

Thrombocytopenia

Sandhya R. Panch MD MPH

Associate Professor of Medicine, Division of Hematology, University of Washington Medical Director of Transfusion, Fred Hutchinson Cancer Center Adjunct Associate Professor, Department of Laboratory Medicine & Pathology, University of Washington

Conflicts of interest disclosure

- NIH Clinical Center Transfusion Medicine Senior clinical advisor (contractor)
- Dova/Sobi research, consulting
- Sanofi- research, consulting

Approach to thrombocytopenia

Thrombocytopenia: below 2.5th lower percentile of normal distribution (<150X10⁹/L)

Platelet counts between 100-150X10⁹/L may not pathological especially if present chronically

- History
- Physical examination
- Complete blood count
- Peripheral blood smear

Pseudo-thrombocytopenia

Shalev, O. et. al. N Engl J Med 1993

Platelet count errors in macrothrombocytopenia

Mechanisms of thrombocytopenia

- Normal blood platelet concentration: <u>150-400</u> billion/L
- Healthy adults produce <u>100 to</u> <u>300 billion platelets per day</u>
- The average platelet life span is <u>7</u> to 10 days
- Platelet production: TPO-cMPL
- Platelets loss: senescence, activation, consumption, etc

Mechanisms of thrombocytopenia

Decreased Production	Increased Destruction / Consumption	Combination
Marrow failure	Heparin induced thrombocytopenia; Vaccine induced thrombotic thrombocytopenia	Immune Thrombocytopenia
Inherited thrombocytopenia	Thrombotic thrombocytopenic purpura/ atypical HUS, DIC	Other autoimmune conditions
Myelodysplasia	Pre-eclampsia, HELLP syndrome, AFLP	Infection/sepsis
Marrow infiltration	Post transfusion purpura	Liver disease
Irradiation	Neonatal alloimmune thrombocytopenia	Drugs
Chemotherapy/drugs	vWD Type IIB	Cyclic thrombocytopenia
Nutritional deficiencies (Vit B12, folate, severe iron deficiency)	Mechanical destruction (valvular dysfunction, cardio-pulmonary bypass, LVADs)	OTHER: pseudothrombocytopenia, gestational/dilutional
Alcohol	Hypersplenism (sequestration)	Qualitative platelet disorders

Fred Hutchinson Cancer Center

Thrombocytopenia: Question 1

A 28yo female presents to hematology clinic. She has a <u>family history of</u> <u>easy bleeding/ bruising</u> in her father and brother. She has a personal history of frequent and <u>prolonged episodes of epistaxis and heavy menstrual</u> <u>periods</u>. Patient is also noted to have <u>a family history of hearing loss</u>. Previous <u>steroid treatment failed</u> to demonstrate response.

- Mild microcytic anemia
- Iron deficiency
- Significantly decreased platelets (15-40X10⁹/L)
- Peripheral smear : Large platelets and inclusion bodies in WBCs

What is the most likely diagnosis?

- A. Bernard Soulier Syndrome
- B. Glanzman's thrombasthenia
- C. MYH9-related thrombocytopenia
- D. Immune thrombocytopenia (ITP)

Inherited Thrombocytopenia

- Inherited thrombocytopenia (IT): Uncommon but advance understanding of genetic disorders, megakaryopoiesis, platelet biogenesis, structure and function
- Professors Bernard and Soulier described Bernard-Soulier syndrome (BSS) in 1948
- Many platelets enlarged, some giant
- Absence of platelet surface GP1 → defined molecular landscape of ITs
- Diagnoses not to be missed- a recent investigation (Norris, 2014) 31% misdiagnosed with ITP 25% received undue immunosuppression 8% underwent unnecessary splenectomy
- Several recessive forms present in adulthood when co existing conditions develop

Inherited thrombocytopenia

Fred Hutchin

Nurden et al. Haematologica. 2020

Inherited macrothrombocytopenia

Inherited thrombocytopenia with small/normal platelet size

Nurden et al. Haematologica. 2020

Diagnosing inherited platelet disorders

Inherited thrombocytopenia

Inherited TCP	Inheritance	Salient features
Bernard Soulier	AR/AD	Prevents platelet binding (via GP1b-IX) to VWF; No ristocetin-induced platelet agglutination BSS-like picture in 22q11 del. velocardiofacial syndromes
VWD Type IIB	AD	Platelet aggregates in blood smear. Absence of HMW multimers (as in VWD type 2B).
MYH9- related disease	AD	Macrothrombocytopenia, basophilic neutrophilic inclusions (Döhle bodies), hearing loss, kidney disease, liver disease, cataracts (previously known as May-Hegglin, Sebastian, Fechner, Epstein)
Gray platelet syndrome	AR; NEALB2	Absent α -granules, Impaired platelet function with weak agonists. Elevated serum B12. Early myelofibrosis; occasional splenomegaly; autoimmune diseases. Moderate to severe bleeding
CAMT	AR; MPL	Severe neonatal thrombocytopenia, amegakaryocytic; progression to aplastic anemia; Severe bleeding
Wiskott- Aldrich	XL; WAS	Microthrombocytopenia, severe thrombocytopenia. Immunodeficiency, eczema, lymphoproliferative, autoimmune disorders. Severe bleeding
Familial TCP		*predisposition to myeloid or lymphoid malignancies

