

Chronic Lymphocytic Leukemia and Hairy Cell Leukemia

Associate Professor and Innovators Network Endowed Chair Medical Director, Cellular Immunotherapy Fred Hutchinson Cancer Center and University of Washington

> Hematology/Oncology Fellows Core Lecture Series September 2024

Disclosures

Consulting, advisory boards, steering committees or data safety monitoring committees: Abbvie, Genentech, AstraZeneca, Genmab, Janssen, Beigene, Bristol Myers Squibb, Morphosys/Incyte, Kite Pharma, Eli Lilly, Fate therapeutics, Nurix and Merck.

Research funding: Mustang Bio, Genentech, AbbVie, Beigene, AstraZeneca, Genmab, Morphosys/Incyte and Vincerx.

Stock options: Koi Biotherapeutics.

CLL/SLL

Treatment Options for CLL/SLL

Epidemiology

- CLL/SLL is the most common leukemia in adults in western countries
 - 4.5 cases per 100,000
- Median age ~ 70 years
- Slight male predominance (1.7:1)
- Familial risk (7-8 fold)
- Caucasians > African Americans > Asian Pacific Islanders
- Genetic > Environmental

Initial diagnosis and appropriate work-up

Immunophenotypic Features

	CD5	CD10	CD23	CD103	BCL6	CD20	Cyclin D1
CLL/S	+	-	+	-	-	+	-
LL						(weak)	

Immunophenotypic Features

	CD5	CD10	CD23	CD103	BCL6	CD20	Cyclin D1
CLL/S LL	+	-	+	-	-	+ (weak)	-
MCL	+	-	-	-	-	+	+
LPL	I	-	-	-	-	+	-
sMZL	-	-	-	-	-	+	-
FL	-	+/-	_/+	-	+	+	-
HCL	-	-	-	+	-	+	+/-

 Fred Hutch Cancer Cente
 MCL
 CD23
 Cyclin D1
 t(11,14)

 •
 •
 •
 •
 •

MBL (monoclonal B cell lymphocytosis)

- < 5x 10⁹/L monoclonal B- cells in the PB <u>AND</u> no lymphadenopathy
- Almost all cases of CLL are preceded by MBL but only a small percentage of persons with MBL will ultimately develop CLL
- Low-count MBL (< 0.5x 10⁹/L) → rarely progresses to CLL
 - No need for hematology follow-up
 - Higher risk for serious infections
 - OS similar to general population
- High-count MBL (0.5-4.9 x 10⁹/L) → progresses to CLL at a rate of 1-2% /year
 - CLL-IPI can predict the risk
 - Higher risk for serious infections and secondary malignancies
 - OS similar to general population
- Up to 17 percent of first-degree family members of patients with CLL were found by flow cytometry to have MBL
- Screening of family members is NOT recommended

WHO-HAEM5 Terminology

- Monoclonal B-cell lymphocytosis (MBL)
 - Low-count MBL or clonal B-cell expansion: clonal CLL/SLL phenotype B-cell count <0.5 x 10⁹ /L with no other features diagnostic of B-lymphoproliferative disorder
 - CLL/SLL-type MBL: monoclonal CLL/SLL-phenotype B-cell count ≥0.5 x 10⁹ /L and total B-cell count less than 5 x 10⁹ /L with no other features diagnostic of CLL/SLL
 - Non-CLL/SLL-type MBL: ANY monoclonal non-CLL/SLL phenotype B-cell expansion with no symptoms or features diagnostic of another mature B-cell neoplasm (majority of cases have features consistent with MZL)
- Chronic lymphocytic leukemia (CLL):
 - Monoclonal CLL/SLL-phenotype B-cell count \ge 5 x 10⁹/L
 - Cytopenias with marrow infiltration even if monoclonal CLL/SLL-phenotype B-cell count <5 x 10⁹/L
- Small lymphocytic lymphoma (SLL): Monoclonal CLL/SLL-phenotype B-cell count < 5 x 10⁹ /L but with evidence of lymphadenopathy
- **B-prolymphocytic leukemia (B-PLL)** is no longer recognized in WHO-HAEM5 in view of its heterogeneous nature.
- **Richter Transformation**: CLL → NHL or CLL→ HL. The term is recommended over "Richter Syndrome"

Flow cytometry of blood is essential and adequate to make the diagnosis

➢Biopsy may be needed if PB flow cytometry is not conclusive

➢Cytogenetic and molecular studies are informative for prognostic and/or therapy determination .

