

Relapsed and Refractory Multiple Myeloma and Light Chain Amyloidosis

Andrew Cowan, MD Associate Prof Medicine Research Director, Multiple Myeloma UW Medicine / FHCC ajcowan@fredhutch.org

COI Disclosure

- Research Funding:
- Janssen, BMS, Juno/Celgene, Sanofi, Regeneron, IGM Blosciences, Nektar, Harpoon, Adaptive Biotechnologies, Caelum, Abbvie

- Advisory/Consulting:
- Sebia, Janssen, BMS, Sanofi, HopeAI, Adaptive Biotechnologies, Abbvie

Agenda

- Relapsed and refractory multiple myeloma
 - 1-3 prior lines of therapy
 - >3 prior lines of therapy
 - CAR T cell therapy
 - Bispecific antibodies
- Light chain (AL) Amyloidosis
 - Diagnosis, evaluation
 - Management

What is relapse in multiple myeloma and when do we treat?

- **Always! Clinical relapse**
 - Progression of new end organ damage:
 - Hypercalcemia
 - Anemia
 - Renal failure
 - Osteolytic bone disease
 - Plasmacytoma
 - Plasma cell leukemia
- Biochemical relapse Usually...
 - Increase in monoclonal protein or involved free light chains (> 0.5 g/dl or > 10 mg/dl)
 - Increase in bone marrow plasmacytosis (>10%)

Fred Hutchinson Cancer Center

Factors to consider

- Disease progression/relapse within 2 years of initial therapy when transplant and maintenance are used
- Relapse within 18 months in absence of transplant
- Acquisition of 1q gain/duplication, or Del 17p / TP53 mutation
- Extramedullary disease (EMD) at relapse

Fred Hutchinson Cancer Center

General principles of treating relapsed MM

- Preferable to use drug classes/agents that the patient has not previously been exposed to, typically in triplet combinations
- However... OK to repeat previously used regimen if not used recently (i.e., > 6 months)
- Intravenous immunoglobulin (IVIG) should be considered for patients with an IgG < 400 mg/dl, especially in the context of BsAb treatment
- Always use the best next therapy! Don't save the best for last... there is attrition with each line of therapy in multiple myeloma

Fred Hutchinson Cancer Center

Management of Relapsed Multiple Myeloma in 1+ line of therapy in 2024

Most patients:

Dara RVD → autologous HCT → Lenalidomide (+/- Dara) maintenance

OR

Dara/Isa RD / RVD \rightarrow lenalidomide

maintenance

Progression of Disease

4+ Lines of

therapy

CD38 + IMID: Carfilzomib, pomalidomide, dexamethasone

1-3 Lines of

therapy

CD38 + PI:Carfilzomib + either Daratumumab/Isatuximab and dexamethasone

BCMA CAR T cells: Cilta-cel (1 LOT) or ide-cel (2 LOT)

Selinexor regimens

Clinical trial

7

BCMA CAR T cells:Cilta-cel, or Idecel

BCMA Bispecific: Teclistamab, elrantabamab

GPRC5D Bispecific: Talquetamab

Clinical trial

Post-BCMA relapse

Clinical trials

GPRC5D bispecific: Talquetamab (if not already given)

Selinexor based regimens

Sample board question

- 54 year old man diagnosed with multiple myeloma, with 1q gain. He was treated initially with Dara RVD, followed by autologous stem cell transplant, to which he achieved a complete response. He was on lenalidomide maintenance for 3 years and has recently had evidence of an increasing monoclonal protein up to 0.5 g/dl, with appearance of new FDG-avid osteolytic bone disease on PET-CT.
- Question 1: Should I treat this patient?
 - 1. Yes
 - 2. No

What are category 1 recommendations for treatment of this patient's disease?

- 1. Daratumumab, bortezomib and dexamethasone
- 2. Selinexor, bortezomib, and dexamethasone
- 3. Carfilzomib, pomalidomide, and dexamethasone
- 4. Elotuzumab, pomalidomide, and dexamethasone
- 5. Cilta-cel (Carvykti)
- 6. All of the above