IT with predisposition to malignancies

Inherited TCP	Inheri- tance	Salient features
GATA1	XL	Mild to severe thrombocytopenia. Dyserythropoiesis with or without anemia, thalassemia, neutropenia, splenomegaly, congenital erythropoietic porphyria; Dysplastic megakaryocytes. Platelets granule deficiency and functional defect. Rarely Lu a- b- (Lu null). Mild-severe bleeding
GFI1b	AD/ AR	Mild to severe thrombocytopenia (monoallelic & biallelic forms). Red blood cells with anisopoikilocytosis, dysplastic megakaryocytes, emperipolesis. Platelets with granule deficiency and aggregation defect. CD34+ abnormal expression in platelets. Absent-severe bleeding.
RUNX1	AD	Predisposition to myeloid malignancies; Mild-moderate neonatal thrombocytopenia. Platelet function defect "Aspirin-like". Platelet granule deficiency. High risk (>40%) AML, MDS at young age; ALL and solid tumors. Absent-moderate bleeding.
ETV6	AD	RBC with high MCV. Platelets show elongated granules, impaired clot retraction High circulating CD34 + cells. Predisposition (30%) to acquired lymphoid, myeloid, MPNs. Absent-mild bleeding.
ANKRD26	AD	Mild-moderate neonatal thrombocytopenia. Some patients with high levels of Hb, WBC ~10% develop myeloid neoplasms. Absent-mild bleeding

Inherited disorders of platelet function

Inherited platelet disorders	Inherit- ance	Salient features- Normal platelet count and morphology
Glanzmann' thrombasthe nia	AR/ GP2B/3A	Absent or severely reduced LTA with all agonists except with ristocetin. Absence or decreased IIb3 expression demonstrable by flow cytometry: Type I <5%; Type II 10–20%; Variant GT with even >50% non-functional IIb3. Severe bleeding tendency
Hermansky- Pudlak Syndrome	AR/ HPS1, HPS2	Delta-granule defect. Reduced LTA, absence of second wave with weak/low dose agonists (ADP, epinephrine, collagen). CD63 release defects by flow cytometry. Oculocutaneous albinism; neutropenia, immunodeficiency, pulmonary fibrosis, granulomatous colitis. Mild to moderate bleeding
Chediak- Higashi Syndrome	AR/ LYST	Delta-granule defect. Reduced LTA and/or absence of second aggregation wave with weak/low dose agonists (ADP, epinephrine, collagen). Defect in CD63 release by flow cytometry. Oculocutaneous albinism; Immunodeficiency, In 85% evolution to HLH. Mild to moderate bleeding

Inherited thrombocytopenia: Management

	Indications	Comments
Platelet transfusions	All inherited thrombocytopenias. To stop bleedings when local measures failed. To prepare patients for surgery	Leukoreduction of platelet concentrates and HLA-matched donors reduce the risk of alloimmunization and refractoriness to platelet transfusion
Splenectomy	-Wiskott–Aldrich syndrome -X-linked thrombocytopenia	Increases platelet count but also the already high risk of infections
TPO-receptor agonists	 Preparation for hemostatic challenges of patients with: <i>MYH9</i>-related disease Wiskott–Aldrich syndrome/X-linked thrombocytopenia monoallelic Bernard-Soulier syndrome <i>ANKRD26</i>-related thrombocytopenia 	Efficacy in other conditions to be tested The efficacy and safety of long-term treatments (life-long?) remain to be demonstrated
	Variant of congenital amegakaryocytic thrombocytopenia (<i>THPO</i> mutation)	Restore entire hemopoiesis
Hematopoietic stem cell transplantation	-Wiskott–Aldrich syndrome -Congenital amegakaryocytic thrombocytopenia (<i>MPL</i> mutation) -Severe Bernard-Soulier syndrome - <i>MECOM</i> -associated syndrome	Can cure patients and is the first-line treatment for patients with poor prognosis
Gene therapy	-Wiskott-Aldrich syndrome	Can cure patients. Efficacy in other conditions not yet tested

Thrombocytopenia: Question 1

A 28yo female presents to hematology clinic. She has a <u>family history of</u> <u>easy bleeding/ bruising</u> in her father and brother. She has a personal history of frequent and <u>prolonged episodes of epistaxis and heavy</u> <u>menstrual periods</u>. Patient is also noted to have <u>a family history of</u> <u>hearing loss</u>. Previous <u>steroid treatment failed</u> to demonstrate response.