Baseline CT scan (or PET) is NOT required for asymptomatic patients (The ASH "Choosing Wisely" List)

American Society of Hematology Helping hematologists conquer blood diseases worldwide

Prognostic and predictive markers

Staging for CLL

Rai staging		Binet staging		
Stage	Risk category	Findings	Stage	Findings
0	Low	Lymphocytosis ^a	Α	No cytopenia and ≤2 lymphoid area involvement
1	Intermediate	Lymphadenopathy ^b	В	No cytopenia and >3 lymphoid area involvement
2	Intermediate	Hepatosplenomegaly ^b	С	Presence of anemia or thrombocytopenia
3	High	Anemia ^c		
4	High	Thrombocytopenia ^d		

^a Lymphocyte count greater than 5 × 10⁹/L. ^c Hemoglobin level less than 11 g/dL.
 ^d Platelet count less than 100 000/µL

^b On physical examination.

Use Ann Arbor staging for SLL

Molecular Biomarkers for CLL

	FISH	Karyotype	Mutations
Unfavorable	del (17p) del (11q)	Complex (>3 abnormalities) (> 5?)	TP53 unmutated IGHV (≤ 2%) * NOTCH-1 SF3B1 BIRC3 ATM
Neutral	Normal +12		
Favorable	del (13q) (sole abnormality)		mutated IGVH (>2%)

Time to first treatment (TTFT): IPS-ES

Variable	Point
Unmutated IGHV	1
ALC > 15 x 10 ⁹ /L	1
Palpable lymph node	1

Risk category	Score	5-year cumulative risk for treatment start
Low risk	0	8.4%
Intermediate risk	1	28.4%
High risk	2-3	61.2%

Fred Hutch Cancer Center

Condoluci, Blood, 2020

16

Impact of Recurrent Gene Mutations on Time to First Treatment

Predictors of shorter time from diagnosis to first treatment

	SF3B1	XPO1	NOTCH1	NFKBIE	TP53	BIRC3	EGR2
Mutated IGHV	X	X	X	X			
Unmutated IGHV	X	X			X	X	X

Mansouri, Leukemia,2023

Prognostic Models: CLL-IPI

Characteristic	Points
Del(17p) or TP53 mutation	4
Serum beta-2-macroglobulin ≥ 3.5mg/L	2
Un-mutated IgVH	2
Rai Stage I-IV	1
Age > 65 years	1

Points	Risk Group	5-y OS (%)	10-yr OS (%)
0-1	Low	93	79
2-3	Int	79	39
4-6	High	63	22
7-10	Very High	23	4

Fred Hutch Cancer Center

Langerbeins, Blood, 2024

CLL-IPI very high

Supportive Care

Supportive Care Recommendations

- Avoid live vaccines
- Patients should receive annual influenza vaccine and recombinant zoster vaccine
- The 20-valent pneumococcal conjugate vaccine (PCV20) is recommended in previously unvaccinated patients or those with prior receipt of 23-valent pneumococcal polysaccharide vaccine (PPSV23), 1 year apart
- Patients should be informed that their immune response to vaccinations is lower than that of the general population For COVID-19 vaccination, follow the Centers for Disease Control and Prevention recommendations for patients with moderate and severe immunocompromised state, and protective measures should be continued in high-risk conditions such as viral pandemics
- Consider monoclonal antibodies against COVID-19 (pemivibart, sepivibart)
- Patients with frequent sinus or lung infections who have hypogammaglobulinemia (IgG level <500 mg/dL) benefit from intravenous immunoglobulin infusions every 6 to 8 weeks if the levels remain low
- Age-specific cancer screening guidelines should be followed in patients with CLL
- Patients with CLL have a higher risk for recurrence of basal cell carcinoma and squamous cell carcinoma of skin compared with those without CLL; routine examinations and skin protection measures are recommended
- There is no indication for screening or genetic testing in family members

Important therapeutic agents for CLL

What are the approved treatment options?

Chemotherapy	anti-CD20 Abs	BCR inhibitors	BCL-2 inhibitor	CAR-T therapy
 fludarabine cyclophosphami de bendamustine chlorambucil 	 rituximab ofatumumab obinutuzumab 	 BTK inhibitors Covalent acalabrutinib zanubrutinib lbrutinib Non-covalent pirtobrutinib PI3K inhibitors idelalisib duvelisib 	• venetoclax	 lisocabtagene maraleucel

Therapeutic Agents for CLL

Shadman, JAMA, 2023

Who needs to be treated?