Common non-immunotherapy based regimens for 1-3L MM

- CD38 + immunomodulatory agent (All Category 1)
 - Daratumumab, Ienalidomide, dexamethasone (POLLUX)
 - Daratumumab + pomalidomide, dexamethasone (APOLLO)
 - Isatuximab + pomalidomide, dexamethasone (ICARIA)
- CD38 + proteasome inhibitor (All category 1)
 - Daratumumab, bortezomib, and dexamethasone (CASTOR)
 - Daratumumab, carfilzomib, and dexamethasone (CANDOR)
 - Isatuximab, carfilzomib, and dexamethasone (IKEMA)
- Selective inhibitors of nuclear export (Category 1)
 - Selinexor, bortezomib, and dexamethasone
- SLAMF7 antibody (Category 1)
 - Elotuzumab, pomalidomide, dexamethasone
- Cytoxan based regimens

• Pomalidomide, Cytoxan, and dexamethasone Fred Hutchinson Cancer Center

Dosing and administration

- Always prefer subcutaneous bortezomib; either weekly or twice weekly may be appropriate depending, but weekly usually preferable and has less neuropathy
- Carfilzomib ok to give weekly; I usually prefer 56 mg/m2 IV weekly when giving in combination with CD38 mAbs or immunomodulatory agents
- Always try to reduce your dexamethasone dose after the first 1-2 cycles if the patient is responding! Consider 20 mg weekly for elderly/frail
- Pomalidomide usually better to start with 2 mg daily; 4 mg can be tough for most patients
- Selinexor we usually start with 60 or 80 mg weekly, especially in combination with proteasome inhibitors

Fred Hutchinson Cancer Center

Common toxicities to be aware of

- Carfilzomib can cause both cardiac (5-10%) and renal toxicities (5-10%); be wary that both can occur at any time (early vs late)
- Selinexor hyponatremia, anorexia, fatigue, moderate to severe nausea. Use 5HT3 antagonist + olanzapine
- Bendamustine can impair ability to manufacture CAR T cells

CHIMERIC ANTIGEN RECEPTOR T-CELL THERAPY (CAR T CELLS)

Mikkilineni L, Kochenderfer J, Blood 2017.

CAR T-CELL MANUFACTURING

Expansion of the CAR T cells: goal is to reach appropriate dose, this can take several days

Cell harvest and formulation of final product for cryopreservation

Toxicities from CAR T-cell therapy

- Cytokine release syndrome
- ICANS aka neurotoxicity
- Prolonged cytopenias
- B-cell aplasia and hypogammaglobulinemia
- Secondary malignancy

What is cytokine release syndrome (CRS)?

- Pro-inflammatory syndrome caused by excessive immune activation from CAR T cell therapy
- If not recognized and treated early, results in substantial morbidity and mortality
- Hallmark of this syndrome is fever, hypotension, hypoxia

Shimabukuro-Vornhagen, et al. Journal for Immunotherapy of Cancer, 2018;6:56.

CRS Grading

Constitutional symptoms

Hypotension responding to fluids/low dose

vasopressors

Grade 2 organ toxicities

Shock requiring high dose/multiple vasopressors

• Hypoxia requiring \geq 40 % FiO2

• Grade 3 organ toxicities, grade 4 transaminases

· Mechanical ventilation

• Grade 4 organ toxicities (excl. transaminases)

What is neurotoxicity associated with CAR T-cell therapy?

- Neurotoxicity also more recently known as "Immune Effectory Cell-Associated Neurotoxicity Syndrome'' – ICANS
- Predominant symptoms: Ranges from mild confusion, lethargy, word finding difficulties, to more severe states such involving global encelphalopathy such as coma, persistent vegetative states
- Important has resulted in deaths in some patients receiving CAR T-cell therapy
- Dexamethasone mainstay of treatment treat early, don't delay!

EARLIER USE OF BCMA CAR T

KarMMA-3 – Otero P et al, NEJM 2023

Ide-cel/Abecma: BCMA targeted chimeric antigen receptor T-cell therapy, approved by FDA in 2020

Primary endpoint: PFS

Crossover ALLOWED

n.b. KdDara or IsaKD not permitted as SOC; 5 approved regimens

KARMMA-3: UPDATED ANALYSIS

Otero P et al, ASH 2023

a. Based on Kaplan-Meier approach. b. Stratified HR is based on the univariate Cox proportional hazards model. CI is two sided and calculated by bootstrap method; c. Two-stage Weibull model without recensoring (prespecified analysis)

TREND OF OS BENEFIT WITH IDE-CEL AMONG TREATED PATIENTS

This is an exploratory analysis of the treated population without adjusting for crossover

a. Based on Kaplan–Meier approach; b. Stratified HR based on the univariate Cox proportional hazards model. CI is 2-sided.

OS, overall survival. Otero P et al, ASH 2023.