- Mild microcytic anemia
- Iron deficiency
- Significantly decreased platelets (15-40X10⁹/L)
- Peripheral smear : Large platelets and inclusion bodies in WBCs

What is the most likely diagnosis?

- A. Bernard Soulier Syndrome
- B. Glanzman's thrombasthenia
- C. MYH9-related thrombocytopenia
- D. Immune thrombocytopenia (ITP)

Thrombocytopenia: Question 2

42yo female with <u>Immune thrombocytopenia (ITP)</u> diagnosed 1 year ago (platelet nadir 3X10⁹/L) and <u>responded to a short course of steroids</u> (120X10⁹/L) now presents with <u>platelet counts of 40X10⁹/L</u>. Counts repeated within a week are still at 40X10⁹/L. She <u>reports no bleeding/bruising</u>. What are her management options?

- A. Initiate TPO-RA
- B. Re dose prednisone +/- IVIG
- C. Initiate rituximab
- D. Observe
- E. Refer for splenectomy

Immune Thrombocytopenia (ITP)

Petechiae

Mucosal bleeding

Intracranial bleeding

ITP: Pathophysiology

Autoimmune disease due to

-Peripheral platelet destruction

-Inappropriate bone marrow production

1950s: ITP due to autoantibody mediated peripheral destruction of platelets; Rx: splenectomy!

Blood

- 1. Abs to platelet GP \rightarrow complement activation \rightarrow lysis
- 2. Phagocytosis by splenic macrophages
- 3. T-helper cells→ autoreactive B cell proliferation/differentiation
- 4. B cells \rightarrow Plasma cells \rightarrow Abs \rightarrow platelet destruction
- 6. Endothelial FcRn \rightarrow antibody recycling
- 7. Abs trigger platelet desiallyation \rightarrow liver AMR \rightarrow removal
- 8. CD8 cytotoxic T cells \rightarrow platelet destruction
- 9. Autoimmunity \rightarrow loss of tolerance (Treg deficiency)

Bone marrow

10. Autoimmune response to megakaryocytes + insufficient TPO

Jiang, Al-Samkari, Panch TMR 2022

Secondary ITP, DITP, PTP

ITP diagnosis

Diagnosis of exclusion

- History & PE
- Full blood count, retic & peripheral blood examination
- Helicobacter pylori infection detection by breath test or stool antigen
- HBV, HIV, HCV
- Quantitative immunoglobulins
- DAT, ANA, TSH, Anti-PL Abs
- Other testing in selected individuals (plateletspecific ab, imaging)
- Bone marrow in select individuals

Diagnosis of exclusion

- Pseudothrombocytopenia (review smear!)
- Liver/renal disease
- MDS/Leukemia/SAA(Smear, BM biopsy, Flow cytometry, cytogenetics)
- Inherited T.penia (smear, MPV, genomic testing)
- TTP (neuro/cardiac symptoms, schistocytes, ADAMTS13, DAT neg. hemolytic anemia)
- HIT/DITP (prior VTE, heparin exposure, PF-4 Ab tests, SRA)

Initial treatment of ITP

Treatment type/parameter	ASH 2020 ¹	ICR Recommendations ²
Platelet count threshold for treatment	≤30 × 10 ⁹ /L	<20-30× 10 ⁹ /L Individualize to patient & phase
First-line treatment	Corticosteroids (prednisone, or dexamethasone) taper off by 6 weeks	same
First-line treatment if corticosteroids are contraindicated	IVIg or anti-D	same
Emergency treatment	IVIg plus corticosteroids	High-dose IV corticosteroids plus IVIg platelet transfusions antifibrinolytic drugs

Fred Hutchinson Cancer Center

Treatment of persistent/chronic ITP

Treatment type/parameter	ASH 2020 ¹	ICR Recommendations ²
Platelet count threshold for treatment	≤30 × 10 ⁹ /L	Treat to maintain platelet count >20-30× 10 ⁹ /L Individualize to patient & phase, minimize toxicity
Subsequent therapy	TPO receptor agonists Rituximab Splenectomy	TPO receptor agonists Rituximab Fostamatinib Splenectomy
Agents with less robust evidence /subsequent treatment	Azathioprine Cyclosporin A Cyclophosphamide Danazol	Dapsone Mycophenolate mofetil Vinca alkaloids TPO RA switch

