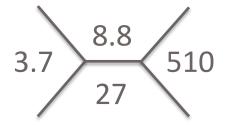

Title: Consultative Hematology

Learning Objectives

Identify common reasons for hematology consultation

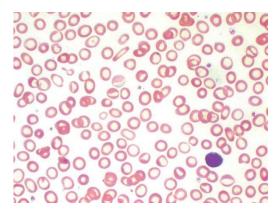
 Review the differential diagnosis for common blood count abnormalities and describe examples of how a high-level consultative approach can help identify uncommon hematologic disorders

Reasons for consult request to Hematology (N=598)

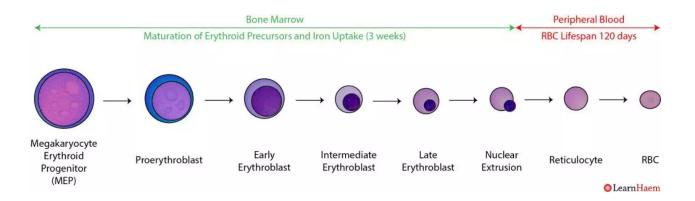

Hematologists are commonly asked to be diagnosticians

Variable		Infectious Disease (n = 1634)	Specialty Hematology (n = 2216)	Rheumatology (n = 287)	Dermatology (n = 1484)
	Psychiatry (n = 891)				
Avoided visits 120 d after e-consult, n (%)†	825 (92.6)	1432 (87.6)	1926 (86.9)	187 (65.2)	919 (61.9)
Primary reason for e-consult (based on subset manually reviewed), n/N (%)‡			ile e de	1000	
Diagnosis	2/145 (1.4)	58/149 (38.9)	102/150 (68)	130/147 (88.4)	50/150 (33.3)
Therapy	135/145 (93.1)	87/149 (58.4)	46/150 (30.7)	17/147 (11.6)	85/150 (56.7)
PCP education	4/145 (2.8)	1/149 (0.7)	2/150 (1.3)	0/147 (0)	9/150 (6.0)
Patient inquiry	4/145 (2.8)	3/149 (2.0)	0/150(0)	0/147 (0)	6/150 (4.0)

Case 1: 34-year-old female with anemia felt likely related to history of menstrual blood loss. You are consulted after her anemia fails to respond to 3 months of twice daily oral iron.


3 months
Oral Iron

MCV 72 fL TSat 12% Ferritin 15 ng/mL TIBC 410 mcg/dL Corrected retic 0.8%


MCV 70 fL
Tsat 10%
Ferritin 10 ng/mL
TIBC 420 mcg/dL
Corrected retic 0.8%

Peripheral smear:

Microcytic hypochromic RBCs

Differential diagnosis of 'iron refractory' anemia

While not strictly defined, a hemoglobin rise <1g/dL after 4-6 weeks of oral iron repletion is suboptimal and warrants further clinical assessment.

Differential Diagnosis

- Excessive iron loss
- Iron intolerance/nonadherence
- Impaired absorption
- Impaired utilization [inflammatory block]
- Inherited disorder[IRIDA/mutations in TMPRSS6]

Patients with IDA refractory to oral iron commonly have an identifiable underlying diagnosis

Table 1. Main diagnostic categories and coexistent findings in 300 consecutive IDA patients

Diagnosis	Autoimmune gastritis	H pylori*	Menorrhagia	Gastrointestinal lesions	Celiac	Negative
n (%)	77 (26)	57 (19)	96 (32)	31 (10)	14 (5)	21 (7)
Mean age ± 1 SD, y	41 ± 16	37 ± 19	39 ± 10	60 ± 14	39 ± 14	33 ± 13
Gender, M/F	14/63	17/40	0/96	13/18	3/15	2/21
Main diagnosis alone	26	57	39	21	11	21
H pylori	39	_	57	10	2	0
Menorrhagia	11	0	_	0	1	0
Gastrointestinal lesions	1	0	0	_	0	0
Aspirin or NSAID	9	3	1	7	0	1
Refractory to oral iron, %	69	68	38	47	100	10

Hershko C et al. Blood 2014

You see the patient back in clinic and she reports that she has had abdominal discomfort for the past 6 months, which has worsened since starting the iron pills. Because of these symptoms, she also began taking a daily over-the-counter proton pump inhibitor (PPI).

- You recommend holding the PPI and decreasing iron to every other day dosing
- Fecal occult blood testing is performed and returns positive. An EGD is scheduled...

