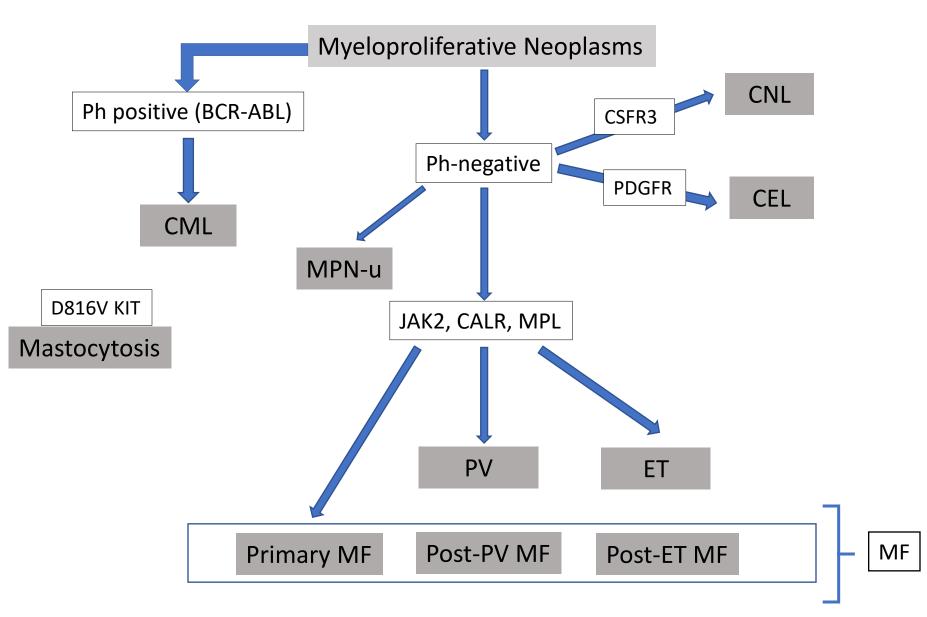
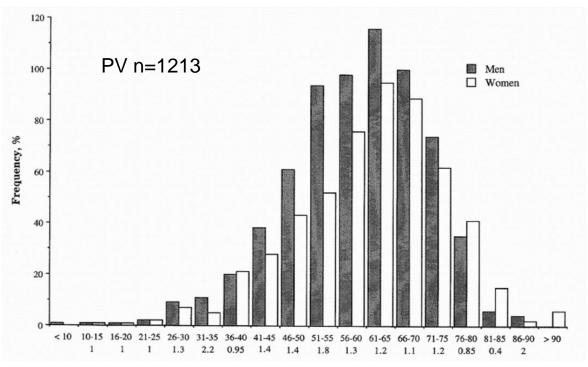
Fred Hutchinson Cancer Cancer 15th Annual Comprehensive Hematology & Oncology Review: Myeloproliferative Neoplasms

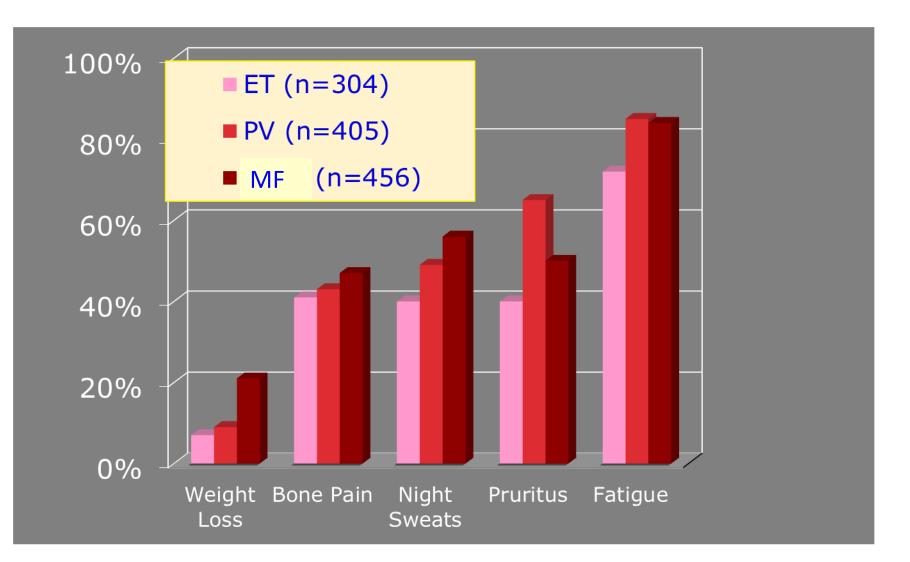

Anna B. Halpern, MD Associate Professor Hematology and Oncology Division, University of Washington Clinical Research Division, Fred Hutch Cancer Center 9/26/2024

Disclosures

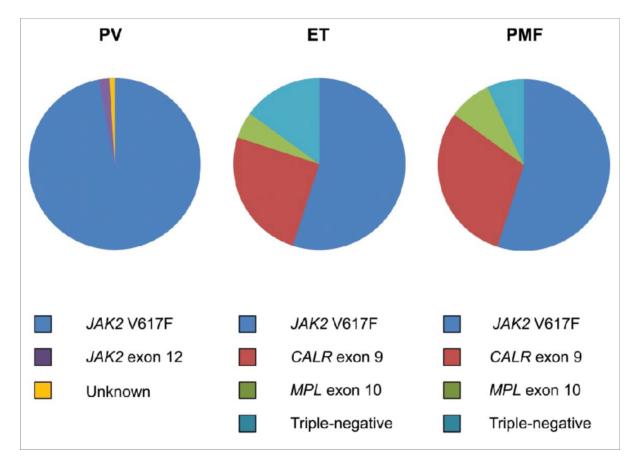
- Research funding: Bayer, Jazz, Gilead, Jazz, Incyte, Karyopharm, DISC Medicine, Merck, Protagonist, PharmEssentia
- Consulting: Karyopharm

Objectives

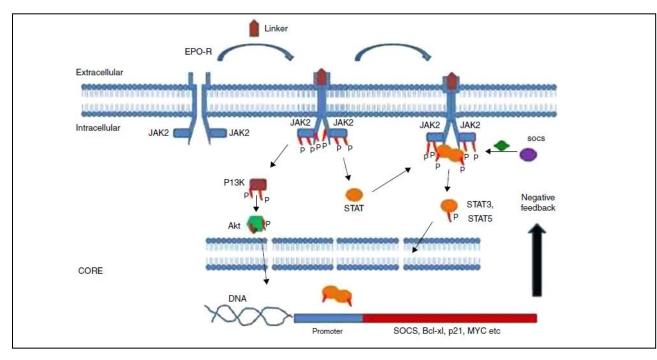

- ✓ Overview MPNs: epidemiology and pathophysiology
- Presentation, Diagnosis, Risk Stratification, Treatment Polycythemia vera Essential thrombocythemia Myelofibrosis
- ✓ "Pearls" for mastocytosis, chronic neutrophilic leukemia in slide deck


MF=myelofibrosis CNL=Chronic neutrophilic luekemia PV=polycythemia vera CEL=Chronic Eosinophilic Leukemia ET=essential thrombocythemia CML=chronic myeloid leukemia

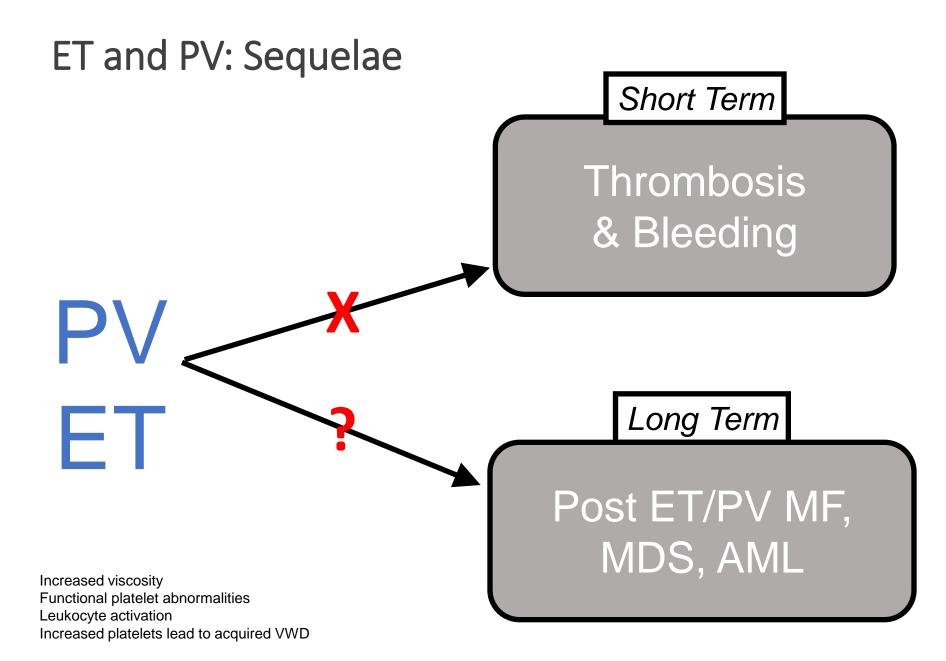
Epidemiology of MPN


- ET: 1.55-2.53/100,000 Median age 72
- PV: 1.9/100,000 Median age 62
- MF: 0.3-1.46/100,000 Median age 67