33	36	39	42	45	48
45	41	28	13	4	0
23	18	11	4	3	0

CARTITUDE 1 Study Design

- Primary Objectives
 - Phase 1b: Determine safety and RP2D
 - Phase 2: Efficacy
- Eligibility criteria, in brief
 - PD per IMWG
 - 3 or more prior therapies
 - Prior exposure to IMiD, PI, CD38
 - Measurable disease

^aTreatment with previously used agent resulting in at least stable disease.

Usmani Z et al, ASCO Annual Meeting 2021.

CARTITUDE-1: FINAL RESULTS

CR, complete remission; MRD, minimal residual disease; PFS, progression-free survival.

PFS by CR and sustained MRD neg:

- All pts: median PFS 34.9 months
- > CR, median PFS 38.2 months
- 12 mo sustained MRD neg: 30 mo PFS 74.9%
- 12 mo sustained MRD neg, > CR: 30 mo PFS 78.5%

CARTITUDE-4: STUDY DESIGN AND ENDPOINTS

Primary endpoint

• PFS^c

Secondary endpoints

- Efficacy: \geq CR, ORR, MRD negativity, OS
- Safety
- PROs

^aPhysicians' choice. ^bAdministered until disease progression. ^cTime from randomization to disease progression/death. BCMA, B-cell maturation antigen; CAR-T, chimeric antigen receptor T cell; cilta-cel, ciltacabtagene autoleucel; CR, complete response; DPd, daratumumab, pomalidomide, and dexamethasone; ECOG PS, Eastern Cooperative Oncology Group performance status; IMiD, immunomodulatory drug; ISS, International Staging System; Len, lenalidomide; LOT, line of therapy; MM, multiple myeloma; MRD, minimal residual disease; ORR, overall response rate; OS, overall survival; PD, pharmacodynamics; PFS, progression-free survival; PI, proteasome inhibitor; PK, pharmacokinetics; PRO, patient-reported outcome; PVd, pomalidomide, bortezomib, and dexamethasone: SOC, standard of care.

CARTITUDE-4: PRIMARY ENDPOINT – PFS (ITT POPULATION)

^aMedian follow-up, 15.9 months. ^bConstant piecewise weighted log-rank test. ^cHazard ratio and 95% CI from a Cox proportional hazards model with treatment as the sole explanatory variable, including only progressionfree survival events that occurred >8 weeks post randomization.

cilta-cel, ciltacabtagene autoleucel; HR, hazard ratio; ITT, intent-to-treat; mPFS, median progression-free survival; NE, not estimable; SOC, standard of care.

What is a bispecific antibody?

 An antibody with 2 unique binding sites that target different antigens or epitopes, typically CD3 on T cells, and a tumor antigen (BCMA or GPRC5D)

BSABS FOR MM: APPROVED AND IN DEVELOPMENT

BCMAxCD3						
Agent name	<u>ORR</u>	<u>MRD (-)**</u>	<u>PFS</u>	CRS	Infections	Hospitalization
Teclistamab1*	63%	26.7%	mPFS 11.3 mos	72%	G3-4, 44%	Y – 7 days
Elranatamab ^{2*}	61%	90%	12 mos PFS 58%	57%	G3-4 35%	Y – 3 days
ABBV-383b ³	57%	73%	mPFS 10.4 mos	57%	41% all G	Y – 48 hrs D1
Linvoseltamab (REGN5458) ⁴	51%	4/10 pts	NA	38%	Not reported	Y
Alnuctamab	43%	Not reported	NA	77%	Not reported	Y
GPRC5DxCD3						
Talquetamab5*	68%	69%	mDOR 10.2 mos	80% at 800 ug	G3-4 7%	Y, 7 days
FcRH5xCD3						
Cevostamab ⁶	56.7%	7/10 pts	mDOR 11.5 mos	80%	~20%	Y

*FDA Approvals 10/2022, 8/23.

** In Evaluable patients.

1. Moreau P et al, *NEJM* 2022; 2. Bahlis N et al ASH 2022; 3. D Souza A et al, *JCO* 2022; 4. Zonder JA ASH 2021; 5. Chari A et al *NEJM* 2022; 6. Trudel S et al ASH 2021.

Key takeaways: Relapsed Multiple Myeloma

- Treatment approach based on prior lines of therapy, prior response to agents
- CD38 mAbs + IMiDs or PIs remain key options in early relapse
- CAR T-cell therapy (e.g., ide-cel, cilta-cel) shows promise in all lines (late/early)
- Bispecific antibodies (e.g., teclistamab) emerging as effective options
- Consider clinical trials at all stages of relapse

What is Amyloidosis?