Fred Hutchinson Cancer Center

Summary of response to rituximab in ITP

Patel VL, et al. ASH 2010 Abstract 72

Summary of response to TPO-RAs in ITP

Summary of response to TPO-RAs in ITP

	TPO-	RA	Contr	lo		Risk Ratio		Risk Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	Year	M-H, Random, 95% C	1
Bussel et al. 2006	0	17	1	4	7.7%	0.09 [0.00, 1.94]	2006		
Bussel et al. 2007	1	88	0	29	7.1%	1.01 [0.04, 24.17]	2007		_
Kuter et al. 2008	2	83	1	42	12.7%	1.01 [0.09, 10.84]	2008		
Bussel et al. 2009	0	76	0	38		Not estimable	2009		
Kuter et al. 2010	11	157	2	77	32.4%	2.70 [0.61, 11.87]	2010		
Cheng et al. 2011	3	135	0	62	8.2%	3.24 [0.17, 61.84]	2011		
Shirasugi et al. 2011	0	22	0	12		Not estimable	2011		
Haselboeck et al. 2012	2	11	0	12	8.3%	5.42 [0.29, 101.77]	2012		
Tomiyama et al. 2012	1	15	0	8	7.4%	1.69 [0.08, 37.26]	2012		
Yang et al. 2016	2	104	0	51	7.8%	2.48 [0.12, 50.64]	2016		
Jurczak et al. 2018	3	32	0	17	8.4%	3.82 [0.21, 69.88]	2018		_
Total (95% CI)		740		352	100.0%	1.82 [0.78, 4.24]		•	
Total events Heterogeneity: Tau² = 0.0	25 0 [.] Chi ^z =	5 30 df	4 = 8 (P =	0 73)	²= 0%			-r - r	
Test for overall effect: Z =	1.39 (P =	0.16)	- 110 -	0.1 0/11	- • 10			0.005 0.1 1 10) 200

Response to splenectomy in immune cytopenia

Post splenectomy discordant diagnoses

20% of the cases had a post-operative diagnosis that was discordant with the original indication for splenectomy

Splenectomy indication	Post operative pathologic diagnoses	Frequency (n)
AIHA (6), ITP (7), ES (2)	B-cell lymphoproliferative disorder including DLBCL	15
AIHA (3), ITP (7), ES (2)	Chronic lymphocytic leukemia/Small lymphocytic lymphoma	12
AIN (1), ES (1)	Felty's syndrome	2
ES (4)	Hepatosplenic T-cell lymphoma	4
AIHA, ITP (4)	Non caseating granulomas	5
ES (2)	Peripheral T-cell lymphoma	2
AIHA (5), AIN (6), ES (4)	T-LGL	15

Thrombocytopenia: Question 2

42yo female with Immune thrombocytopenia (ITP) diagnosed 1 year ago (platelet nadir 3X10⁹/L) and <u>responded to a short course of</u> <u>steroids</u> (120X10⁹/L) now presents with <u>platelet</u> <u>counts of 40X10⁹/L</u>. Counts repeated within a week are still at 40X10⁹/L. She <u>reports no</u> <u>bleeding/bruising</u>. What are her management options?

- A. Initiate TPO-RA
- B. Re dose prednisone +/- IVIG
- C. Initiate rituximab
- **D. Observe**
- E. Refer for splenectomy

American Society of Hematology 2019 guidelines for immune thrombocytopenia

Cindy Neunert,¹ Deirdra R. Terrell,² Donald M. Arnold,^{3,4} George Buchanan,⁵ Douglas B. Cines,⁶ Nichola Cooper,⁷ Adam Cuker,⁸ Jenny M. Despotovic,⁹ James N. George,² Rachael F. Grace,¹⁰ Thomas Kühne,¹¹ David J. Kuter,¹² Wendy Lim,¹³ Keith R. McCrae,¹⁴ Barbara Pruitt,¹⁵ Hayley Shimanek,¹⁶ and Sara K. Vesely²

Treatment of drug induced thrombocytopenia

- DITP is less likely if platelet nadir $>20X10^{9}/L$
- Stop offending agent(s)
- Severe: IVIg
- Severe refractory: Plasma exchange Dialysis
- Severe adjunctive therapy
 - Platelet transfusions
 - Antifibrinolytic agents
- Testing for drug dependent antibody

Quinine, sulfonamide antibiotics, non-steroidal anti-inflammatory drugs Penicillin, some cephalosporin antibiotics Tirofiban, Eptifibatide Abciximab Gold salts, procainamide Heparin, an as yet unidentified component of adenoviral vector-based vaccine against COVID-19

Post-transfusion purpura

- PTP: transfusion related AE; sometimes with severe bleeding
- Symptomatic overlap with other thrombocytopenia (ITP, dITP, TTP, HIT)
- Thrombocytopenia may be severe (<10,000 K/uL)
- Incidence: 1:24,000 to 1:50,000–100,000 transfusions
- Higher in multiparous women

- Anti-HPA-1a made by HPA-1b/1b recipients, genotype in ~2% Caucasians
- Prior exposure to antigen; re-exposure of antigen through transfusion→ anamnestic alloimmune response
- Management: IVIG, steroids, PLEX; Caution with Txns.