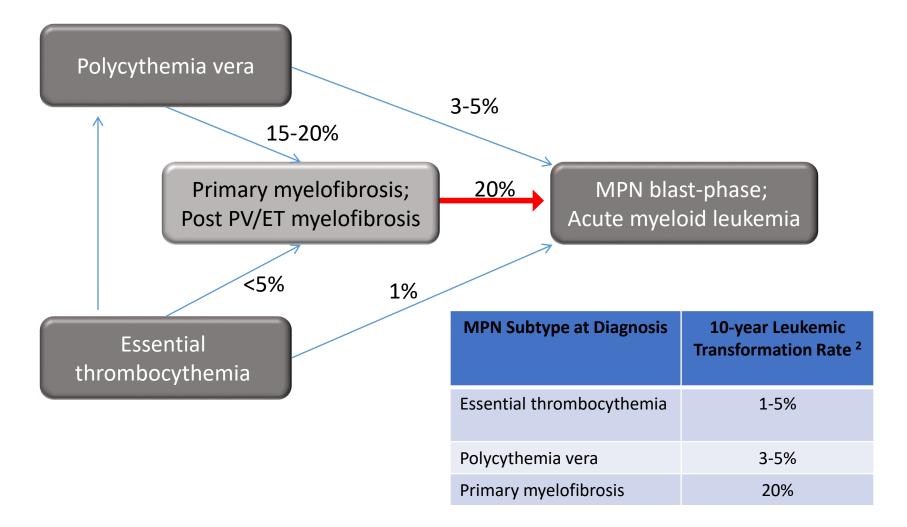
Presenting symptoms of MPN; MF most symptomatic



Mutations in MPNs



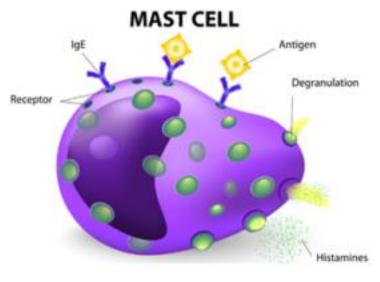
Disease	Mutation	%Patients
PV	JAK2 V16F JAK2 Exon 12	95-97% 2-4%
ET	JAK2 V16F CALR MPL "triple-neg"	60-65% 20-25% 5% 10-15%
PMF	JAK2 V16F CALR MPL "triple-neg"	60-65% 20-25% 5% 10-15%


MPN Etiology: Role of JAK2 Mutation

V617F single point mutation in JAK2 gene → an altered protein that constitutively activates the JAK/STAT signal transducers and activators of transcription pathways Affects the expression of genes involved in regulation of apoptosis and regulatory proteins and modifies the proliferation rate of hematopoietic stem cells

Long term risk MPNs: transformation to MF and AML

1. Tefferi A. Am J Hematol. 2008;83:491-497; 2. Rampal, Mascarenhas. Curr Opin Hematol. 2014;21:65-71.


Case 1

- 33 yo M with no PMH, presented with painful/red toes, later developed joint pain and pruritis
- Physical: plethoric, no joint abnormalities
- CBC: white blood count (WBC) 21 K/uL, hemoglobin (Hgb) 18.8 g/dL, hematocrit (HCT) 48, platelets (plts) 490 k/ μ L
 - Epo level <1
- JAK2 V617F mutation found positive on peripheral blood, BCR-ABL neg
- Bone marrow: hypercellular >95%, trilineage hematopoiesis and proliferation, no fibrosis or increased blasts
- Diagnosis of PV was made:
 - Start Aspirin 81 mg daily
 - Started phlebotomy target HCT <45%
 - Did not tolerate phlebotomy → hydroxyurea→ did not control symptoms → ruxolitinib

Erythromelalgia & aquagenic pruritis, "classic" PV symptoms

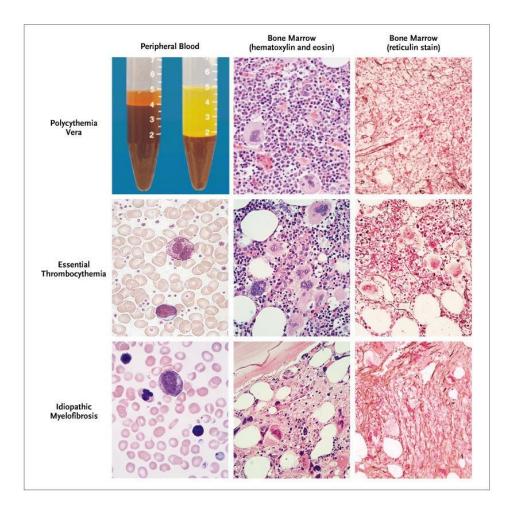
- Blood vessels in hands/feet episodically blocked → hyperemia and inflammation
- Severe burning pain (small fiber sensory nerves) and erythema
- Trigged by heat, activity, pressure, stress
- Aquagenic pruritis, classically after hot shower, mediated by mast cells degranulation

WHO 2022 PV Diagnostic Criteria

Start with CBC, Epo level and JAK2 V617F/BCR-ABL mutations; exclude secondary causes

WHO Criteria: PV

Major Criteria (all 3 major or first 2 with minor) •Hgb > 16.5 g/dL (HCT 49) in men, 16 g/dL HCT (48) in women


•[†]BM Trilineage Proliferation (panmyelosis)

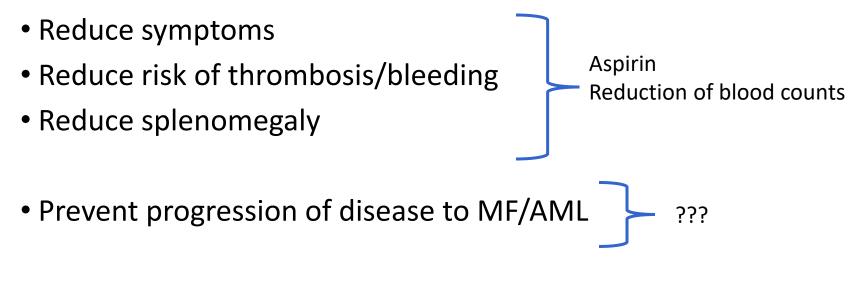
•JAK2V617F or JAK2 exon 12 mutation

Minor Criteria •Low Epo level (<3mU/mL)

†Criterion number 2 (BM biopsy) may not be required in cases with sustained absolute erythrocytosis: Hgb>18.5 g/dL in men (HCT55.5%) or >16.5 g/dL in women (HCT49.5%) if major criterion 3 and the minor criterion are present.

**Initial myelofibrosis (up to 20% of patients) can only be detected by performing a BM biopsy; may predict a more rapid progression to overt myelofibrosis (post-PV MF).

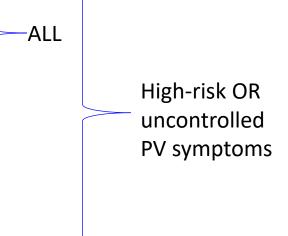
PV Risk Stratification


• LOW RISK:

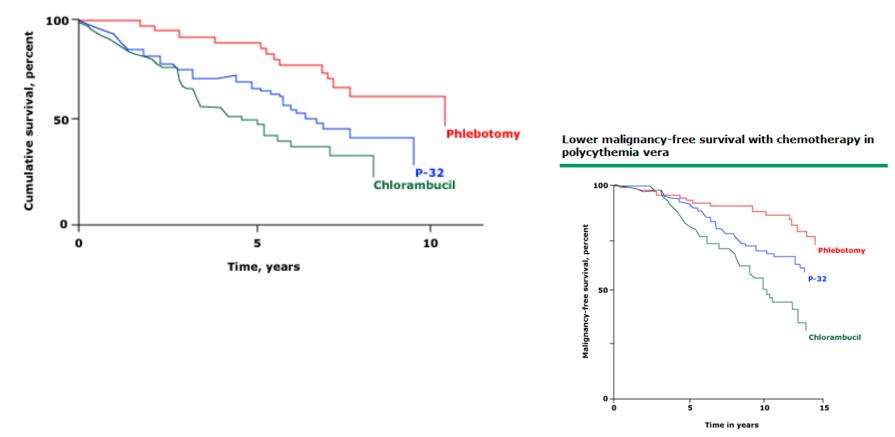
- Age <60
- No history of thrombosis

• HIGH RISK

- Age> 60 OR
- History of thrombosis

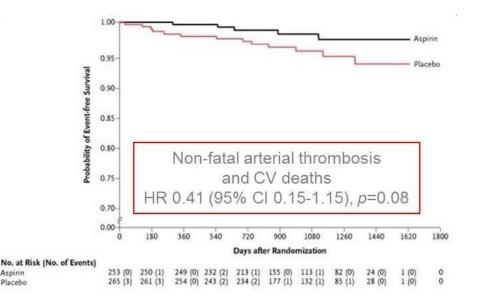

Principals of Therapy

• Cure- stem cell transplant

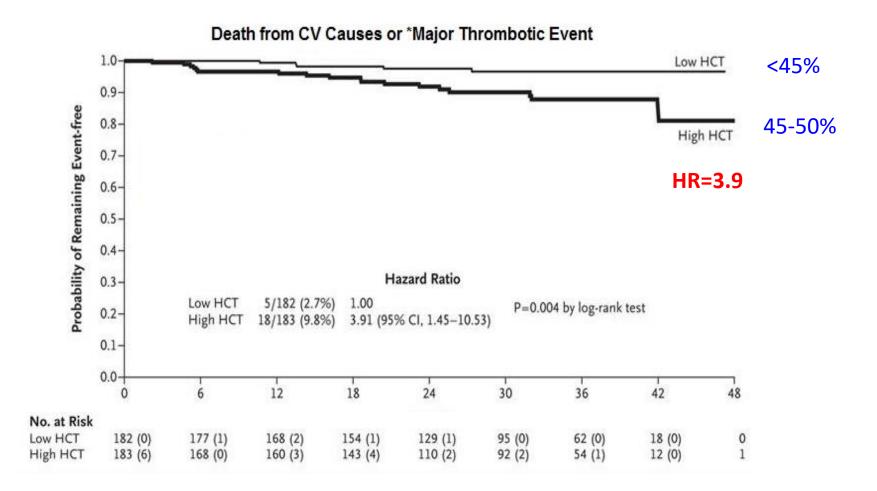

PV: Treatment

- Phlebotomy to maintain HCT <45%
 Achiving 81 mg daily
- Aspirin 81 mg daily
- Cardiovascular risk-factor modification
- Hydroxyurea (HU)
- Interferon: pegylated and ropegylated
- Ruxolitinib
- Cherno

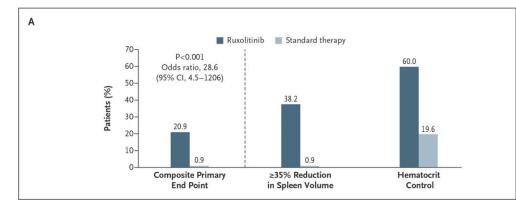
Initial trials in PV: no more chemo

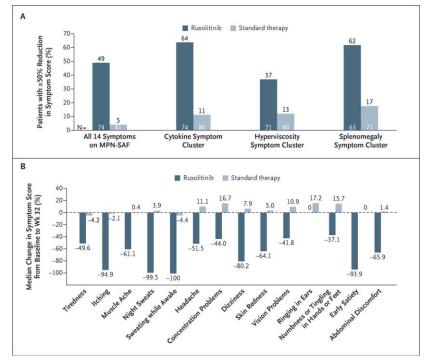

Lower cumulative survival with chemotherapy in polycythemia vera

Similarly worse survival with pipobroman


Kiladjian J et al. J Clin Oncol. 2011;29:3907-3913. Najean Y et al. Blood. 1997;90:3370-3377

ECLAP TRIAL: RCT ASA vs. Placebo in PV


- 500 PV patients randomized to Aspirin 100 mg daily vs placebo
- Aspirin arm: reduced risk combined endpoint non-fatal arterial and venous thrombosis and CV deaths
- No reduction in overall mortality
- No increase incidence bleeding

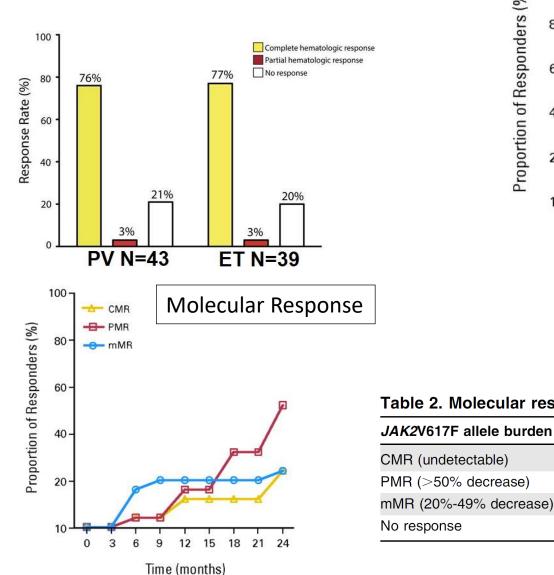

Target HCT in PV: CYTO-PV Trial

Marchioli R., et al. Thrombosis 2011;2011:794240. Marchioli R., et al. N Engl J Med 2013;368:22-33

RESPONSE Trial: Ruxolitinib vs BAT in PV

Open label, 222 patients with PV Resistant (46%) or intolerant to HU (54%)

Randomly assigned to: Ruxolitinib (110) BAT (112): 59% HU, INF 12%, pipobroman 2%, no med 15%


Primary endpoint HCT control (wk 32) and >35% reduction spleen volume

Symptoms evaluated by MPN-SAF TSS

No thrombotic/transformation outcomes

Vannucchi et al. NEJM 2015; 372 (5): 426-35. Verstovsek et al. Haematologica 2016; 101 (7): 821.

Peginterferon alfa-2a

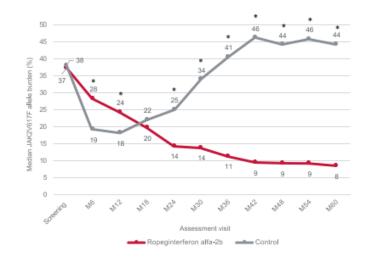
Hematologic Response 100 CHR Proportion of Responders (%) PHR 80 60 40 20 10 60 90 120 150 210 0 30 180 Time (days)

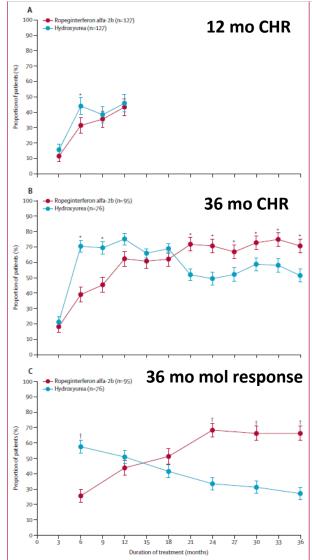
able 2. Molecular response rates to PEG-IFN- $lpha$ -2a therapy		
AK2V617F allele burden	PV (n = 40) number (%)	ET (n = 18) number (%)
MR (undetectable)	7 (18)	3 (17)
MR (>50% decrease)	14 (35)	6 (33)

3 (8)

16 (40)

Quintás-Cardama et al. *J Clin Oncol*. 2009;27:5418-5424 Quintás-Cardama et al. *Blood*. 2013;122:893-901


3 (17)


6 (33)

*Gowin et al. Haematologica 2012;97:1570-1573

Ropeginterferon alpha-2b: PROUD-PV AND CONTINUATION PV

- Next-generation mono-pegylated IFN-α-2b
- Approved in 2022 as BESREMi[®] for adults with PV
- High tolerability and longer elimination half-life \rightarrow q 2wks
- Randomized trial of 257 early-stage PV pts (<3 yrs HU) to ropegINF vs. HU
 - Non-inferiority design for complete hematologic response (CHR) and normal spleen size
- PROUD PV: 21% of ropegINF vs 28% HU met primary endpoint
- Continuation PV: 71% ropeg vs. 51% HU had hematologic response without spleen criterion (p=0.02)
 - Response to ropegINF increased over time

Gisslinger et al. *Blood* (2015) 126 (15): 1762–1769. Gisslinger et al. Lancet Haem 2020; 7 (3):e196-208 Kiladjian JJ et al. Leukemia 2022; 36: 1408-1411.