Indications for treatment

- Progressive marrow failure
- Massive , progressive or symptomatic lymphadenopathy or organomegaly
- Constitutional symptoms
- Autoimmune anemia and/or thrombocytopenia that is poorly responsive to corticosteroids or other standard therapy
- Lymphocyte doubling time

Is there a role for early intervention in "high-risk" patients?

CLL-12 Study – Early intervention with Ibrutinib

 Phase 3, placebo-controlled, double-blind, multicenter trial

 Primary endpoint EFS: time from randomization until symptomtatic PD, new treatment, death

 Secondary endpoints: survival, PFS, TFS, TTNT, ORR, safety

 π₂: median EFS from 24 to 48 months with ibrutinib (superiority test)

- EFS, PFS, and TTNT : Improved with ibrutinib
- •
- **OS**: No difference (HR, 0.791; 95% CI, 0.358-1.748; P = .562)

Early intervention with ibrutinib is NOT recommended

Fred Hutch Cancer Center

Langerbeins, Lugano (17-ICML) meeting, 2023

Ongoing US Intergroups Early Intervention Trial

CLL-IPI

Characteristic	Points
Del(17p) or TP53 mutation	4
Serum beta-2-macroglobulin≥3.5mg/L	2
Un-mutated IgVH	2
Rai Stage I-IV	1
Age > 65 years	1

Points	Risk Group
0-1	Low
2-3	Int
4-6	High
7-10	Very High

Fred Hutch Cancer Center

Courtesy: Dr. Deborah Stephens (study PI)

Treatment Strategy and Recommendations for treatment-naïve patients

Treatment Strategies in CLL/SLL

First line treatment: for patients with normal TP53

Acalabrutinib ± G Or Zanubrutinib

OR

Venetoclax + G

G = Gazyva = obinutuzumab

Alternative BTKi Ibrutinib

Novel agents are superior to CIT in first line

Patients	Study	Investigational arm	Control arm	Primary endpoint	Winner
*	E1912	Ibrutinib + R	FCR	PFS	Ibrutinib + R
	A041202	Ibrutinib ± R	BR	PFS	Ibrutinib ± R
	Sequoia	Zanubrutinib	BR	PFS	Zanubrutinib
	Illuminate	Ibrutinib + G	CHL+G	PFS	Ibrutinib + G
	Elevate TN	Acalabrutinib ± G	CHL+G	PFS	Acalabrutinib ± G
	CLL14	Venetoclax + G	CHL+G	PFS	Venetoclax + G
	Glow	Venetoclax + Ibrutinib	CHL+G	PFS	Venetoclax + Ibrutinib
Fred Hutch Cancer Center					

BR vs. Zanubrutinib (SEQUOIA)

Fred Hutch Cancer Center

Shadman, 17-ICML, 2023

33

BR vs. Zanubrutinib (SEQUOIA)

Progression-free Survival

Fred F

Months

Shadman, 17-ICML,2023

BR vs. Zanubrutinib (SEQUOIA)

Progression-free Survival (by IGHV)

Shadman, 17-ICML,2023

Acalabrutinib ± G vs. CHL+G:(ELEVATE TN)

Acalabrutinib \pm G vs Clb + G: ELEVATE-TN – 6-Year Update

INV-Assessed PFS in Del(17p) and/or TP53 Mutated

Venetoclax + G vs CHL + G: (CLL-14)

Al-Sawaf, EHA, 2023

Fred Hutch Cancer Center

Venetoclax + G vs Clb + G: CLL-14 – 6-Year Follow-Up

Median PFS Ven-Obi: 76.2 months Clb-Obi: 36.4 months

6-year PFS rate Ven-Obi: 53.1% Clb-Obi: 21.7%

HR 0.40, 95% CI (0.31–0.52) *P* <.0001

PROGRESSION-FREE SURVIVAL – TP53 status

Median observation time 76.4 months

Median PFS

Ven-Obi & no *TP53*del/mut: 76.6 m Ven-Obi & *TP53*del/mut: 51.9 m *HR* 2.29, 95% *CI* [1.37-3.83], *p*=0.001

Clb-Obi & no *TP53*del/mut: 38.9 m Clb-Obi & *TP53*del/mut: 20.8 m *HR 1.66, 95% Cl [1.05-2.63], p=0.03*

Al-Sawaf O, et al. EHA 2023. Abstract S145.