Hawkins et al. JBM (2019)

HITT/VITT

Mirini et al. Haematologica 2022

HIT/VITT: PF4 disorders

- Thrombocytopenia with or without thrombosis ("clinical" criteria)
- Detectable antibodies that recognize PF4, and that cause platelet activation ("pathological" criteria)
- Since antibody mediated, 5-10 days from the initial exposure to trigger to thrombocytopenia
- Consequences: Pan-cellular activation→ endothelial damage; PF4 binding on vWF→ arterial and venous thrombosis
- VITT vs. HIT: higher CVT (30% vs 95%), higher DIC (~ 50%), ~15%-20% arterial thrombosis (similar in VITT and HIT)
- Vaccination benefits far outweigh risk of VITT (linked to the ChAdOx1 CoV-19 vaccine (AstraZeneca) and the Ad26. COV2.S vaccine (Johnson & Johnson/Janssen) adenoviral vaccines)

HIT: Pathophysiology

Warkentin Semin in Hematol. 2022
Clinical scoring system for HIT pretest probability: "The 4Ts"

 Table 1 Pretest scoring system for HIT: the 4 T's

4T's	2 points	1 point	0 point
Thrombocytopenia	Platelet count fall $>50\%$ and platelet nadir $\ge 20^*$	Platelet count fall 30–50% or platelet nadir 10–19	Platelet count fall < 30% or platelet nadir < 10
Timing of platelet count fall	Clear onset between days 5–10 or platelet fall ≤1 day (prior heparin exposure within 30 days) [†]	Consistent with days 5–10 fall, but not clear (e.g. missing platelet counts); onset after day 10 [‡] ; or fall ≤1 day (prior heparin exposure 30–100 days ago)	Platelet count fall <4 days without recent exposure
Thrombosis or other sequelae	New thrombosis (confirmed); skin necrosis [§] ; acute systemic reaction postintravenous unfractionated heparin (UFH) bolus	Progressive or recurrent thrombosis [¶] ; Non-necrotizing (erythematous) skin lesions [§] ; Suspected thrombosis (not proven)**	None
Other causes for thrombocytopenia	None apparent	Possible ^{††}	Definite ^{††}

0-3 Points: Low pretest probability of HIT; lab testing not indicated;6-8 Points: High pretest probability of HIT

4-5 Points: Intermediate pretest probability of HIT;

EIA-IgG/A/M result (OD units): <<u>0.4</u> 0.4-1.0 <u>1.0-1.5</u> <u>1.5-2.0</u> ><u>2.0</u> Probability of SRA+ status: ~0% ~5% ~25% ~50% ~90%

> Warkentin T.E. (2019), Int J Lab Hematol Cuker et al, Blood Adv 2018

Management of HIT

Critical Illness, Increased Argatroban or Bivalirudin **Bleeding Risk or Increased** may be preferred due to Potential Need shorter duration of effect for Urgent Procedure Fondaparinux or a **DOAC** may be preferred due to ease of administration, Clinically stable lack of need for lab monitoring, and feasibility of outpatient use Argatroban, Bivalirudin, Danaparoid, or Fondaparinux may be preferred Life or limb threatening because few such patients have been thrombosis treated with a DOAC Moderate or severe Avoid Argatroban or use a reduced hepatic dysfunction dose. Avoid DOACs. (Child-Pugh Class B and C)

Cuker et al, Blood Adv 2018

Management of HIT: Other considerations

Cardiac surgery if HIT positive

- Delay 3-6 months
- Antibody (ELISA) Neg
- Expose during CPB only
- Use alternate anticoagulation post-op
- Experimental:
 - Plasma Exchange
 - IVIg

Thrombotic Microangiopathy Syndromes

In Manhattan 1924, Dr. Eli Moschcowitz described the case of a 16-year-old girl, who died after hospitalization for an acute illness displaying high fever, pallor, arm pain, petechiae, paralysis of the left arm and leg, and a preterminal coma. The autopsy revealed multiple 'hyaline' thrombi in the heart muscle vessels, the congested spleen, and kidneys. The disease cause and right treatment remained elusive...similar cases seen by Dr. Max Lederer had clinical improvement following blood transfusions..