Thrombosis Risk-Adapted Management of PV

Category	Characteristics	Treatment
Low-risk	Age <60 AND No thrombosis	Phlebotomy : goal HCT <45 Aspirin 81 mg daily Address CV risk factors
High-risk	Age ≥ 60 OR Thrombosis history	All of the above AND Cytoreductive Therapy: 1 st Line: Hydroxyurea PegIFN/RopegIFN 2 nd Line: Ruxolitinib PegIFN/RopegIFN Busulfan (age >70)

- Indications for cytoreduction in low-risk pts may include:
 - Poor tolerance of phlebotomyProgressive leukocytosis

Platelets > 1500 x 10⁹/L (risk of bleeding) Severe disease-related symptoms

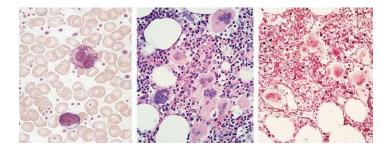
**Pts with plts >1 million should be tested for acquired VW prior to initiation of Aspirin

Case 2

- 31 yo F found to have thrombocytosis to 550 k/ μ L on routine lab check 2010
- BCR-ABL, JAK2, MPL negative; +CALR
- Bone marrow: normocellular, trilineage hematopoeisis, atypical megakaryocytic proliferation, no increased blasts, no fibrosis, normal cytogenetics
- Monitored for 10 years, plts decreased in 2 pregnancies
- 2018 plts rose to 1.85 million, developed headaches, fatigue, chest tightness, heavy menstrual bleeding
- Acquired VWF testing negative
- Initiated on Aspirin and PegIFN → plts now 400s, symptoms improved

WHO 2022 ET Diagnostic Criteria

WHO Criteria: ET


Major Criteria (all 4 major or first 3 with minor) •Plt Count \geq 450 x 10⁹/L sustained

•BM bx: megakaryocyte proliferation with increased # of enlarged mature megakaryocytes. No significant increase in granulo/erythropoiesis

•Not meeting WHO criteria for : PV[¥], MF[†], CML[‡], MDS[∫]

•JAK2V617F, CALR, or MPL mutation

Minor Criteria (all 3 major or first 2 with minor) • Presence of a clonal maker or no evidence of reactive thrombosis[§]

¥ failure of Fe to increase Hgb in setting of a low ferritin
† absence of relevant reticulin or collagen fibrosis, leukoerythroblastosis, or abnml meg morphology (n/c ratio, hyperchromatic, bulbous, irregularly folded nuclei, and clustering)
‡ absence of BCR-ABL1.
J absence of erythroid and granulocytic dysplasia
§ the presence of a condition associated with reactive thrombocytosis (Fe def, infection, inflammation, met cancer, connective tissue disease, lymphoproliferative d/o) does not exclude possibility of ET

Arber et al. *Blood.* 2016;127(20):2391-2405. Campbell P et al. *N Engl J Med.* 2006;355:2452-2466

ET Prognostic Models

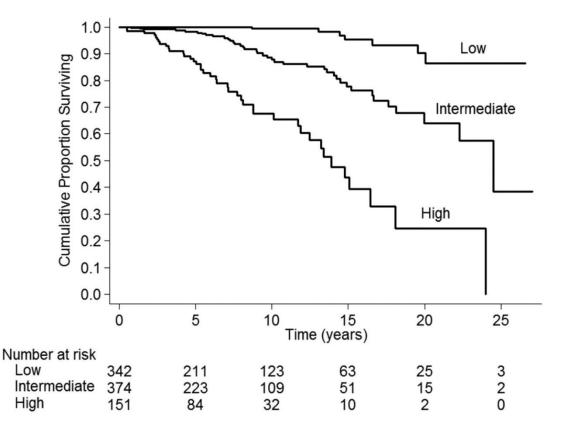
IPSET

		Scores	
Risk factors	0	1	2
Age, y	< 60		≥ 60
WBC count, $ imes$ 10 ⁹ /L	< 11	≥ 11	
History of thrombosis	No	Yes	

Risk	% Pts	Median OS
Low (0)	48%	NR
Intermediate (1-2)	47%	24.5 years
High-risk (3-4)	5%	13.8 years

Low risk implies a sum of scores equal to 0; intermediate risk, a sum of scores equal to 1-2; and high risk, a sum of scores equal to 3-4.

ET indicates essential thrombocythemia; and WBC, white blood cell count.

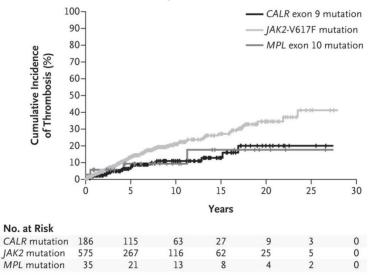

IPSET-Thrombosis

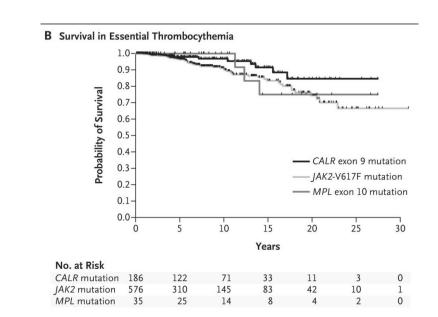
Risk factor	HR	Score
Age > 60 y	1.50	1
Cardiovascular risk factors	1.56	1
Previous thrombosis	1.93	2
<i>JAK2</i> V617F	2.04	2

Low risk implies a score = 0-1; intermediate risk, score = 2; and high risk, score \ge 3.

Risk	%/year thrombosis
Low (0-1)	1%
Intermediate (2)	2.4%
High-risk (>2)	3.6%

ET: IPSET Risk Stratification

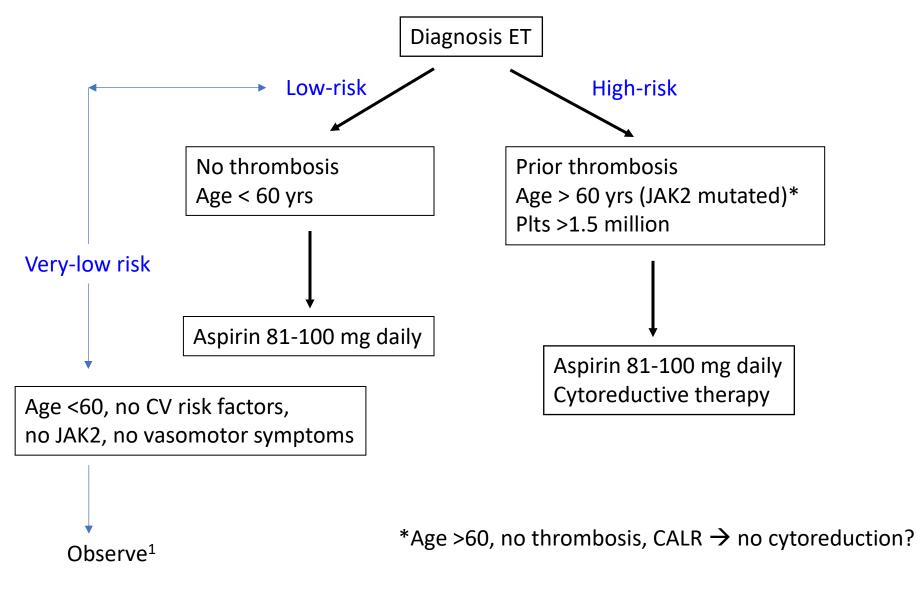

867 patients total


87 patients died 51% thrombosis 10% hemorrhage 17% AML/MDS 22% other cancer

Passamonti et al. *Blood* 2012;120:1197-1201 Barbui et al. Blood 2012;120:5128-5133

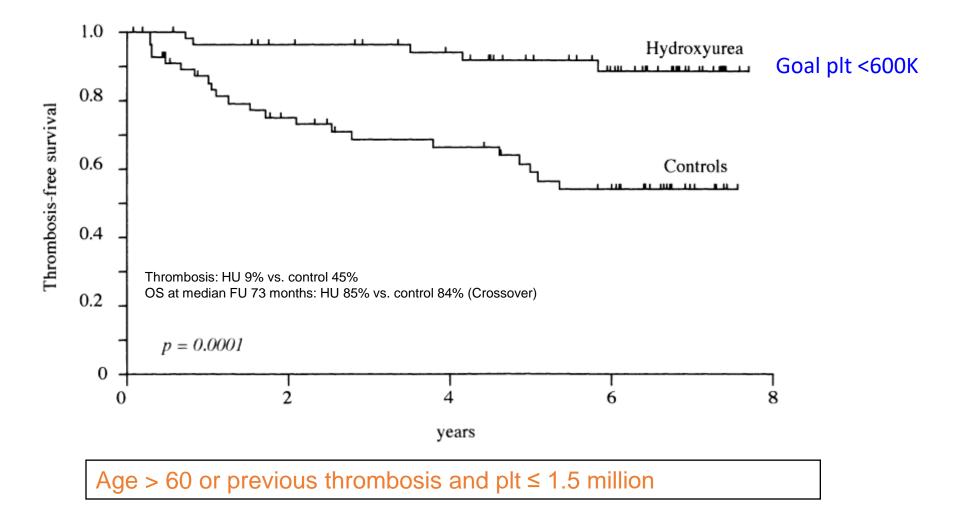
Impact of Mutations on prognosis: JAK2 associated with higher thrombotic risk than CALR

