Lung Nodules and Malignancy: Radiologic Assessment

Julie Takasugi Department of Radiology VA Puget Sound Health Care System University of Washington SOM

- Clinical Assessment
 - Clinical Risk of malignancy
 - Patient's suitability & preferences for surgical treatment
 - Suitability for nonsurgical treatment
 - Follow-up

- Radiologic Assessment
 - Radiographic probability of malignancy
 - Suitability for tissue sampling when appropriate
 - Staging
 - Suitability for non-surgical treatment when appropriate
 - Response to treatment and monitoring for recurrence

Fat in a nodule

- Hamartoma
- Unless patient has h/o
 - Liposarcoma
 - Renal cell ca

Solitary Pulmonary Nodule	Dominant Pulmonary Nodule
 Single, round, radiographic opacity (well- or poorly- defined) measuring up to 3 cm in diameter 	 Single, dominant/larger nodule accompanied by <!--= 10<br-->smaller nodules (10 = arbitrary number)
Fleischner Society: Glossary of terms for thoracic imaging. Radiology 2008:246(3):710.	ACCP: Chest 2013;143(5)(Suppl):e93S
Mass	More than 10 nodules
 Rounded radiographic opacity measuring more than 3 cm in diameter 	 Management Metastatic disease Infection Inflammation

Case 3. Noncalcified nodules < 8mm in diameter found during lung cancer screening. <u>Radiographically</u>, which is the most likely to be malignant and which is least likely to be malignant?

Attenuation

4. Solid, perifissural

1. Pure ground glass

s 2. Mixed solid/GGO

A. 2 and 3 C. 2 and 4

B. 3 and 4

3. Solid

D. 3 and 1

Solid SPN

Solid nodules – the most common type of nodule, 2nd least likely to be malignant.

Most benign lesions – granulomas, fungi, TB, inflammatory lung disease, etc, are solid.

Risk of malignancy in solid nodules 5-8 mm diameter: 2-6%

Most lung cancers and metastases are solid nodules.

Solid Nodules 🥕

Pure ground glass or nonsolid nodules:

Causes:

Malignant: Minimally invasive adenocarcinoma Benign: Infection, blood, inflammation Premalignant: Atypical adenomatous hyperplasia, Adenocarcinoma in situ

Recommendations:

< 5 mm do not necessarily need follow-up CT

Between 5-10 mm, follow-up with CT 3 months, if if unchanged, continue follow-up annually x 3+ yrs

> 10 mm, persists for 3 months, presume cancer. (20-25% will still prove to be benign on resection). Consider surgery if enlarging or solid component develops

Godoy et al. Radiology;2009:253(3):606-22. Gould et al. Chest 2013;143(5)(5):e93S-e120S.

Part-solid SPN:

Likelihood of malignancy – highest in part-solid nodules.

40-50% of part-solid < 1.5 cm are malignant.

Greater risk of malignancy with increasing nodule size, especially if solid component represents > 50% of the nodule or is enlarging. Solid component often contains invasive adenoca, GGO = AAH or adenoca in situ.

Case 4A. Which radiographic characteristic helps most in differentiating benign from malignant cavitary disease

- 1. Air-fluid level
- 2. Wall thickness
- 3. Size
- 4. Internal debris

Causes of cav Thin wall Metastatic disease	itary processes Thick wall Primary lung cancer
 Metastatic disease Vasculitides: GPA Infections: Cocci, PJP, Echinococcus, Papillomatosis, post-infectious lung cyst, TB Trauma: Pulmonary laceration Bland/septic embolism LCH LAM Congenital cysts Emphysema/Bulla 	 Primary lung cancer Metastatic disease Lymphoma Vasculitides: GPA, RA Infections: Lung abscess, TB Bland/septic embolism LCH Sarcoidosis PMF/Conglomerate masses Trauma: Hematoma, laceration

4B. Which of the following primary tumors is most likely to cause cavitary metastases in the lung?

- 1. Melanoma
- 2. Cervical carcinoma
- 3. Renal cell carcinoma
- 4. Breast adenocarcinoma
- 5. Prostate adenocarcinoma

4C. Man with hemoptysis – Lucency is noted around the mass in the upper lobe. What is this sign?