Moschcowitz E. Hyaline thrombosis of the terminal arterioles and capillaries: a hitherto undescribed disease. Proc New York Pathol Soc 1924;

Thrombotic microangiopathies

George and Nester NEJM 2014

Thrombotic microangiopathy syndromes

Pathophysiology of TTP

TTP: Diagnosis

Fred Hutchinson Cancer Center

TTP: Diagnosis

>80% of patients in the derivation cohort with a PLASMIC score of 6-7 had severe ADAMTS13 deficiency, and those with confirmed TTP had a median score of 7

Fred Hutchinson Cancer Center

NEJM 2019

Novel findings

Caplacizumab significantly reduces mortality and refractory disease during treatment Deaths: 0 vs 4 participants (*P*<0.05) Refractory TTP: 0 vs 8 participants (*P*<0.01) No new safety signals detected Mild mucocutaneous bleeding events

(eg, epistaxis and gingival bleeding) were confirmed as the main safety finding

Reinforcement of individual study findings

Primary outcomes

Caplacizumab significantly reduced time to platelet count normalization HR, 1.65 (95% CI, 1.24-2.20); P<0.001

Secondary outcomes

Caplacizumab reduced the incidence of a composite endpoint of TTP-related death, exacerbation, or \geq 1 major thronboembolic event during treatment

▶ 14 vs 53 participants; P<0.001

Caplacizumab prevents recurrence of disease

- >> during treatment (exacerbations): 6 vs 39 participants; P<0.001
- >> during the overall study period (exacerbations and/or relapses): 19 vs 39 participants; P<0.01

Caplacizumab reduced the need for TPE

>> median TPE days: 5 vs 7.5 days in placebo

aTTP, acquired thrombotic thrombocytopenic purpura; CI, confidence interval: HR, hazard ratio; TPE, therapeutic plasma exchange; TTP, thrombotic thrombocytopenic purpura.

Goshua et al. Blood (2021)

Chander, D. P., et al. (2019). NEJM

Fred Hutchinson Cancer Center

Atypical Hemolytic Uremic Syndrome (aHUS)

aHUS: Pathophysiology

Fred Hutchinson Cancer Center

Ther Apher Dial, Volume: 23, Issue: 1, Pages: 4-21, 2018

aHUS: Management

aHUS: Management with eculizumab

Brodsky, Blood 2021 Fakhouri et al. Blood 2021

Chronic liver disease, Infection, Critical illness, Marrow infiltration

Thrombocytopenia in chronic liver disease

Avatrombopag Before Procedures Reduces Need for Platelet Transfusion in Patients With Chronic Liver Disease and Thrombocytopenia

Terrault et al. Gastroenterology 2018

Platelet transfusion thresholds

Platelet count (X10 ⁹ /L)	Indication		Strength of Recommendation
<150	Accepted definition of thrombocytopenia		
100	Surgery on the brain or the posterior eye (BSH)	Low/None	Not graded
80	Insertion/removal of epidural catheter, Neuraxial Anesthesia (BSH)		Low
50	Lumbar puncture, major non neuraxial surgery (AABB)		Weak
50	Therapeutic enteroscopy, deep abscess drainage, urinary tract interventions (ASGE, SIR)		Weak
50	Liver, renal, transbronchial biopsy (BSH)		Weak
20	Central line placement (using ultrasound), dialysis access, PICC placement, superficial abscess drainage (AABB, BSH, SIR)		Strong
20	Diagnostic enteroscopy (ASGE)		Not graded
20	Bronchoscopy with lavage, paracentesis (BTS, SIR)		Not graded
20	Unstable, febrile, bleeding patients (AABB)		Strong
10	Ppx. for spontaneous bleeding, BM biopsy (AABB)		Strong
5	Spontaneous bleeding** (AABB)	High	

Thrombocytopenia: Question 3

32 yo female presents **1 week post partum** with fatigue and headaches. BP is elevated at **178/106 HR: 120/min**. O2 sats: 98%. Labs

- WBC: 5500/mm3
- Hb: 11gm/dl→7.5gm/dL; schistocytes +++
- Platelets: **130 X10⁹/L→35 X10⁹/L**
- PT/aPTT normal; Fibrinogen: 300mg/dL; AST/ALT: Normal; LDH: 850U/L; Creatinine 0.8mg/dL→4.8mg/dL

What is the most likely diagnosis?

- A. Disseminated Intravascular Coagulation (DIC)
- B. Hemolysis, Elevated Liver Enzymes, Low Platelets (HELLP) syndrome
- C. Thrombotic Thrombocytopenic Purpura (TTP)
- D. Atypical Hemolytic Uremic Syndrome (aHUS)

Pregnancy specific	Not related to pregnancy
Gestational thrombocytopenia	ITP
Pre-eclampsia	Hereditary thrombocytopenia
HELLP syndrome	TTP/HUS
Acute fatty liver of pregnancy (AFLP)	Type II VWD
	APLS
	Other: Pseudothrombocytopenia, Infection, DIC, Drugs, PNH, BMF syndromes, leukemia, nutritional deficiencies