C Thrombosis in Essential Thrombocythemia



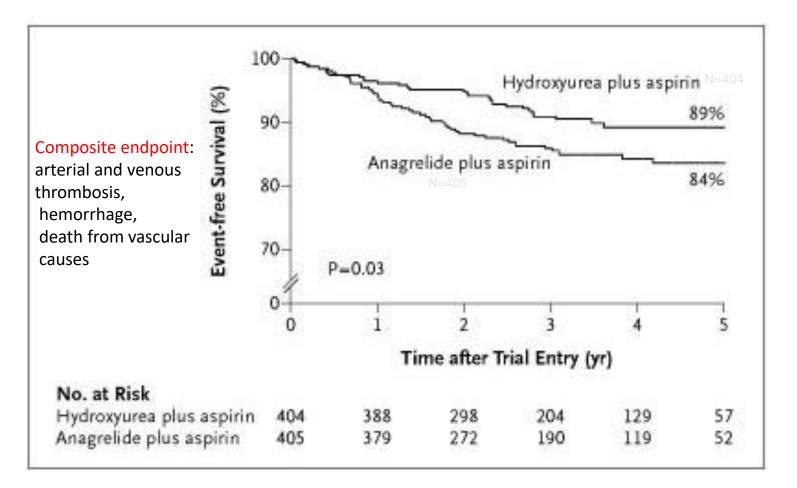
ET: Treatment Options

- Observation
- Aspirin
- Hydroxyurea
- Interferons- pegylated interferon
- Anagrelide
- JAK inhibitors


Treatment Recommendations for ET

1 Ruggeri M et al. Br J Haematology. 1998l 103 (3): 772.

Beer et al. *Blood*. 2011;117:1472-1482 Alvaraz-Larrán et al. *Blood*. 2010;116:1205-1210

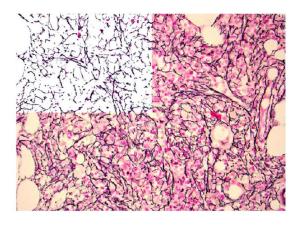

Hydroxyurea in High-Risk ET: RCT

Cortelazzo et al. *N Engl J Med.* 1995;332:1132 Finazzi et al. *Br J Haematol.* 2000;110:577-583

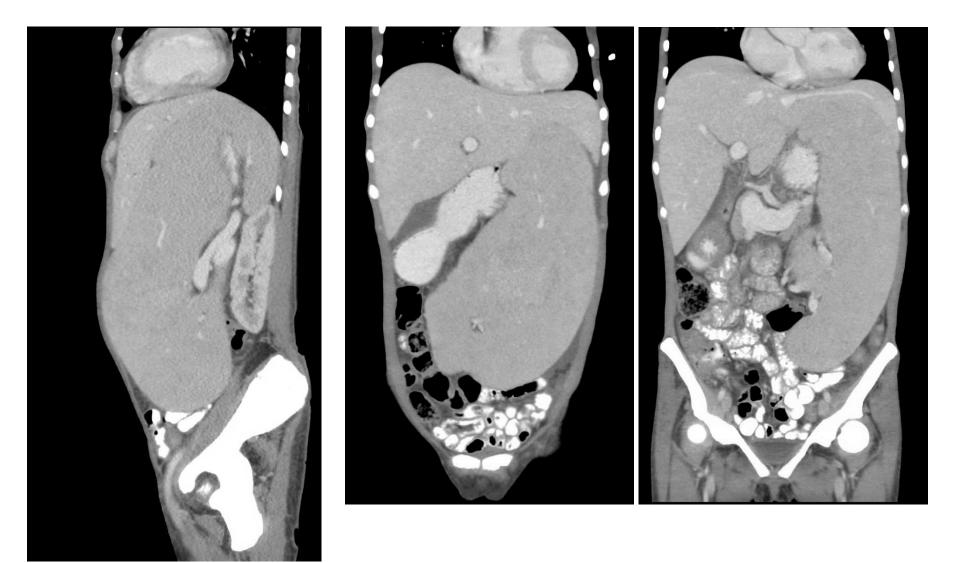
Hydroxyurea vs. Anagrelide (+ASA)

Anagrelide inhibits megakaryocytic differentiation, does cause anemia, does not affect WBC

Anagrelide-treated patients had a significantly greater increase in bone marrow reticulin and a higher rate of transformation into myelofibrosis at five years (7% versus 2%, odds ratio 2.9, 95% CI 1.2-6.9)


Harrison et al. N Engl J Med. 2005;353:33-45. Gisslinger et al. Blood. 2013;121:1720-1728

Case 3


55 yo F with no PMH p/w bilateral leg swelling and DOE. Did not respond to herbal tea/supplements/CBD oil

- ROS: 20 lb wt loss/2 months, night sweats
- PE: tachycardia, holosystolic murmur, JVD, LE edema, splenomegaly
- Labs: Hgb 3.4 g/dL, WBC 5.9 K/uL, plts 79 k/ μ L, anormal BMP
- Normal iron stores, no hemolysis
- Smear: tear drop cells
 - \rightarrow 13 units of PRBCS
 - Bone marrow biopsy:

Hypercellular 90%; Megakaryocytic atypia WHO Grade 3/3 fibrosis No increased blasts on morphology or flow Cytogenetics: 46, XX, del(7)(q11.2q22)[4]/46, XX[2] + JAK2 V617F and ASXL1 mutation

CT Abdomen

WHO 2022 MF Diagnostic Criteria

WHO Criteria: Primary MF

Major criteria (all 3 major + 1 minor)
Megakaryocyte proliferation and atypia with reticulin or collagen fibrosis grade 2 or 3

•Does not meet WHO criteria for other myeloid disorders (ET, PV, CML, MDS)

•Clonal marker (*JAK2*, *MPL*, *CALR*), presence of another clonal marker, or absence of reactive fibrosis §

Minor criteria (2 consecutive determinations) •Increase in serum LDH >ULN

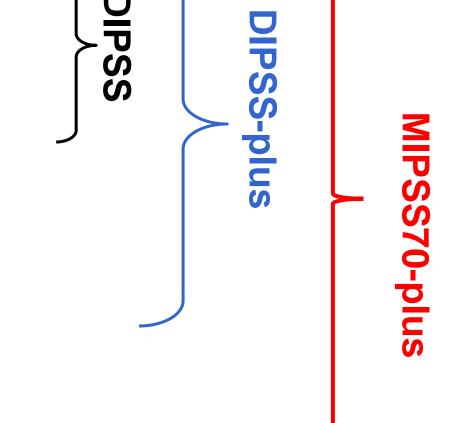
- Palpable splenomegaly
- •Leukocytosis (≥11x10⁹/L)
- •Anemia
- Leukoerythroblastosis

§ infection, autoimmune, chronic inflammatory, hairy cell leukemia or other lymphoid neoplasm, met malignancy, or toxic chronic myelopathies

IWG Criteria²: Post-ET MF & Post-PV MF

Major criteria (all required)

- Previous diagnosis of ET or PV
- Grade 2-3 bone marrow fibrosis (on 0-3 scale) or Grade 3-4 bone marrow fibrosis (on 0-4 scale)

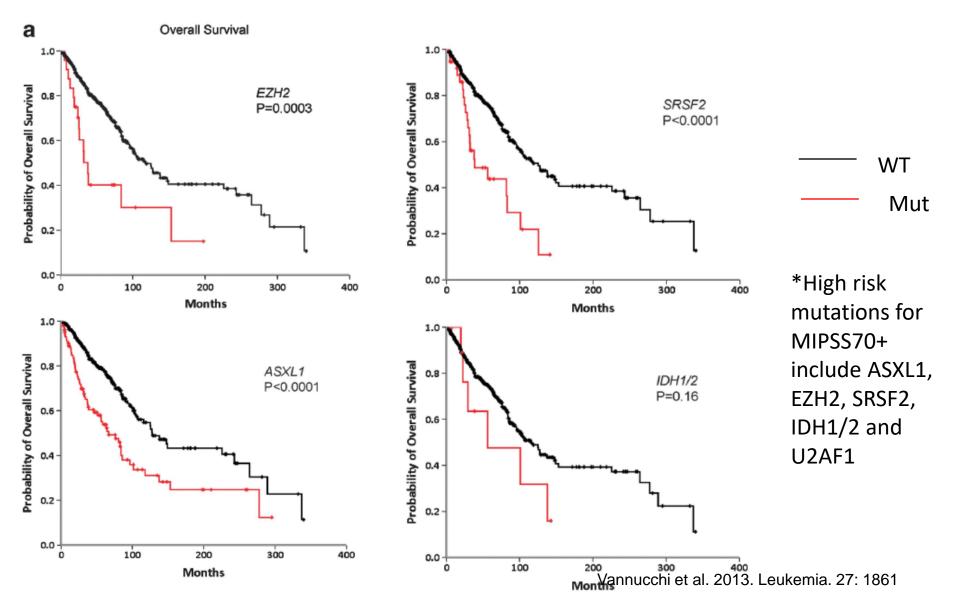

Minor criteria (must meet 2)

- ≥5 cm increase in palpable splenomegaly or new splenomegaly
- Leukoerythroblastosis
- One or more constitutional symptoms
- Increase in serum LDH (Post-ET MF only)
- Anemia with a Hgb ≥2 mg/mL decrease from baseline (Post-ET MF only)
- Anemia or sustained loss of requirement for either cytoreductive treatment or phlebotomy (Post-PV MF only)

¹ Arber, et al. *Blood*. 2016;127(20):2391-2405 ²Barosi G, et al. *Leukemia*. 2008;22(2):437-438.