PROGRESSION-FREE SURVIVAL – IGHV status

Median observation time 76.4 months

Median PFS

Ven-Obi & IGHVmut: NR Ven-Obi & IGHVunmut: 64.8 m HR 0.38, 95%CI [0.23-0.61], p<0.001

Clb-Obi & IGHVmut: 62.2 m Clb-Obi & IGHVunmut: 26.9 m HR 0.33, 95% CI [0.23-0.47], p<0.001

BTKis and TN CLL with abnormal TP53

	ibrutinib	acalabrutinib	zanubrutinib
Study	Pooled analysis	ELEVATE TN	SEQUOIA
Ν	89	48	109
Median follow- up	49.8 months	46.9	48
Anti-CD20	44/89	23/48	0
Del17p	53%	68%, 69%	100%
Mutated TP53	59%	84%, 83%	Not reported
PFS	79% (48-months)	74.8% and 76.2% (mono) (48-months)	79.4 (42 months)
Reference	Allan, BJH, 2021	Sharman, Leukemia,2021	Shadman, 17-ICML, 2023

BTKis for abnormal TP53

Ibrutinib Median follow-up: 47.9 months 100 100 71 90-90 % % Median PFS=NR Survival, 80 80 ┶╋_{╋┪} 70. PFS, 79.4% 70 60 60 - A+O vs O+Clb % 71 Free 60 al. HP+ (95% Ci): 0.19 (0.08, 0.45) 50 - PFS % CR/CRi rate, 14.5% P-0.001 50 -**Progression-**2 + Censored 40 Avs O+CIb HR¹ (95% Cil: 0.21 (0.09, 0.50) 30 40 5 di P-0.0001 20 Median PES=17.5 mo 30 10 42 mo 95% Cl 20-PFS 79.4% 70.4-85.9 0 6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96 10 0 OS 89.5% 81.9-94.1 Months Patients at risk 89 86 82 79 75 66 60 49 39 33 29 28 20 16 5 5 0 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 036 9 Months

Acalabrutinib

Months

Zanubrutinib

Fred Hutch Cancer Center Shadman, 17-ICML, 2023 43

PROGRESSION-FREE SURVIVAL – TP53 status

Median observation time 76.4 months

Median PFS

Ven-Obi & no *TP53*del/mut: 76.6 m Ven-Obi & *TP53*del/mut: 51.9 m *HR* 2.29, 95% *CI* [1.37-3.83], *p*=0.001

Clb-Obi & no *TP53*del/mut: 38.9 m Clb-Obi & *TP53*del/mut: 20.8 m *HR* 1.66, 95% *Cl* [1.05-2.63], *p*=0.03

Fred Hutch Cancer Center

Al-Sawaf, EHA, 2023

Ibrutinib vs. Ven-G for first-line treatment in CLL patients with abnormal TP53

Zanubrutinib

Venetoclax + Obinutuzumab

Fred Hutch Cancer Center

Shadman, 17-ICML,2023

Al-Sawaf, EHA, 2023

BTKis vs. Ven-O

Class	BTKis (Acalabrutinib/Zanubrutinib/Ibrutinib)	Ven-Obino
Duration	Indefinite therapy	Time-limited
Deep responses	Not expected / Not relevant	High CR and uMRD rate
Convenience	Easy to start	Frequent visits initially
Not preferred if:	 Significant cardiac history (structural, HTN, arrythmia) Major bleeding issues 	
TP53 abnormal	Not a predictors of response	Shorter PFS; discuss with the pt
unmutated IGHV	Not a predictors of response	Shorter PFS ; discuss with the pt
Sequencing	Can be used after Ven	Can be used after BTKi

- No head-to-head comparison
- Both are reasonable options
- Consider patient and disease factors
- Look at pros and cons for each

BTKi + BCL2i Combination for CLL

- Ibrutinib + Venetoclax is superior to Chlorambucil + Obinutuzumab (GLOW study) and FCR (UK Flair study) and is approved in Europe and Canada but approval in US in not expected
- Awaiting results for combination of second generation cBTKis with venetoclax and new BCL2is

GCLLSG: CLL17 Trial

Venetoclax + Ibrutinib vs CHL + G (GLOW)

Fred Hutch Cancer Center

49

Venetoclax + Ibrutinib vs CHL + G (GLOW)

Safety Analysis of an Elderly Comorbid Population¹:

- Most common grade \geq 3 TEAEs were:
 - neutropenia (34.9%)
 - diarrhea (10.4%)
 - hypertension (7.5%) for Ibr+Ven
 - Grade 5 AEs occurred in 7 patients on Ibr+Ven and 2 patients on Clb+O

