses surface electrodes to detect voluntary muscle activity in residual limb to activate joints/TD
- External powered prosthesis
 - Uses switch control to position joints/TD

VETERANS HEALTH ADMINISTRATION

20

Passive Prosthesis • Multiple Digit Amputations • Custom Silicone Finger Prostheses VETERANS HEALTH ADMINISTRATION

Body powered prosthesis

- Advantages
 - Lighter weight
 - Less expensive
 - More durable
 - Better feedback
- Disadvantages
 - Harnessing required
 - Less cosmetic

VETERANS HEALTH ADMINISTRATION

41

Suspension Systems

- Figure 8 Harness
- Figure 9 Harness
- Shoulder saddle with chest strap
- Self suspension
 - Northwestern University socket design
 - Muenster socket design

Body powered prosthesis

- Transradial Level
 - Body movement to operate TD
 - Forward humeral flexion
 - Bi-scapular abduction (protraction)
- Transhumeral Level
 - Body movement to operate joint/TD via dual cable
 - Shoulder depression/extension/abduction
 - "Down, back and out" to lock/unlock elbow joint

VETERANS HEALTH ADMINISTRATION

Myoelectric prosthesis

- Advantages
 - No harness required
 - Better cosmesis
 - Less muscle strength needed
- Disadvantages
 - More expensive
 - Heavier
 - More maintenance needed

VETERANS HEALTH ADMINISTRATION

50

Myoelectric prosthesis

Common myoelectric sites:

- Transradial level: Intact wrist flexors/extensors
- Transhumeral level: Intact biceps/triceps
- Shoulder disarticulation: Intact pectoralis/latissimus dorsi

Wrist Disarticulation Options

- Control system: passive, cable or myoelectric
- Socket design: soft interface, rigid frame
- Suspension: suction, harness (figure-9)
- Thin wrist unit
- Terminal device: hook, hand, robotic, specialty

VETERANS HEALTH ADMINISTRATION

52

Transradial Options

- Control system: passive, cable or myoelectric
- Socket design: single wall or double wall
- Suction suspension: wet/dry fit into hard socket or gel liner
- Harness suspension: Figure 9 (long) or Figure 8 (short)
- Flexible elbow hinge to triceps cuff
- Wrist units: Friction, quick disconnect, flexion
- Terminal device: hook, hand, robotic, specialty

VETERANS HEALTH ADMINISTRATION

...

Elbow Disarticulation Options

- Control system: passive, cable, myoelectric or hybrid
- · Socket design: single wall
- · Suction suspension, self-suspending
- Harness suspension: Figure 8
- External elbow joints
- Forearm shell
- Wrist units: Friction, quick disconnect, flexion
- · Terminal device: hook, hand, robotic, specialty

VETERANS HEALTH ADMINISTRATION

55

Transhumeral Options

- Control system: passive, cable, myo or hybrid
- Socket design: interface, single/double
- Suction suspension (gel liner or wet fit)
- Harness suspension: Figure 8, shoulder saddle with chest strap
- Mechanical elbow joints (internal locking)
- Electric elbow joints (depending on length)
- Wrist units: Friction, quick disconnect, flexion
- · Terminal device: hook, hand, robotic, specialty

VETERANS HEALTH ADMINISTRATION

Shoulder Disarticulation Options

- May consider shoulder cap for pain control
- Cosmetic vs. functional prosthesis
- Socket designs (passive, cable, myo, hybrid)
- Harness designs (figure-8, cross-chest)
- Shoulder joints: passive, switch
- Elbow joints: mechanical, electric (switch vs. myo)
- Wrist units: Friction, quick disconnect, flexion
- Terminal device: hook, hand, robotic, specialty

VETERANS HEALTH ADMINISTRATION

57

Functional Goals- U/L UE Amputee

- Independent in donning and doffing prosthesis
- Independent in activities of daily living
- Can write legibly with remaining hand
- · Drives and has returned to work
- Can tie laces with one hand and use a button hook
- Has prepared a meal in the kitchen and has been instructed in use of adaptive equipment
- Wears prosthesis daily and uses for bimanual activities at least 25% of the time

VETERANS HEALTH ADMINISTRATION

Functional Goals- B/L UE Amputee

- · Transradial amputee
 - Achieve independence with ADLs
- Transhumeral amputee
 - 25-50% achieve independence with ADLs
 - Remaining require minimal to moderate assistance
- Shoulder disarticulation
 - Dependent for all ADLs, exceptions include congenital amputees who become independent with foot skills