PMF - Risk Classification

- Age > 65 years (1)
 Constitutional symptoms (1)
 Hgb < 10 /L (2)
 WBC > 25,000 (1)
 PB blasts ≥ 1% (1)
- Abnormal chromosomes*
 Plts <100,000
 Transfusion dependence
- Absence of CALR
 High-risk mutations^
 Marrow fibrosis > grade 2
 HMR genes: ASXL1, EZH2, SRSF2, IDH 1/2, U2AF1

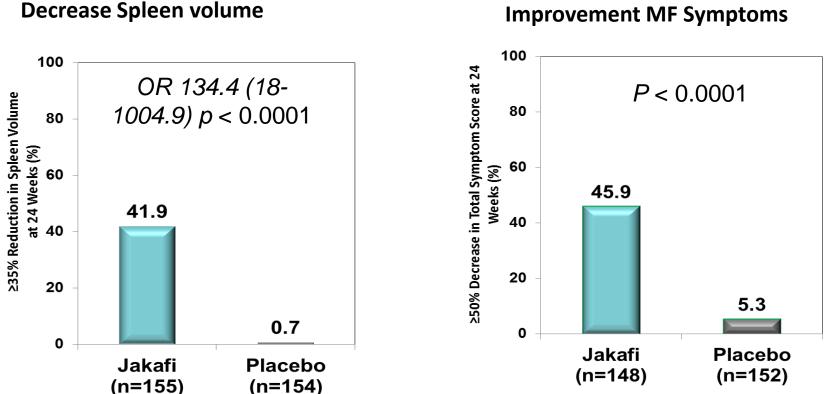


*+8, -7/7q-, i(17q), -5/5q-, 12p-, inv(3) or 11q23 rearrangement ^ any abnormal karyotype other than normal or sole abnormalities in 20q-, 13q-, +9, chromosome 1 translocation/duplication, -Y or sex chromosome abnormality other than -Y

https://pmfscorescalculator.com/

Overall Survival by Mutation

Mutations in "non-driver" genes are found in >50% MF patients

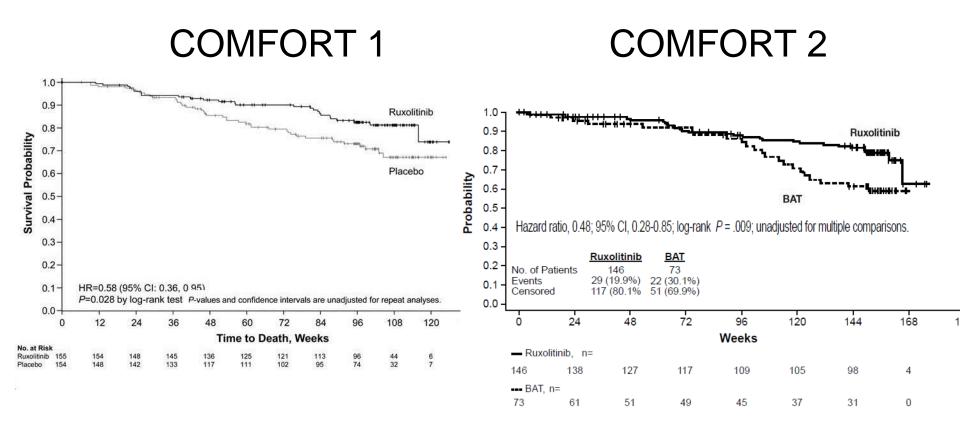


MF Treatment Options

- Active surveillance in low-risk disease
- Hydroxyurea for proliferative disease, splenomegaly
- Anemia: ESAs, lenalidomide/prednisone, danazol
- JAK inhibitors:
 - Ruxolitinib (Jakafi[®]) JAK1/2 inhibitor: int/high-risk MF, best for splenomegaly, constitutional symptoms, pruritis
 - Fedratinib (Inrebic[®]) JAK2 inhibitor; 2019 for int/high-risk MF, plts
 >50
 - Pacritinib (Vonjo[®])- JAK2/IRAK2/FLT3/ACVR1 inhibitor; 2022, int/highrisk MF, plts <50</p>
 - Momelotinib (Ojjaara[®])- int/high risk MF with anemia
- Allogeneic stem cell transplant for higher risk disease (generally DIPSS int-2 and high-risk)

COMFORT-1 : MF patients randomized to ruxolitinib or placebo

Ruxolitinib was associated with significantly decreased spleen volume and improvement in TSS score compared to placebo

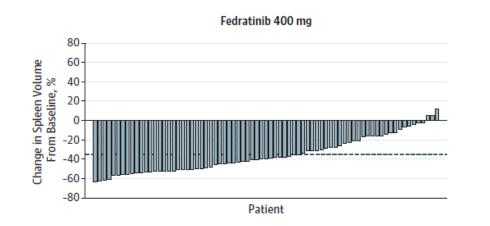


Improvement MF Symptoms

Verstovsek et al. N Engl J Med. 2012;366:799-807 Scherber et al. Blood. 2011;118:401-408

Comfort 2: MF patients randomized to ruxolitinib vs. BAT

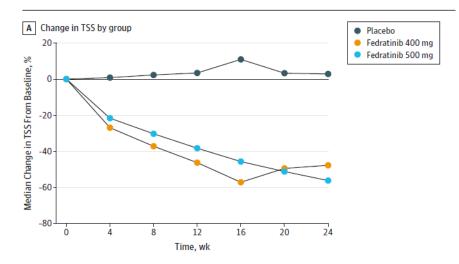
Compared to BAT, ruxolitinib as associated with a HR for death at 3 years of 0.48, p=.009



BAT= hydroxyurea or steroids

Harrison et al. NEJM 2012; 366: 787-798. Cerventes et al. Blood 2013; 122: 4047-4053. Harrison et al. Leukemia 2016; 30: 1701-1707.

Fedratinib: JAKARTA 1 and 2 Trials


JAK2-selective inhibitor JAKARTA 1: randomized, placebo controlled, untreated MF JAKARTA 2: single arm, Rux resistant MF

40% patients: > 50% reduction in MF-TSS vs.

9% placebo

37% of patients had >35% spleen volume reduction vs. 1% placebo; med duration 18 months

In Rux-resistant patients, open label-trial, 55% spleen response and 26% symptom response.

Pardanani A. et al. JAMA Oncology 2015; 1 (5): 643-651. Harrison C et al. Lancet Haematology 2017; 4: e317-24

Fedratinib side effects

Adverse Reactions	Fedratinib 400/500 mg (n=96/n=97)		Placebo (n=95)		
	All Grades, %	Grade 3/4, %	All Grades, %	Grade 3/4, %	
Hematologic					
Thrombocytopenia	63/57	17/27	51	9	
Anemia	99/98	43/60	91	25	
Neutropenia	28/44	8/1			
Nonhematologic			-	_	
Diarrhea	66/56	5/	BLACK BC	DX WARNIN	C
Vomiting	42/55	3/ W	ERNICKE EI	NCEPHALOF	Ρ/
Nausea	64/51	^{0/}	HECK THIA	MINE level	(
Constipation	10/18	0.4		ARTING THE	
Asthenia	9/16	2/			
Abdominal pain	15/12	0/1	16	1	
Fatigue	16/10	6/5	10	0	
Dyspnea	8/10	0/1	6	2	
Weight decrease	4/10	0/0	5	0	

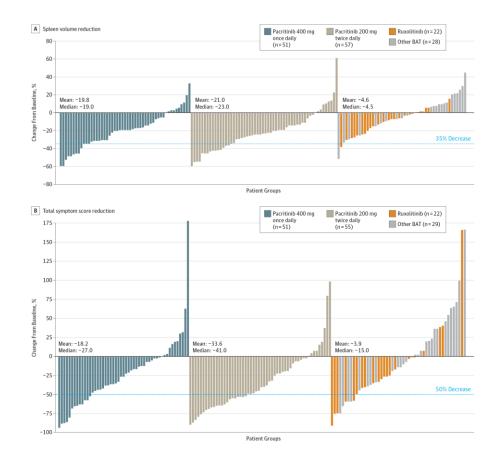
FDA placed a clinical hold on fedratinib in 2013 due to 8 patients across studies experiencing neurologic ptoms (Wernicke's ephalopathy)

ATHY: er clinical review, hold s lifted with black box RAPY rning for encephalopathy