50

Fred Hutch Cancer Center

* Combination is not FDA approved for CLL as of September 2022

Munir, ASH,2021; Kater, NEJM Evidence, 2022

Fixed-duration Calquence plus venetoclax, with or without obinutuzumab, significantly improved progression-free survival in 1st-line chronic lymphocytic leukaemia in AMPLIFY Phase III trial

PUBLISHED 29 July 2024

MAJIC: Phase 3 Study of Acalabrutinib + Venetoclax (AV) vs Venetoclax + Obinutuzumab (VO) – Study Design

Primary endpoint

INV-assessed PFS

Key secondary endpoints

- uMRD rates at sequential timepoints (after 6 and 12 cycles of V and yearly thereafter [key timepoint: after 12 cycles of V])
- OS
- EFS
- ORR
- CR rate (per uMRD)
- Quality of life/patient-reported outcomes
- Safety and tolerability

CELESTIAL-CLLTN: Sonrotoclax + Zanubrutinib

BGB-11417-301: 2-arm fixed duration study design

Phase 3 registrational trial

Treatment options for previously treated patients

Fred Hutch Cancer Center

Previously Treated CLL Summary

Previously treated CLL : Principles

- 1. Repeat FISH panel look for del (17p) or TP53 mutation
- 2. Bone marrow needs to be repeated to assess for MDS if prior FCR
- 3. Very limited role for chemoimmuntherapy (almost never)

Crossover from IdR/BR arm allowed after confirmed disease progression

Idelalisib and Rituximab for Previously Treated Patients

Furman, NEJM,2014

Duvelisib vs Ofatumumab (DUO trial) - Relapsed/Refractory

Flinn, Blood, 2018

Novel Agents for R/R setting

	BTKis	Venetoclax	Pi3Kis
Target	BTK	BCL-2	PI3K delta+gamma / delta
Duration	Indefinite	2-years	Indefinite
Addition of Anti CD20 Ab	No major benefit Faster "response"	Recommended	Idelalisib + R Duvelisib monotherapy
Major side effect (concern)	Bleeding (anticoagulation) Cardiac in pts with past hx	TLS (initially)	Colitis (diarrhea) Infections (FDA alert)
Other side effects	 Body pain Fatigue <u>Hypertension</u> A fib 	Neutropenia	 Pneumonitis Transaminitis (mainly idela) PJP CMV
FDA label for CLL	All settings	All settings	Relapsed

Choice of BTKi

Fred Hutch Cancer Center

Mato, Haematologica, 2018; Yazdi, ASH, 2019; Roeker, Clin Cancer Research, 2019; Shadman, ASH, 2019; Stephens, Blood, 2019

Acalabrutinib in Ibrutinib intolerant patients

of 61 ibrutinib-related AEs associated with intolerance, 72% did not recur and 13% recurred at a lower grade with acalabrutinib

Fred Hutch Cancer Center

Zanubrutinib in Acalabrutinib/Ibrutinib intolerant patients

- 34/57 (59.6%) of patients who took ibrutinib and 7/10 (70.0%) of patients who took acalabrutinib did not have recurrence of any intolerance event
- No ibrutinib or acalabrutinib intolerance events recurred at a higher severity
- 81/115 (70.4%) ibrutinib intolerance events and 15/18 (83.3%) acalabrutinib intolerance events did not recur
- 25/38 (65.8%) grade 3 ibrutinib intolerance events and 3/4 (75.0%) grade 3 acalabrutinib intolerance events did not recur while on zanubrutinib
- All grade 4 intolerance events (neutropenia [n=2], ALT increase [n=1], AST increase [n=1]) did not recur on zanubrutinib
- 1 patient (1.5%) discontinued zanubrutinib due to recurrence of a prior intolerant event (myalgia; acalabrutinib)

Fred Hutch Cancer Center

Shadman, Lancet Haematology, 2023

Zanubrutinib in Acalabrutinib-Intolerant Patients

- 40 acalabrutinib-intolerance events were reported by 27 patients
- Most (70%) of acalabrutinibintolerance events did not recur at any grade with zanubrutinib treatment, and of the 12 events that did recur, none recurred at a higher severity, 7 recurred at the same grade, and 5 recurred at a lower grade
- 63% of patients did not experience any recurrence of their prior acalabrutinib-intolerance events