D. B. Cines and L. D. Levine; Blood 2017

Clinical History & Physical Exam

Review blood smear

History of thrombocytopenia Bleeding history Hypertension

Pseudothrombocytopenia Large platelets, WBC inclusions RBC fragments

Laboratory evaluation

Coagulation testing, vWF Thyroid function LFTs, BMP, LDH, haptoglobin, retics Virus – HIV, HCV, HBV ANA, APL Abs

"Incidental" (gestational) thrombocytopenia

- Affects up to 10% of "normal" pregnant women
 -No history of prior thrombocytopenia
- Platelet count > $75 \text{ X}10^{9}/\text{L}$
- 2nd-3rd trimester
- Pathogenesis--accelerated platelet turnover/hemodilution ?
- May be difficult to distinguish from ITP
- No increased incidence of neonatal thrombocytopenia

Immune thrombocytopenia (ITP) in pregnancy

- Incidence: 1 in 1,000 to 1 in 10,000 pregnancies
- Most common cause of thrombocytopenia in 1st trimester
- Pathogenesis--autoantibodies targeting platelet gp's or T cell dysregulation and direct toxicity
- 31% require intervention
- Incidence of neonatal thrombocytopenia ~20%
 - 4% severe

<u>Gill KK & Kelton JG. Semin Hematol 2000;37:275–289;</u> Won YW et al. Korean J Intern Med 2005;20:129–134; Fujimura K et al. Int Hematol 2002;75:426–433

66

Fred Hutchinson Cancer Center

Management of ITP in pregnancy

- Indications for therapy
 - First and second trimesters
 - Symptomatic
 - Platelet count 20–30 x10⁹/L
 - Procedures
- Monitor more frequently in third trimester
- Therapy based on risk of maternal haemorrhage
 - Therapy of mother does not affect fetal platelet count
- First-line therapy
 - Corticosteroids
 - IVIg
- Combine first-line therapies in refractory patients

Fred Hutchinson Cancer Center

Management of refractory ITP in pregnancy

Second-line therapies

- IV anti RhD
- Splenectomy
 - Rarely performed, but is best performed in the second trimester
- Azathioprine, Cyclosporine

Not approved (risk to fetus unknown)

- Rituximab
- TPO receptor agonists in the 3rd trimester (??)

Contraindicated

• MMF

Delivery considerations

Maternal

Platelets

- >20 × 10⁹/L for vaginal delivery
- >50 × 10⁹/L for cesarean section
- >80 × 10⁹/L neuraxial analgesia

Fetal

- 15% of neonates have platelets $<150 \times 10^9/L$
- Most neonatal hemorrhage occurs at 24–48 hrs (0.5% incidence)
- Fetal platelet count measurement not recommended
- Avoid procedures with increased fetal bleeding risk
- May obtain cord blood and post delivery counts

TMA: Pre-eclampsia/HELLP/AFLP/TTP/HUS

TMA: Pre-eclampsia/HELLP/AFLP/TTP/HUS

	Preeclampsia/HELLP	ТТР	HUS	AFLP
Elevated blood pressure	+++	+	+	++ (50% of cases)
Neurological symptoms	+/++ (headache)	+++ (numbness, weakness, aphasia, mental status)	+	+
Abdominal symptoms	+ (RUQ pain)	++ (unspecific/diffuse)	+	+++ (unspecific/diffuse)
Fever	-	-/+	-/+	-
Easy bruising	-	-/+	-	-
Thrombocytopenia	+/++ (>50 × 10 ⁹ /L)	+++ (<20 × 10 ⁹ /L)	+ (<100 × 10 ⁹ /L)	+
Renal impairment (elevated creatinine; > ~2 mg/dL)	+/++	+/++	+++	++/+++
Hepatic dysfunction and inflammation (AST/ALT)	+	-/+	-/+	+++ (and bilirubin)
Coagulopathy	-/+	-	-	+++
LDH	+	+/+++	+/++	+++
Microangiopathic hemolytic anemia	+	+/+++	+/++	+
Hypoglycemia	-		-	+
ADAMTS13 activity	Normal	<10%*	>20%-30%†	>30%

Cines & Levine; Hematology 2017

TMA related to pregnancy

- Pre-eclampsia, HELLP, AFLP
 - Prompt delivery >34 weeks
 - Supportive care
 - Ob/Gyn managed care
 - In patients at high risk for PEC, Aspirin 150 mg versus placebo, with PEC occurring in 1.6% of patients in the aspirin group versus 4.3% in the placebo group (adjusted odds ratio 0.38, p = .004)(ASPIRE trial; NEJM 2017)
 - ATIII concentrates in AFLP, along with RBCs and FFP (?)
TMA: TTP/aHUS in pregnancy