(B1)

eneck thiamine (B1) levels prior to starting and intermittently in patients with risk factors such as poor nutrition

PERSIST STUDIES led to approval of pacritinib for MF


- Pacritinib is a JAK2/FLT3 inhibitor recently approved for intermediate or high-risk myelofibrosis in patients with a platelet count <50K
- Development put on hold (to gather more data especially on dosing) in 2016 amid PERSIST-2 over concerns for excess bleeding and CV deaths
- Dose finding studies (PAC203) then found dosing of 200 mg BID to have the most clinical efficacy balanced with safety profile
- Ongoing PACIFICA study: Phase 3 trial pacritinib 200 mg BID vs. physician choice

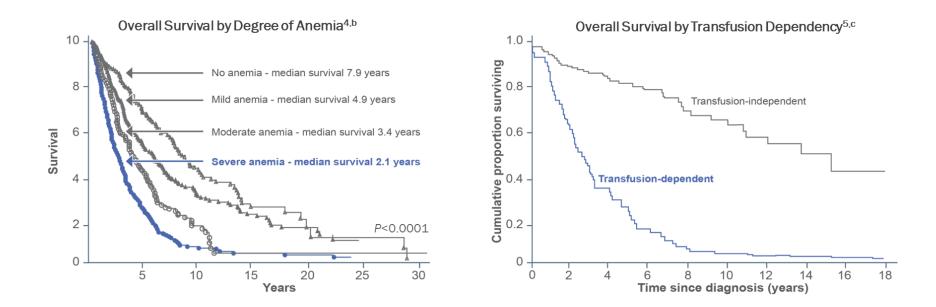
PERSIST-2

•Phase 3, randomized MF patients (prior rux allowed) to pacritinib vs BAT= 45% Rux, 19% HU, 19% observation

•Pacritinib was more effective than BAT for >35% spleen volume reduction: 18% vs 3%

- •Greater rate of >50% reduction in total symptom score: 25% vs 14% (NS)
- •Clinical improvement in hemoglobin and reduction in transfusion burden were greatest with pacritinib 200 mg twice daily (24% transfusion independent vs 5% BAT)

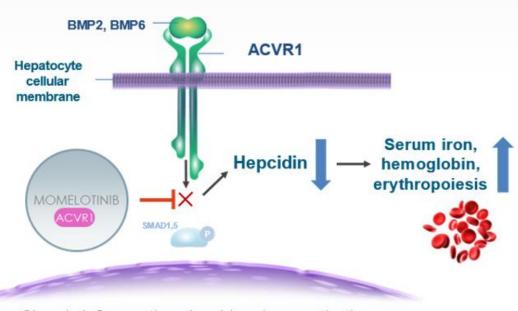
Mascarenas et al. JAMA Ocology 2018; 4 (5): 652-659;


Pacritinib Side effects

- Gastrointestinal (GI): diarrhea, nausea
 - Early on, typically resolves, supportive care
- Low blood counts- anemia/thrombocytopenia
- Swelling
- Fatigue
- No neurologic symptoms

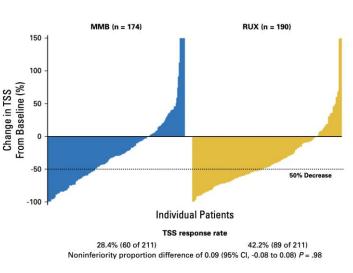
• Ongoing PACIFICA study: Phase 3 trial pacritinib 200 mg BID vs. physician choice in cytopenic MF

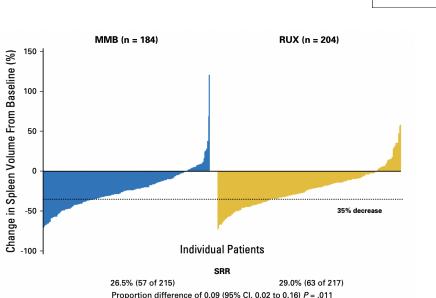
Anemia is an ongoing challenge in MF

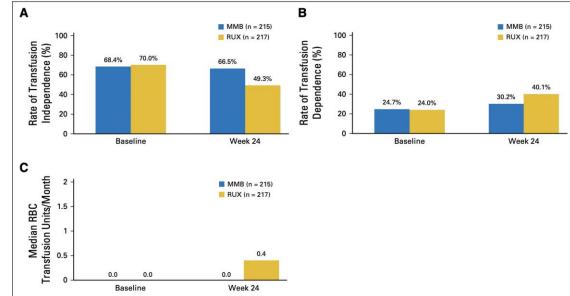

- Anemia and RBC transfusion dependance are poor prognostic factors; DIPSS-Plus and MIPSS
- Currently available JAK inhibitors can worsen anemia

1. Cervantes F, et al. *Blood*. 2009;113(13):2895-2901. 2. Passamonti F, et al. *Blood*. 2010;115(9):1703-1708. 3. Tefferi A, et al. *Mayo Clin Proc*. 2012;87(1):25-33. 4. Nicolosi M, et al. *Leukemia*. 2018;32(5):1254-1258. 5. Elena C, et al. *Haematologica*. 2011;96(1):167-170.

Momelotinib

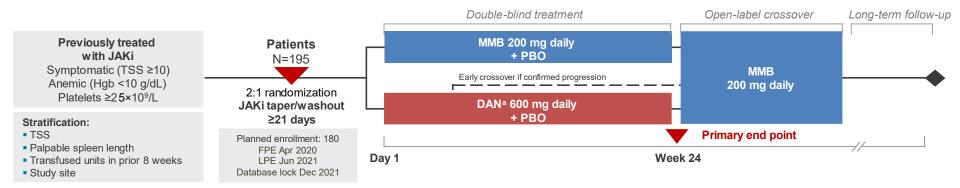

- JAK-STAT signaling drives overproduction of inflammatory cytokines
- Momelotinib inhibits ACVR1 in addition to the JAK-STAT pathway →increase in circulating iron and Hgb and stimulates erythropoiesis
- Pacritinib, currently approved for MF with plts <50K, also inhibits ACVR1 (and IRAK1)



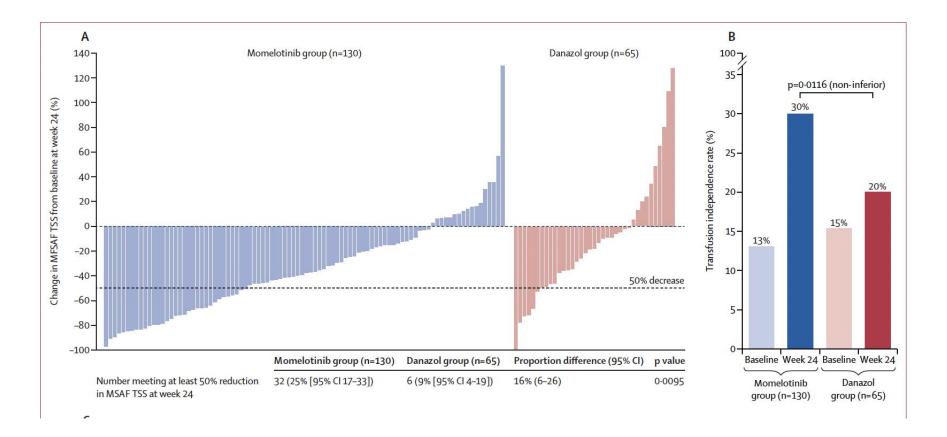

Chronic inflammation also drives hyperactivation of **ACVR1**, elevated **hepcidin**, dysregulated iron metabolism, and **anemia** of MF^{3,4}

1. Chifotides HT et al. *J Hematol Oncol.* 2022;15(1):7; 2. Verstovsek S et al. *Future Oncol.* 2021;17(12):1449-1458; 3. Asshoff M et al. *Blood.* 2017;129(13):1823-1830; 4. Oh ST et al. *Blood Adv.* 2020;4(18):4282-4291.