PFS from discontinuation of ibrutinib: (off treatment)

 Consider "watch and wait" strategy in patients who stop
 BTKis after more than 2 years for intolerance

The median time on ibrutinib was 25.9 months (range, 0.2-82.0 months)

Fred Hutch Cancer Center

Shanafelt, Blood, 2022

66

Ibrutinib vs. Acalabrutinib (ELEVATE-RR)

Key exclusion criteria: Significant CV disease; concomitant treatment with warfarin or equivalent vitamin K antagonist; prior treatment with ibrutinib, a BCR inhibitor (eg, BTK, PI3K, or Syk inhibitors), or a BCL-2 inhibitor (eg, venetoclax)

Byrd, ASCO, 2021

Ibrutinib vs. Acalabrutinib (ELEVATE-RR)

- High-risk patients only:
 - Del 17p: 45%
 - TP53 mutated 37-42%
 - Unmutated IGVH 82-89%
- Stopped because of adverse events:
 - 14.9% in acalabrutinib and 22.3% in ibrutinib group

Ibrutinib vs. Acalabrutinib (ELEVATE-RR)

Acalabrutinib:Ibrutinib HR (95% CI): 0.63 (0.49, 0.82) Acalabrutinib

80 n

Zanubrutinib vs Ibrutinib in r/r CLL (ALPINE)

Key Inclusion Criteria

- R/R to ≥1 prior systemic therapy for CLL/SLL
- Measurable lymphadenopathy by CT or MRI

Key Exclusion Criteria

- Prior BTK inhibitor therapy
- Treatment with warfarin or other vitamin K antagonists

Fred Hutch Cancer Center

Brown, NEJM, 2023

ALPINE Efficacy: PFS Extended Follow-Up

Brown JR, et al. N Engl J Med. 2023; 388:319-332; Brown JR, et al. ASH 2023. Abstract 202. Brown JR, Blood, in press

ALPINE Efficacy: PFS in Del(17p)/*TP53^{mut}* Extended Follow-Up

Brown JR, et al. N Engl J Med. 2023; 388:319-332; Brown JR, et al. ASH 2023. Abstract 202. Brown JR, Blood, in press
ALPINE: Zanubrutinib Demonstrated Robust PFS Benefit Independent of Del(17p)/*TP53* Mutation Status

Brown JR, et al. N Engl J Med. 2023; 388:319-332; Brown JR, et al. ASH 2023. Abstract 202. Brown JR, Blood, in press

ALPINE: Atrial Fibrillation/Flutter Events

Brown JR, et al. N Engl J Med. 2023; 388:319-332; Brown JR, et al. ASH 2023. Abstract 202. Brown JR, Blood, in press

BTKi inhibitors

Drug	Binding to BTK	Reversibility	BTKi generatio n	Use after progression after a 1 st or 2 nd gen BTKI?	Selectivity for BTK	Use after intolerance to other BTKis?
lbrutinib	Covalent	Irreversible	First	Νο	Νο	Yes, but unlikely to be helpful
Acalabrutinib	Covalent	Irreversible	Second	No	Yes	Yes
Zanubrutinib	Covalent	Irreversible	Second	No	Yes	Yes
Pirtobrutinib	Non- Covalent	Reversible	Third	yes	Yes	Yes
Nemtabrutinib*	Non- Covalent	Reversible	Third	Potentially	Maybe	Need more data
BGB-16673*	Degrader		Fourth			
NX-5948*	Degrader		Fourth			

* Not FDA approved for CLL as of September 2024

Pirtobrutinib for r/r CLL

- A third generation BTKi
- Reversible (non-covalent) BTKi
- High selectivity for BTK
- Potency against WT & C481-mutant BTK in cell and enzyme assays
- Phase 1/2 study included high-risk patients (n=261):
 - Prior BTKi 100% ; BTKi PD 77%
 - Prior Venetoclax 41%
 - Prior CAR-T 6%
 - BTK C481 mutant 38%
 - PLCG2 mutant 8%
 - Abnormal TP53 46%; both del and mut 28%
 - Unmutated IGHV 84%

Fred Hutch Cancer Center

Kinome selectivity Highly selective for BTK

Pirtobrutinib for r/r CLL

Pirtobrutinib Progression-free Survival With Prior cBTKi, With or Without Prior BCL2i

Mato, NEJM,2023; Woyach JA, et al. ASH 2023. Abstract 325.