EGD demonstrates *H. pylori* gastritis

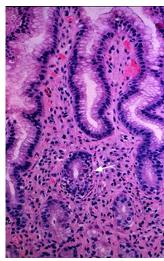
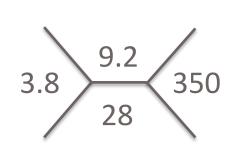
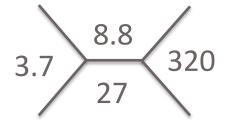
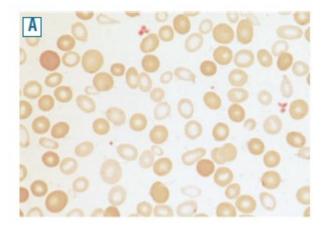




Figure: uptodate

Case 1: 34-year-old female with anemia felt likely related to history of menstrual blood loss. Hematology is consulted after her anemia fails to respond to 6 months of twice daily oral iron.

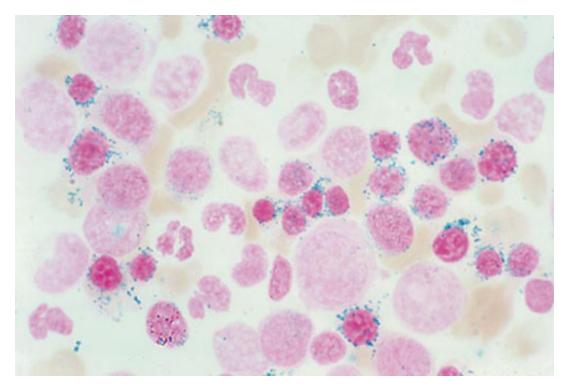
3 months
Oral Iron


MCV 72 fL TSat 25% Ferritin 125 ng/mL TIBC 380 mcg/dL Corrected retic 0.8%

MCV 70 fL
Tsat 35%
Ferritin 215 ng/mL
TIBC 370 mcg/dL
Corrected retic 0.8%

Additional lab results:

CRP and ESR normal Hemoglobin Electrophoresis normal Alpha globin DNA sequencing normal


Peripheral smear

Dimorphic population of macrocytes and hypochromic microcytic RBCs

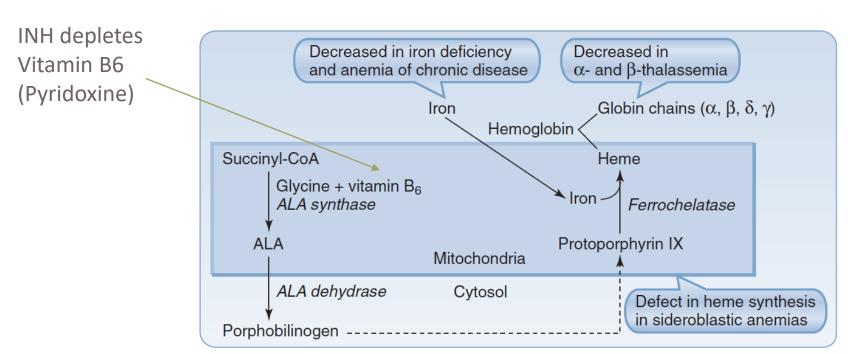
Cazzola M Haematologica et al. 2011

Bone Marrow Aspirate with Iron Stain:

Prussian blue stain demonstrating ringed sideroblasts [5+ iron granules encircling 1/3 or more of the nuclear circumference in erythroid precursors]

<u>Differential Diagnosis for Sideroblastic Anemia</u>

Congenital:

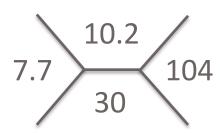

X-linked mutations in ALAS2, or other mutations which impact heme biosynthetic or metabolic pathways

Acquired:

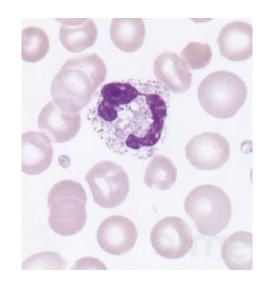
Clonal- Myelodysplasia with ringed sideroblasts, +/- thrombocytosis

Metabolic-Copper Deficiency (Zinc excess) Drugs (isoniazid, linezolid) Excessive alcohol use Hyperthermia

Patient reports she was on isoniazid (INH) for tuberculosis prophylaxis



12-8: Pathophysiology of microcytic anemias. All microcytic anemias have a decrease in hemoglobin synthesis. A decrease in hemoglobin synthesis could be due to a decrease in the synthesis of heme or a decrease in the synthesis of globin chains. *ALA*, Aminolevulinic acid.


Case 2: 71-year-old male with history of relapsing polychondritis and fevers, poorly responsive to glucocorticoid therapy and oral methotrexate. The patient has been off methotrexate for 6 months, but the rheumatologist notices that the patient has a persistent macrocytic anemia and asks if a bone marrow biopsy is needed?