- Definition: a group of diseases characterized by:
 - Normally soluble proteins deposit, leading to formation of insoluble extracellular amyloid fibrils
- Classification:
 - Systemic: amyloidogenic protein produced at site distant from site of deposition
 - Localized: amyloid deposition at same site as production of amyloidogenic protein

unfolded protein

Aggregates with intermolecular βsheets

Amyloid fibrils

Clinical presentations that should raise concern for amyloidosis

- Heart failure with preserved ejection fraction (HFPEF)
- Nephrotic range proteinuria
- Gastroparesis, isolated hepatomegaly
- Peripheral neuropathy with autonomic features, carpal tunnel syndrome
- Any patient with MGUS (esp λ clonality), or Multiple Myeloma (12-20% of patients)

How does a pathologist find amyloidosis?

- Congo Red: stain used in histology for documenting the presence of amyloidosis in tissue
- Congo red initially began as a textile dye; in 1922, was found to bind avidly to amyloid protein¹
- "Amyloid" initially termed by German botanist Matthias Schleiden to describe starch material in plants that stained blue with iodine¹

Specimen from abdominal fat aspirate; note intense congophilic staining

¹David P. Steensma (2001) "Congo" Red. Archives of Pathology & Laboratory Medicine: February 2001, Vol. 125, No. 2, pp. 250-252.

Characteristic "apple green birefringence" under polarized light microscopy

Classic Physical Examination Findings and Organ Involvement in AL Amyloidosis

Sanchorawala V et al NEJM 2024

Heart

HFpEF, LVH, hypotension, dyspnea or edema

Lungs Pleural effusions

Kidneys Nephrotic syndrome, kidney failure, edema

GI Tract GI bleeding

Joints Amyloid arthropathy

Blood Acquired factor X deficiency

Autonomic Nervous System Orthostatic hypotension, GI motility issues, erectile dysfunction

Peripheral Nervous System Sensory neuropathy

Sample board question

You are seeing a 66 year old female in clinic with a new diagnosis of Light-chain Amyloidosis. At the time of diagnosis, her involved free light chain was 15 mg/dl, and she had NYHA class 3 heart failure with an Nt pro BNP of 1500 ng/mL and Troponin T of 6. Her creatinine was 0.8 mg/dl, but she had 2400 mg/24 hours of proteinuria, predominantly albumin. She also has some gastrointestinal symptoms with nausea and early satiety. On examination, she has profound macroglossia. Which organs are involved by amyloidosis?

- 1. GI
- 2. Cardiac
- 3. Renal
- 4. Soft tissue
- 5. 1 and 2
- 6. 1-4

Diagnostic Algorithm for Amyloidosis

Suspicion for

Amyloidosis

Concern for ATTR?

Other testing for assessment of vital organ involvement:

- Orthostatic vital signs
- nt-pro BNP, troponin T (or BNP, Tn-I)
- LFTs \bullet
- Transthoracic echocardiogram
- Cardiac MRI

Biopsy of surrogate site:

- Fat pad aspirate
- Minor labial salivary gland biopsy

If negative:

Biopsy of involved organ

Typing:

- Gold standard: Laser capture / Mass spectrometry
- Also: IHC; Immunogold electron microscopy

PYP/DPD scan (for ATTR-CM) *

Plasma cell dyscrasia work-up:

- Serum free light chain assay
- Bone marrow aspirate and biopsy with flow cytometry, FISH, and conventional cytogenetics
- SPEP with \bullet immunofixation
- 24 hour urine protein ulletwith UPEP

Revised Prognostic Staging System for AL Amyloidosis

Kumar S et al. J Clin Oncol. 2012 Mar 20;30(9):989-95

Factors

$dFLC \ge 18 \text{ mg/dL}$

Cardiac troponin-T \geq 0.025 ng/ml

NT-ProBNP \geq 1,800 pg/mL

Each gets 1 point; score from 0, 1, 2, and 3 points denoting stages I, II, III and IV

Board question, continued

- Which of the following treatments would you recommend, based on the results of a randomized phase 3 trial?
- 1. CyBorD
- 2. Dara-CyBorD
- 3. Dara-Vd
- 4. Autologous stem cell transplant
- 5. None of the above

Clinical Pearls for Treating Patients with AL Amyloidosis • Watch the dexamethasone dose... 10-20 mg is usually enough