Ven-R vs. BR in R/R CLL (MURANO Study)

Ven-R vs. BR in R/R CLL (MURANO Study): 7-year follow-up

- Median follow up for efficacy (range) was 86.8 months (0.3–99.2) for VenR and 84.4 months (0.0–95.0) for BR
- No new safety signals were identified since the 5-year data cut,¹ with all patients outside of the AE reporting window[§]

Delay between MRD Conversion and Clinical Progression

Kater, 17-ICML,

Treatment protocol for chronic lymphocytic leukemia

1 First-line treatment					
Normal TP53 Fixed-duration treatment: • Venetoclax + obinutuzumab Indefinite treatment: • Covalent BTK inhibitors acalabrutinib ^a or zanubrutinib ^a or ibrutinib	 Aberrant TP53 Indefinite treatment: Covalent BTK inhibitors (preferred)^b acalabrutinib^a or zanubrutinib^a or ibrutinib Fixed-duration treatment^c: Venetoclax + obinutuzumab; consider continuation of venetoclax in patient with abnormal TP53, especially in patients with evidence of detectable disease at 12 mo 				
If disease progression or intole	rance to first-line treatment				
+					
2 Second-line treatment					
 Patient previously treated with covalent BTK inhibitor Intolerance^d: Switch to other BTK inhibitor Venetoclax + rituximab^e Progression: Venetoclax + rituximab^e Noncovalent BTK inhibitor (pirtobrutinib) when available 	 Progression while receiving treatment or early after discontinuation of venetoclax: Acalabrutinib^f or zanubrutinib^f or ibrutinib Noncovalent BTK inhibitor (pirtobrutinib) when available Progression late after discontinuation of venetoclax⁹: Acalabrutinib^f or zanubrutinib^f or ibrutinib Consider retreatment with venetoclax Noncovalent BTK inhibitor (pirtobrutinib) when available 				
If disease progression after BT	K inhibitors or venetoclax				
+					
3 Subsequent treatment					
Prior failure of covalent BTK inhit • Noncovalent BTK inhibitor (pite • PI3K inhibitors: idelalisib + ritu Consideration for cellular immun • Consider CAR-T therapy when/it • Allo-HCT if no access to CAR-T	bitors and venetoclax: obrutinib) when available (preferred) ^h iximab or duvelisib otherapy: f available in patients with a controlled disease ⁱ or after CAR-T				

Shadman, JAMA, 2023

Cellular therapies for CLL

CAR-T for CLL

- Investigational, not FDA approved
- Registration studies are currently ongoing
- Long-term remissions ~ 30-35%
- Best predictor od response: MRD neg after treatment
- Recommend before alloSCT, if available

lisocabtagene maraleucel (liso-cel) for CLL

- CD19 directed CAR-T
- N=127
- High-risk features:
 - del17p (43%%), mutated TP53 (46%), complex karyotype (48%)
 - Ibrutinib refractory (88%), Venetoclax refractory (77%), double refractory (61%)
- Side effects
 - Grade 3-4 CRS: 9% , grade 3-4 neurotoxicity: 19%
- Responses:
 - CR/Cri: 18%
 - Undetectable MRD in blood (65%) and bone marrow (59%)
- Follow-up
 - Median follow-up 20.8 months
 - Median duration of response (not reached) more than half of the responders have not relapsed

Lisocabtagene Maraleucel (liso-cel) for CLL

(A) Full study population at DL2 (n = 88)

(B) PEAS (BTKi progression/venetoclax failure subset)

Data on KM curves are expressed as median (95% CI, if available).

Siddiqi T, et al. ASH 2023 [Presentation #330]

Allogeneic SCT for High Risk CLL

• Reduced intensity/ Nonmyeloablative allogeneic transplant

Author	or Kim		Roeker Paul		Andersen	
Year	2020	2020	2020	2019	2019	
Ν	108	65	64	55	432	
Conditioning	RIC	RIC	RIC (haplo)	NMA	RIC/NMA	
Follow-up (yr)	3	2	4	3	5	
OS	69-87	81	52	54	46-52	5
PFS	58-72	63	37	45	38-43	4
NRM	7-17	13	24	38 (<12)*	32-35	2
aGVHD (3-4)	8-13	24	3	20	?	
Extensive cGVHD	45-57	27	7	66	?	