Peripheral blood smear

MCV 119 fL Corrected Retic 0.9%

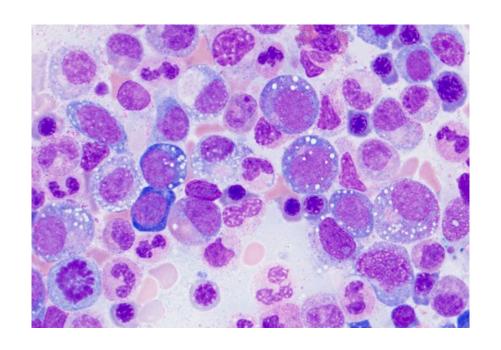
Macrocytes and neutrophils w/ toxic granulations and cytoplasmic vacuoles

Additional lab results

Vitamin B12: 807 pg/mL

Folic acid >20

Copper: 94ug/mL (nL)


CRP/ESR: elevated

Ferritin: 945 ng/mL

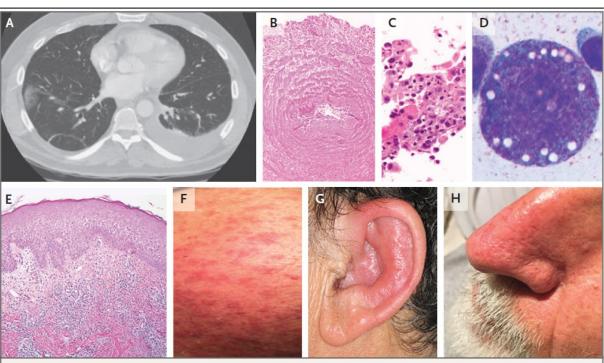
Normal LFTs, TSH

Denies ETOH

Bone Marrow Evaluation

Erythroid and megakaryocytic atypia with cytoplasmic vacuoles in erythroid precursors

Normal MDS FISH panel and cytogenetics Myeloid NGS gene panel negative


? Drug/Toxin

? Infection/Inflammation

ORIGINAL ARTICLE

Somatic Mutations in *UBA1* and Severe Adult-Onset Autoinflammatory Disease Beck DB et al NEJM 2020

Vacuoles
E1 enzyme (UBA1)
X-linked
Auto-inflammatory
Somatic

Figure 2. Clinical Manifestations of the VEXAS Syndrome.

Key clinical features

Fever — no. (%)	23 (92)
Skin involvement — no. (%)†	22 (88)
Pulmonary infiltrate — no. (%)	18 (72)
Ear and nose chondritis — no. (%)	16 (64)
Venous thromboembolism — no. (%)	11 (44)
Macrocytic anemia — no. (%)	24 (96)
Bone marrow vacuoles — no./total no. (%)	18/18 (100)

UBA1 mutation detected

Case 3: 45-year-old male is being evaluated by primary care for polycythemia. Hematocrit is 58% with an elevated serum erythropoietin and negative JAK2V617F DNA test. He smokes 1-2 cigarettes per day. He has no history of chronic obstructive lung disease or obstructive sleep apnea. You are asked if additional hematologic work-up is needed?

<u>Differential Diagnosis for Polycythemia</u>

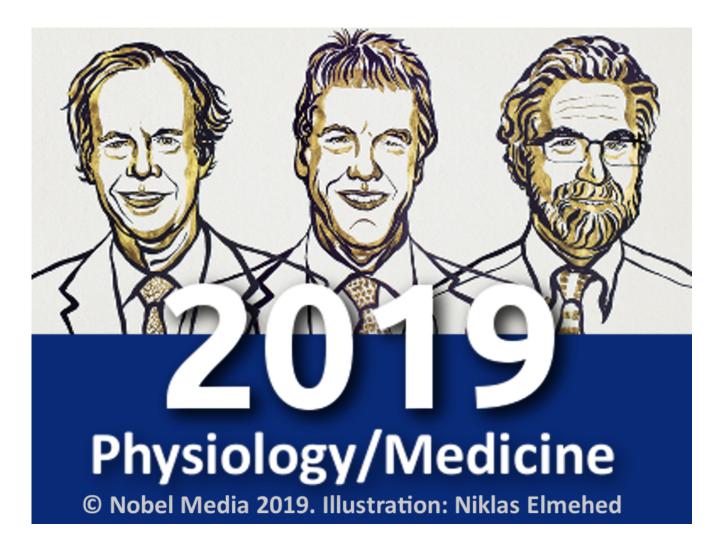
Congenital:

epoR mutations
Von Hippel Lindau mutations (Chuvash Polycythemia)
High oxygen affinity hemoglobin
Other mutations

Relative Polycythemia:

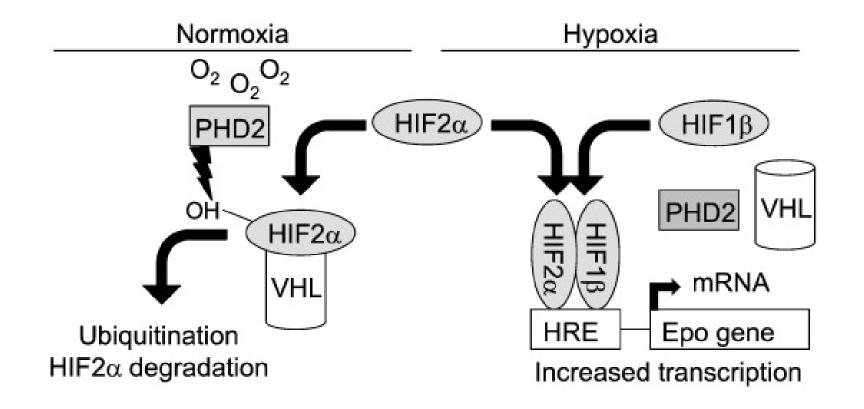
Volume Contraction – Smoking, Dehydration, Diuretics

Secondary (Compensatory):


Chronic Obstructive lung disease
Obstructive Sleep apnea
Chronic carbon monoxide
High Altitude living
Right to Left Cardiac Shunt
Obesity-Hypoventilation

Acquired:

Polycythemia Vera (JAK mutations)
Other myeloproliferative neoplasms
Hepatocellular or Renal Cell Carcinoma
Syndromic: POEMS, TEMPI
Renal artery stenosis
Post-Kidney Transplant


Medications/Drugs:

Testosterone/Anabolic Steroids ESAs Luspatercept Autologous blood doping

How cells sense and adapt to oxygen availability

Low oxygen environments stimulate EPO transcription

Lee G et al. European J Internal Med 2015

Test results for Case 3

- Hgb 18.4 g/dL, Hct 58%
- WBC and PLT normal
- JAK2V617F not detected
- Erythropoietin 54 IU/L (nL 4-21)
- Chest X-Ray Normal
- Pulmonary Function Tests Normal
- Sleep Study Normal
- Carboxyhemoglobin 2.7%

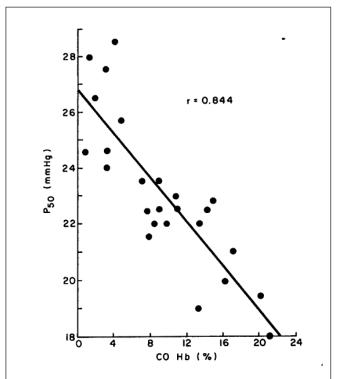


Figure 2. Relation between Blood Carboxyhemoglobin (COHb) Concentration and P₅₀ in 20 of the 22 Smoking Polycythemic Subjects.

Lower P50 = left shift of Hgb-Oxygen dissociation curve

Non-smokers: Average P50 26.7 (0.6% carboxy-hgb)

Smith RJ NEJM 1978

Case 3: The patient returns 1 year later, after pursuing an observational approach. He was able to quit smoking, but he reports increasing fatigue and headaches. He has noticed a 15-lb weight loss and new skin lesions

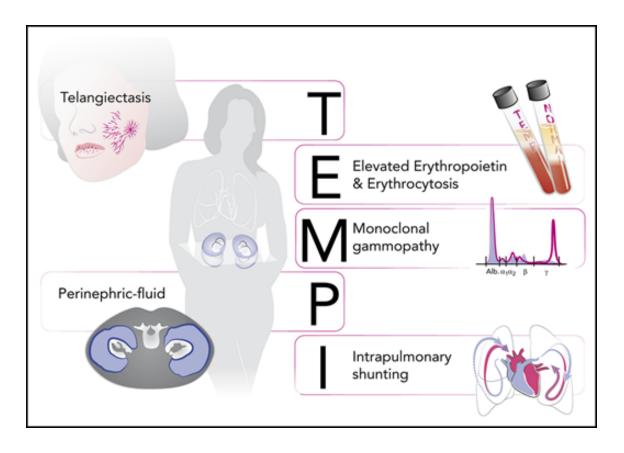
Sykes DB et al. Blood 2020

Hematocrit now 62% and serum erythropoietin 2,400 IU/L

?? Epo secreting tumor

Tumor associated polycythemia:

Infrequently observed, but includes 1-5% of renal cell caricnomas, and 3-12% of hepatocellular carcinomas


Also reported in hemangioblastoma, pheochromacytoma, uterine myomata

Da Silva et al. Blood 1990; Sakisaka S et al. Hepatology 1992

Chest/Abdomen/Pelvis CT

No evidence of malignancy is identified, but a perinephric fluid collection is detected, without renal cysts.

SPEP demonstrates 0.7 g/dL lgG-K Monoclonal protein

Sykes DB et al. Blood 2020

Thank you for listening!