VETERANS HEALTH ADMINISTRATION

Usage

- Wright, 1994:
 - 135 major upper limb amputations (above wrist)
 - Usage rate by levels:
 - Wrist disarticulation: 54%
 - Below elbow: 94%
 - Above elbow: 43%
 - Shoulder disarticulation or forequarter: 40%
- Graham, 2006: Upper limb / Ireland
 - 56% used their prosthesis functionally
 - 34% used their prosthesis cosmetically

Usage

- Melendez, 1988:
 - Upper limb amputees who did not use prosthesis attributed their choice to a lack of education and information on prosthetic devices
- Biofeedback therapy
 - Computer based technology enables upper limb amputees to train to use myoelectric prosthetic devices while waiting to be fit for their prosthesis
 - Allows for early muscle strengthening and retraining

VETERANS HEALTH ADMINISTRATION

Question

- Young adult presents with traumatic injury to distal upper extremity and the orthopedic surgeon is deciding between an elbow disarticulation and a transhumeral amputation. In your discussion, you state one benefit of the elbow disarticulation level is:
- a. Control of the terminal device will be easier
- A stronger, more functional elbow joint can be fabricated.
- c. A more durable prosthesis can be fabricated.
- d. Fitting of the myoelectric prosthesis is easier.
- e. Heterotopic ossification of the humerus is avoided.

VETERANS HEALTH ADMINISTRATION

Answer

- Young adult presents with traumatic injury to distal upper extremity and the orthopedic surgeon is deciding between an elbow disarticulation and a transhumeral amputation. In your discussion, you state one benefit of the elbow disarticulation level is:
- a. Control of the terminal device will be easier
- A stronger, more functional elbow joint can be fabricated.
- c. A more durable prosthesis can be fabricated.
- d. Fitting of the myoelectric prosthesis is easier.
- e. Heterotopic ossification of the humerus is avoided.

Question

- 2. The primary bodily control motion required for opening the terminal device of a standard transradial prosthesis is:
- a. Glenohumeral flexion.
- b. Glenohumeral extension.
- c. Glenohumeral abduction.
- d. Biscapular adduction.
- e. Glenohumeral and biscapular adduction.

VETERANS HEALTH ADMINISTRATION

Answer

- 2. The primary bodily control motion required for opening the terminal device of a standard transradial prosthesis is:
- a. Glenohumeral flexion.
- b. Glenohumeral extension.
- c. Glenohumeral abduction.
- d. Biscapular adduction.
- e. Glenohumeral and biscapular adduction.

VETERANS HEALTH ADMINISTRATION

Question

- 3. The bodily control motion required to lock or unlock the prosthetic elbow of a standard transhumeral prosthesis is:
- a. shoulder depression, glenohumeral flexion and abduction.
- b. shoulder depression, glenohumeral extension and abduction.
- shoulder elevation, glenohumeral flexion and abduction.
- d. shoulder elevation, glenohumeral extension and abduction.
- e. biscapular abduction, shoulder depression and abduction.

VETERANS HEALTH ADMINISTRATION

Answer

- 3. The bodily control motion required to lock or unlock the prosthetic elbow of a standard transhumeral prosthesis is:
- a. shoulder depression, glenohumeral flexion and abduction.
- b. shoulder depression, glenohumeral extension and abduction.
- shoulder elevation, glenohumeral flexion and abduction.
- d. shoulder elevation, glenohumeral extension and abduction.
- e. biscapular abduction, shoulder depression and abduction.

abduction.

VETERANS HEALTH ADMINISTRATION

Question

- 4. In a standard transradial prosthesis, when terminal device operation close to the midline of the body is required, as when buttoning a shirt, body motion necessary to operate the terminal device is:
- a. shoulder depression.
- b. shoulder elevation.
- c. scapular retraction.
- d. scapular protraction.
- e. glenohumeral abduction.

VETERANS HEALTH ADMINISTRATION

Answer

- 4. In a standard transradial prosthesis, when terminal device operation close to the midline of the body is required, as when buttoning a shirt, body motion necessary to operate the terminal device is:
- a. shoulder depression.
- b. shoulder elevation.
- c. scapular retraction
- d. scapular protraction.
- e. glenohumeral abduction.