- 1. Monad's Sign
- 2. Air-crescent sign
- 3. Luftsichel sign
- 4. Walking Man sign

Case 5A. CT guided transthoracic needle biopsy requested for a suspicious lesion.

Which of the following is an <u>absolute</u> contraindication for biopsy?

- 1. Non-suppressible coughing
- 2. Uncorrectable coagulopathy
- 3. Uncooperative patient
- 4. Contralateral pneumonectomy
- 5. None of the above

Case 5B. The patient indicates that he feels "dizzy" during the procedure. His blood pressure and pulse are normal. Post biopsy images are shown below. What should you do?

- 1. Place a chest tube
- 2. Position patient in left decubital position
- 3. Position patient in right decubital position
- 4. Leave patient flat, supine

Arterial Air Embolism				
Requirement for air embolism	How does it happen			
 Direct communication between air source and vessel Pressure gradient favors passage of air into the vessel rather than blood out of the vessel (negative venous pressure relative to atmospheric pressure) 	 Needle tip is located within a vein and the hub is open to air and patient breathes – inhalation creates negative venous pressure and air is pulled into vessel Bronchovenous fistula caused by needle or needle tract Biopsy of cavitary lesion, needle course through a vessel 			

Air Embolism			
Pulmonary/Venous	Systemic/Arterial		
 Air introduced into right heart and pulmonary circulation 	Air introduced into left heart and systemic circulation		
• Small amounts of venous air usually causes no or minor symptoms	 Occasionally asymptomatic May be catastrophic – stroke, MI, death 		
 Large amounts of air may cause blockage of blood flow into pulmonary artery, decreased cardiac output 			

Systemic or Arterial Air Embolism

Air introduced into left heart and systemic circulation

- Position flat, supine. Arterial flow more forceful and air bubbles are propelled forward by arterial flow even in Trendelenburg. Trendelenburg can exacerbate cerebral edema caused by cerebral air embolism
- Supportive care: mechanical ventilation, vasopressors, volume resuscitation
- High flow supplemental O2, increases resorption rate of embolized air by reducing partial pressure of nitrogen in blood which produces gradient for diffusion of nitrogen from air bubbles back into blood
- If cardiopulmonary/neurologic deficits develop: hyperbaric oxygen therapy (HBO) ASAP – preferably within 6 hr, but up to 30 h. Benefits of HBO weighed against potential risk of transport to HBO facility

Clinical features of air embolism

- None
- Hemodynamic collapse
- Acute insufficiency of lungs, brain, spinal cord, heart
- Dyspnea
- Substernal CP
- Sense of impending doom
- Light-headedness

- Dizziness
- Tachypnea
- Tachycardia
- Hypotension
- Wheezing
- Crackles
- Respiratory failure
- Altered mental status
- Focal neurologic deficits
- Seizure

Case 6. Which thoracic malignancy is least likely to cause this syndrome?

- 1. Hodgkins Disease
- 2. Non-Hodgkins Lymphoma
- 3. Squamous cell carcinoma
- 4. Small cell carcinoma

Case 6. Which thoracic malignancy is least likely to cause this syndrome?

- 1. Hodgkins Disease
- 2. Non-Hodgkins Lymphoma
- 3. Squamous cell carcinoma
- 4. Small cell carcinoma

Superior vena cava syndrome

- Etiology:
 - Malignancy 60-85% cases
 - NSCLC 50%
 - SCLC 25%
 - NHL 10%
 - Nonmalignant
 - Thrombosis indwelling vascular devices
 - Fibrosing mediastinitis
 - Radiation fibrosis

- Malignant SVC syndrome may be caused by
 - SVC extrinsic compression by tumor or lymph nodes
 - Direct tumor invasion into vessel

SVC syndrome due to Histoplasmosis Case courtesy of J. Kanne MD, Univ Wisc

Superior vena cava syndrome

- Imaging
 - Chest Radiograph
 - Chest CT or MRI
- Histologic Diagnosis
- Treatment
 - Chemotherapy
 - Radiation
 - Stenting
 - Medical support