Simplify-1 Study: upfront Momelotinib vs. Ruxolitinib



- TI at week 24 : MMB 66.5 % vs. RUX 49.3% (p=.001)
- Transfusion dependent week 24: MMB 30.2% vs. RUX 40.1% (p = .019)
- Rate RBC transfusion through week 24: MMB 0 units/mo vs. RUX 0.4 units/mo (p=.001)
- Week 24 TI response associated with improved OS in MV analysis (HR = 0.311; p < 0.0001)

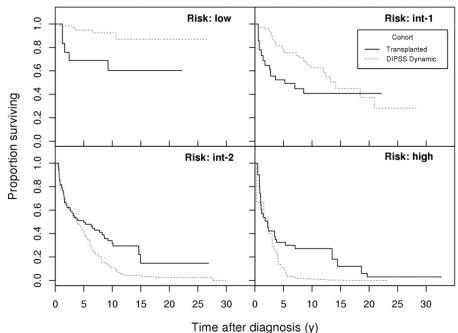

Momelotinib vs. Danazol (Momentum phase 3 trial): superior spleen response, symptom benefit, and anemia improvement vs. danazol

MOMENTUM Topline Results at Week 24: All Primary and Key Secondary End Points Met^{1,2}

	MFSAF TSS ^b response rate (primary end point)	TI response ^c rate	SRR ^d (35% reduction)
MMB (N=130)	32 (24.6%)	40 (30.8%)	30 (23.1%)
DAN (N=65)	6 (9.2%)	13 (20.0%)	2 (3.1%)
	<i>P</i> =.0095 (superior)	1-sided P=.0064 (noninferior)	<i>P</i> =.0006 (superior)

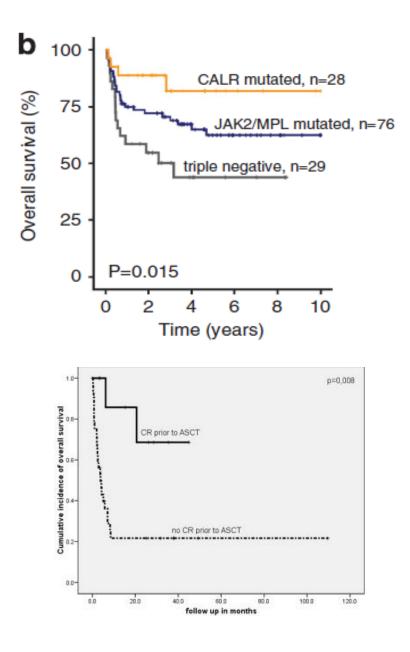
Momelotinib: Phase 3 Momentum trial

Also superior for spleen volume reduction 35%: 22% vs 2%


Summary of JAK inhibitors

	Ruxolitinib	Fedratinib	Pacritinib	Momelotinib
Target	JAK1 and JAK2	JAK2, FLT3	JAK2, FLT3, IRAK1, CSF1R, and ACVR1	JAK1, JAK2, and ACVR1
Indication	Intermediate or high-risk MF	Intermediate or high-risk MF	Intermediate or high-risk MF with platelet count <50×10 ⁹ /L	Intermediate or high-risk MF with anemia
Side effects	Cytopenias (anemia, thrombocy topenia), infection, weight gain	Wernicke encephalopathy, GI toxicity	Bleeding, cardiovascular events, GI (diarrhea, nausea)	Cytopenias (anemia, thrombo cytopenia), GI

So, Whom and When to Transplant?


• Disease characteristics:

- DIPSS int 2/high –indication for HCT
- DIPSS int 1 some patients (younger, adverse risk mutations, 2+ mutations?, triple negative disease?) will benefit
- Disease progression HCT only real option
- Loss of response to JAK inhibitor

Kroger et al, Blood 2015; 125 (21): 3347-3350

Mutations and transplant outcome

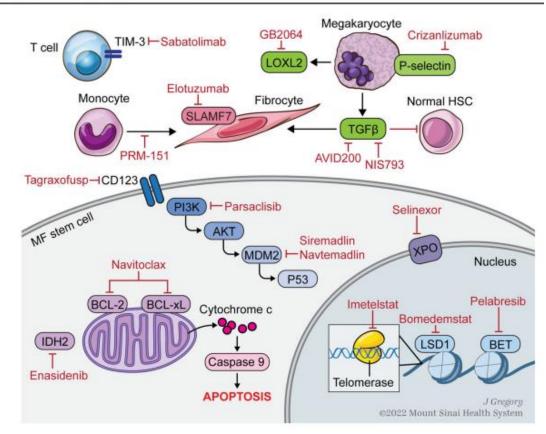
CALR mutated patients have prolonged OS after HCT, both due to decreased relapse and non-relapse mortality

Triple-negative patients do worst

Other risk factors for HCT:

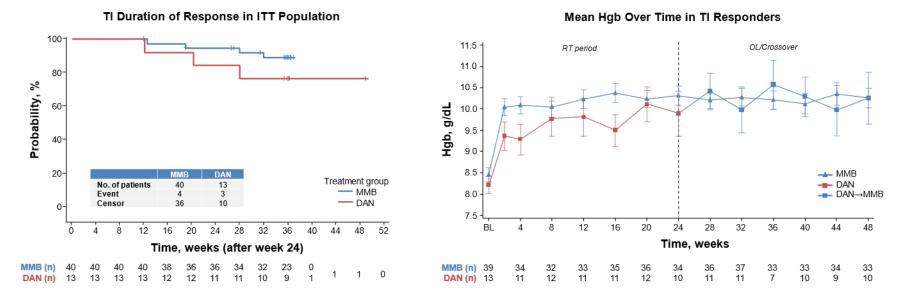
- Comorbidities
- Pulmonary or portal HTN
- Extramedullary hematopoiesis/disease
- Massive splenomegaly (>22 cm)
- Adverse mutations
- Leukemic transformation

Panagiota V et al, Leukemia 2014; 28:1543-1572


Case 3

- High-risk DIPSS plus score
- No response to Ruxolitinib (low dose due to baseline plts)
- Referred to transplant, still with massive splenomegaly up to 27 cm, cachexia at 38 kg (BMI 15)
- Patient had splenectomy given size and severe malnutrition
- Now ~4 years s/p matched, unrelated donor stem cell transplant, doing well

MF: Up and coming therapies


- JAK-inhibitor add ons:
 - Parsaclisib
 - Navitoclax
 - Pelabresib
 - DISC-0974
 - TP-3654 (PIM1 Kinase)
 - Selinexor/Eltanexor
 - Navtemadlin/ Siremadlin

Thank You & Questions

Durability of transfusion independence

· Week 24 TI response was 31% in the MMB group and 20% in the DAN group

• Consecutive 12-week TI-R^b was 44.6% in the MMB group and 29.2% in the DAN group (Poster #3028)

Week 24 TI response was maintained in 36 of 40 (90%) MMB→MMB and 10 of 13 (77%) DAN→MMB patients

Gerds A et al. *Blood* (2022) 140 (Supplement 1): 1514–1517. Verstovsek S et al. Lancet 2023; 4401: 269-80

Momelotinib side effects

	Momelotinib (n=130)	Momelotinib group (n=130)		Danazol group (n=65)	
	Any grade	Grade ≥3	Any grade	Grade ≥3	
Non-haematological abnormalities (preferred term)					
Diarrhoea	29 (22%)	0	6 (9%)	1 (2%)	
Nausea	21 (16%)	3 (2%)	6 (9%)	2 (3%)	
Asthenia	17 (13%)	1(1%)	6 (9%)	1 (2%)	
Pruritus	14 (11%)	2 (2%)	7 (11%)	0	
Weight decreased	14 (11%)	0	4 (6%)	0	
Blood creatinine increased	10 (8%)	1(1%)	10 (15%)	2 (3%)	
Dyspnoea	10 (8%)	3 (2%)	9 (14%)	1 (2%)	
Peripheral oedema	10 (8%)	2 (2%)	9 (14%)	0	
Fatigue	8 (6%)	1 (1%)	7 (11%)	2 (3%)	
Acute kidney injury	6 (5%)	4 (3%)	8 (12%)	6 (9%)	
Haematological abnormalities*					
Anaemia	129 (99%)	79 (61%)	65 (100%)	49 (75%)	
Thrombocytopenia	99 (76%)	36 (28%)	40 (62%)	17 (26%)	
Neutropenia	38 (29%)	16 (12%)	17 (26%)	6 (9%)	

Mastocytosis

•No longer considered an MPN in WHO 2016

•Cutaneous mastocytosis- limited to skin

- •Systemic mastocytosis (SM) involves extracutaneous organs
 - >70% adults have D816V KIT mutations
 - Systemic mastocytosis with an associated hematologic neoplasm (SM-AHN)
- •Skin, GI, neuropsychiatric, anaphylaxis, episodic mediator release:
 - episodes of vasodilation, hypotension, flushing, pruritus, syncope, abdominal pain, nausea, vomiting, diarrhea, fatigue, and headache
- + KIT mutations: Midostaurin FDA approved for aggressive SM or SM-AHN
- - NO KIT mutations: Imatinib approved for aggressive SM

Chronic Neutrophilic Leukemia (CNL)

WHO Criteria: CNL

- 1) PB WBC >25 x10⁹/L
- 2) Hypercellular BM
- 3) Not meeting WHO criteria for CML, PV, ET, PMF
- 4) No PDGFRA, PDGFRB, FGFR1, or PCM1-JAK2

 5) Presence of CSF3R T6181 or other activating CSF3R mutation OR if no CSF3R mutation: persistent neutrophilia >3 months, no cause of reactive
 neutrophilia, splenomegaly, or clonality of myeloid cells by cytogenetic or molecular studies

Mature granulocytic proliferative in blood and marrow, hepatosplenomegaly Short survival (<2 years)

Treatment (?): hydroxyurea, ruxolitinib, interferon, cladribine, TKI- dasatanib, transplant