- TTP: 1 in 200,000 pregnancies
- Congenital TTP (Upshaw-Schulman syndrome) rare, but up to 1/3 of patients with TTP during pregnancy
- TTP presents first-time during pregnancy in 25–50% of women with congenital TTP, also in 10% of women with acquired TTP
- ADAMTS13 level of <10% diagnostic, genetic testing for congenital TTP
- Unlike HELLP, prompt delivery after diagnosis of TTP not required
- Daily PLEX along with corticosteroids while awaiting diagnostic testing; until platelet count >150 \times 10⁹/L
- Congenital TTP: scheduled plasma infusions
- Subsequent pregnancies: Prophylactic plasma infusions (Q1-2 weeks) → maintain ADAMTS13 levels >10% as soon as pregnancy confirmed
- aHUS: Eculizumab 900 mg weekly X 4 weeks \rightarrow 1200 mg, then 1200 mg Q2 weeks

Thrombocytopenia: Question 3

32 yo female presents **1 week post partum** with fatigue and headaches. BP is elevated at **178/106 HR: 120/min**. O2 sats: 98%.

<u>Labs</u>

- WBC: 5500/mm3
- Hb: 11gm/dl→7.5gm/dL; schistocytes +++
- Platelets: **130 X10⁹/L→35 X10⁹/L**
- PT/aPTT normal; Fibrinogen: 300mg/dL; AST/ALT:
 Normal; LDH: 850U/L; Creatinine 0.8mg/dL→4.8mg/dL

What is the most likely diagnosis?

- A. Disseminated Intravascular Coagulation (DIC)
- B. Hemolysis, Elevated Liver Enzymes, Low Platelets (HELLP) syndrome
- C. Thrombotic Thrombocytopenic Purpura (TTP)
- D. Atypical Hemolytic Uremic Syndrome (aHUS)

	Preeclampsia/HELLP	TTP	HUS	AFLP
Elevated blood pressure	+++	+	+	++ (50% of cases)
Neurological symptoms	+/++ (headache)	+++ (numbness, weakness, aphasia, mental status)	+	+
Abdominal symptoms	+ (RUQ pain)	++ (unspecific/diffuse)	+	+++ (unspecific/diffuse)
Fever	-	-/+	-/+	-
Easy bruising	-	-/+	-	-
Thrombocytopenia	+/++ (>50 × 10 ⁹ /L)	+++ (<20 × 10 ⁹ /L)	+ (<100 × 10 ⁹ /L)	· J
Renal impairment (elevated creatinine; >	+/++	+/++	+++	++/+++
~2 mg/dL)				
~2 mg/dL) Hepatic dysfunction and inflammation (AST/ALT)	[]	-/+	-/+	+++ (and bilirubin)
~2 mg/dL) Hepatic dysfunction and inflammation (AST/ALT) Coagulopathy	-/+	-/+	-/+	+++ (and bilirubin) +++
~2 mg/dL) Hepatic dysfunction and inflammation (AST/ALT) Coagulopathy LDH	-/+ +	-/+ - +/+++	-/+ - +/++	+++ (and bilirubin) +++ +++
~2 mg/dL) Hepatic dysfunction and inflammation (AST/ALT) Coagulopathy LDH Microangiopathic hemolytic anemia	+ -/+ +	-/+ - +/+++ +/+++	-/+ - +/++ +/++	+++ (and bilirubin) +++ +++ +
~2 mg/dL) Hepatic dysfunction and inflammation (AST/ALT) Coagulopathy LDH Microangiopathic hemolytic anemia Hypoglycemia	+ -/+ + -	-/+ - +/+++ +/+++	-/+ - +/++ +/++	+++ (and bilirubin) +++ +++ + +

Thrombocytopenia: Summary

Decreased Production	Increased Destruction / Consumption	Combination	
Marrow failure	Heparin induced thrombocytopenia; Vaccine induced thrombotic thrombocytopenia	Immune Thrombocytopenia	
Inherited thrombocytopenia	Thrombotic thrombocytopenic purpura/ atypical HUS, DIC	Other autoimmune conditions	
Myelodysplasia	Pre-eclampsia, HELLP syndrome, AFLP	Infection/sepsis	
Marrow infiltration	Post transfusion purpura	Liver disease	
Irradiation	Neonatal alloimmune thrombocytopenia	Drugs	
Chemotherapy/drugs	vWD Type IIB	Cyclic thrombocytopenia	
Nutritional deficiencies (Vit B12, folate, severe iron deficiency)	Mechanical destruction (valvular dysfunction, cardio- pulmonary bypass, LVADs)	Other Pseudothrombocytopenia, gestational/dilutional	
Alcohol	Hypersplenism (sequestration)	Qualitative platelet disorders	

Thank you

SAVE MORE LIVES. GIVE BLOOD.

Support your Pacific Northwest community.

Book your donation today at bloodworksnw.org

Bloodworks

Atypical Hemolytic Uremic Syndrome (aHUS) in the Era of Terminal Complement Inhibition

Brocklebank et al. DOI: 10.1182/blood.2022018833