Case 7. 60 yo M with recent onset of bilateral knee pain

Case courtesy of Dr. H. Mann, Univ Utah

Further evaluation should include which of the following:

- 1. MRI both knees
- 2. Nuclear medicine bone scanning
- 3. Chest radiograph
- 4. Joint aspiration
- 5. PET-CT scan

Case 7. Hypertrophic osteoarthropathy

- Abnormal proliferation of skin and osseous tissue at distal parts of extremities include clubbing, periostosis of tubular bones, synovial effusion
- Primary not associated with other medical disorders
- Secondary associated with lung cancer, pulmonary infections, CF, R to L cardiac shunts, Hodgkins, cirrhosis.

ase courtesy of Dr. H. Mann, Univ Utal

Case 8. 67 yo with 4 cm LUL mass and FDG-PET avid left supraclavicular node

Assuming that the node is metastatic, what nodal category would this be?

- 1. NX
- 2. N1
- 3. N2
- 4. N3
- 5. M1

Lymph drainage pattern

Left upper lobe

- Drains to left upper hilar nodes
- Upper segmental lesions may drain directly to left upper mediastinal nodes (station 5, 6)

Lymphatic Drainage

Right Upper Lobe

- Drains to upper hilar nodes
- May drain directly to upper right mediastinal nodes (4)

Pulmonary nodule/masses with air-bronchograms

Differential Diagnosis

- Adenocarcinoma with lepidic growth pattern
- Primary pulmonary lymphoma
- Pulmonary amyloidosis
- Sarcoidosis
- Infection

Case courtesy of A Sirajuddin MD Univ Arizona

 Case courtesy of J. Kan Univ Wisc

Case 10A. Ex-navy submariner with cough - Given the chest radiograph on the left, which of the following radiologic procedures/exams should be recommended?

- 1. CT guided biopsy
- 2. CT chest without IV contrast
- 3. CT chest with IV contrast
- 4. PET-CT
- 5. Comparison with old chest radiograph

Case 10A. Ex-navy submariner with cough - Given the chest radiograph on the left, which of the following radiologic procedures/exams should be recommended?

- 1. CT guided biopsy
- 2. CT chest without IV contrast
- 3. CT chest with IV contrast
- 4. PET-CT
- 5. Comparison with old chest radiograph

- 3. Left hilum, bilateral upper mediastinum
- 4. Bilateral upper mediastinum

<image><image><image><image>

Case 11C. 63 yo M, smoker with hoarseness. Biopsy shows small cell lung cancer – PET CT done to stage

True or False:

There is no difference between small cell and nonsmall cell lung cancer staging in present-day clinical setting.

Fleischner Recommendations for small, solid nodules <u>incidentally</u> detected at <u>nonscreening</u> CT

Nodule size*	Low Risk Patient	High Risk Patient
• = 4mm</td <td>No f/u needed</td> <td>F/u @ 12m, if unchanged no additional f/u</td>	No f/u needed	F/u @ 12m, if unchanged no additional f/u
• >4-6mm	F/u 12m, if no change	F/u 6-12m, then 18-24m if
	no further f/u	if no change
• >6-8mm	F/u at 6-12m, then 18-	F/u @ 3-6m, then 9-12m and
	24m if no change	24m if no change
• >8mm	F/u 3, 9, 24m, dynamic	Same as for low risk pt
	CECT, PET &/or Bx	

• = average width & length

• Not applicable to pt c known malignancy, young patients, pt c sx

Fleischner recommendations for management of subsolid pulmonary nodules detected at CT

Growth Rates

- (Hasegawa et al. Br J Rad 2000;73:1252)
 3y mass screening analysis of small lung cancers
 - Mean Volume Doubling Time (VDT) in smokers
 - GGO, 813d
 - Part solid, 457d
 - Solid, 149d
 - Mean Volume Doubling time in nonsmokers is even longer than in smokers
- 5mm nodule c 60d VDT reaches diameter of 20 mm in 12 m
- 5mm nodule c 240d VDT reaches 7.1 mm diameter in same period