- Manage fluid retention carefully
- Bortezomib can unmask neuropathy (peripheral and autonomic)
- Spironolactone can be helpful for amyloid cardiomyopathy
- Midodrine very useful for orthostatic hypotension
- Key Point: Treating this like Multiple Myeloma (same doses, regimens, etc) is often too much for these frail patients

Eligibility Criteria for ASCT – Key Concerns • Due to risks of transplant-related mortality (TRM), eligibility criteria

- have evolved over time to select optimal patients
- Typical Criteria:
 - Cardiac ejection fraction > 40%
 - DLCO > 50% predicted
 - Supine systolic blood pressure > 90 mmHg
 - NT pro BNP < 5,000 / Troponin T < 0.06
- Common challenges:
 - Cardiac involvement increased TRM (16%) seen in cardiac involvement with ASCT
 - Determining extent of organ involvement

Autologous Stem Cell Transplantation (ASCT) for AL Amyloidosis

Sanchorawala V, et al. Blood (2015) 126 (20): 2345-2347

EUROPEAN HEMATOLOGY ASSOCIATION

Study Design

Key eligibility criteria:

- AL amyloidosis with ≥1 organ impacted
- No prior therapy for AL amyloidosis or MM
- · Cardiac stage I-IIIA (Mayo 2004)
- eGFR ≥20 mL/min

Stratification criteria:

- Cardiac stage (I vs II vs IIIA)
- Transplant typically offered in local country (yes vs no)
- Creatinine clearance (≥60 mL/min vs <60 mL/min)</p>

Primary endpoint: Overall haematologic CR rate

Secondary endpoints: MOD-PFS, organ response rate, time to haematologic response, overall survival, safety

ANDROMEDA is a randomised, open-label, active-controlled, phase 3 study of DARA SC plus CyBorD vs CyBorD alone in newly diagnosed AL amyloidosis

MM, multiple myeloma; eGFR, estimated glomerular filtration rate; QW, weekly; Q2W, every 2 weeks; Q4W, every 4 weeks; MOD-PFS, major organ deterioration progression-free survival; CR, complete response; IV, intravenous; PO, oral. *Dexamethasone 40 mg IV or PO, followed by cyclophosphamide 300 mg/m² IV or PO, followed by bortezomib 1.3 mg/m² SC on Days 1, 8, 15, and 22 in every 28-day cycle for a maximum of 6 cycles. Patients will receive dexamethasone 20 mg on the day of DARA SC dosing and 20 mg on the day after DARA SC dosing.

Kastritis et al EHA 2020

Haematologic CR: Primary Endpoint

CI, confidence interval; FLC, free light chain.

Among CR responders (DARA-CyBorD, n = 104; CyBorD, n = 35).

Comenzo RL, et al. Leukemia. 2012;26(11):2317-2325. 2. Sidana S, et al. Leukemia. 2019;34(5):1472-1475.

EHA25 VIRTUAL

- Assessed by blinded Independent Review Committee
- CR per Comenzo criteria¹ with clarifications:
 - Abnormal FLC ratio does not preclude CR²
- The CR rate at 6 months was consistent with overall CR rate
 - 50% DARA-CyBorD vs 14% CyBorD

Daratumumab

22

Immunomodulatory agents for Relapsed AL Amyloidosis

• Lenalidomide and dexamethasone:

- Overall Response Rates: 41-67%, median time to response ~6 months^{1,2}
- Tox profile: Myelosuppression, dermatologic, fatigue

• Pomalidomide:

- Overall Response Rates: 48-50 %, median time to response, 1.9 months^{3,4}
- Tox: Myelosuppression, fatigue

Fig. 3 Overall survival by trial.

¹Dispenzieri A et al. Blood 2007 Jan 15;109(2):465-70; ²Sanchorawala V et al. Blood. Blood. 2007 Jan 15;109(2):492-6 ³Sanchorawala V et al. Blood. 2016 Aug 25;128(8):1059-62; ⁴Dispenzieri A et al Blood 2012 Jun 7;119(23):5397-404 ⁵Warsame R et al. Blood Cancer j. 2020 Jan 8;10(1):4

Overall Survival

Key Takeaways: AL Amyloidosis

- Early diagnosis crucial consider in unexplained organ dysfunction
- Typing essential for appropriate management
- Treatment aims to reduce amyloidogenic light chains
- Daratumumab-based regimens show high efficacy in newly diagnosed patients
- ASCT remains an option for eligible patients
- Careful management of organ dysfunction is critical

Thank you!

Questions? Email: ajcowan@fredhutch.org