50 40 20-25

Fred Hutch Cancer Center

* in pts without comorbidities

Shadman, Hematol Oncol Clin N Am, 2021

Suggested Approach for Treating Patients with "Double Refractory" CLL

Summary facts:

- 1. Covalent BTKi (indefinite) and venetoclax + anti CD20 abs (fixed-duration) are the first 2 options and they are both reasonable to be used in first-line
- 2. Second generation cBTKis (zanubrutinib or acalabrutinib) are preferred over ibrutinib
- 3. Obinutuzumab is the preferred anti CD20 ab (vs. rituximab) in CLL
- 4. MRD is an important prognostic marker for time-limited therapies (chemo, Venetoclax, CAR-T). However, MRD-guided therapy is considered investigational at the current time. Studies are ongoing.
- 5. The field is moving toward combination therapy with Venetoclax as the backbone plus a BTKi with or without the CD20 antibodies.
- 6. Pirtobrutinib, liso-cel (CD19 CART) are options for patients with "double refractory" disease after covalent BTKi and BCL2 inhibitors
- 7. It is critical to have good disease control before CAR-T therapy. Refer for CAR-T when disease is stable on pirtobrutinib
- 8. Venetoclax + Ibrutinib is approved in Europe and Canada <u>but not in the US.</u>
- 9. Expected approvals: venetoclax+acalabrutinib
- 10. In the pipeline: BTK degraders, bispecific abs (CD20/CD30; CD20/CD8), Novel autologous and allogeneic immune effector cell therapy, new BCL2 inhibitors, etc.

CLL (Night before the test)

- 1. Flow cytometry is critical (and adequate) to make the diagnosis
- 2. Remember CLL immunophenotype (and differences with MCL and other lymphomas)
- 3. Review Indications for treatment. This hasn't change even with new agents.
- 4. Check FISH before each line of treatment (r/o del 17p/P53 mutation)
- 5. Frontline: Ven-O or BTKi (acalabrutinib or zanubrutinib)
- 6. Relapsed setting: Ven-O(or R) or BTKi (acalabrutinib or zanubrutinib), Pirtobrutinib. Liso-cel, idelalisib/duvelisib.
- 7. BTKi AEs (less with 2nd gen): initial lymphocytosis (is OK), bleeding, Afib, HTN, body pain.
- Idelalisib/duvelisib: lymphocytosis (is OK), colitis, pneumonitis, hepatitis (more with idela), PJP, CMV – Don't use in frontline setting
- 9. Venetoclax: watch for TLS at the beginning. Ramp-up HAS to be done!
- 10. Liso-cel: CRS,ICANS, prolonged cytopenia, infection

Hairy Cell Leukemia

Hairy Cell Leukemia

Uncommon chronic B cell lymphoid neoplasm

Small mature B cell lymphoid cells with abundant cytoplasm and "hairy" projections within the peripheral blood, bone marrow, and splenic red pulp

≻Splenomegaly and cytopenias

Hairy cell Leukemia: (Diagnosis)

	CD11c	CD25	CD103	CD123	CD10	CD21	CD23	CD5	CD20	CD19	CD22	Annexin A1
HCL	+	+	+	+	-				+	+	+	+

BRAF V600E mutation is a disease-defining event

HCL variant:

CD25 (-), CD123 (-), annexin A1 (-) and BRAF V600E (-)

Clinical presentation

- Splenomegaly
- Cytopenias (infections, bleeding)
- Constitutional symptoms
- Treatment Indications:
 - Systemic symptoms
 - Splenic discomfort
 - Recurrent infections
 - Cytopenias (Hb <11, ANC < 1000, bleeding due to plt <100,000)

Hairy Cell Leukemia: Treatment

• First Line

- Purine analogs
 - Cladrabine (2-CdA) + rituximab Up to 80% CR with a CR duration of 57 months (7 246) after a single cycle
 - Pentostatin

Refractory (failure in less than a year) or Relapsed disease

- purine analogs \pm Rituximab
- INF-alfa
- rituximab
- BRAF targeting agents (Vemurafenib) ± rituximab
- moxetumomab Pasudotox (anti CD22 immunotoxin conjugate)

Moxetumomab Pasudotox for R/R HCL

- Anti CD22 immunotoxin conjugate
- IV ; D1,3,5 of 28D cycle (up to 6 cycles)
- At least 2 prior systemic therapies, including a purine analog
- Efficacy:
 - ORR: 75%
 - durable CR: 30%
 - MRD eradication 34% of all CRs

Unique side effects

- 1. Hemolytic-uremic syndrome
- 2. Capillary leak syndrome
- supportive care and discontinuation were effective
- could occur at any cycle

Please Consider Clinical Trials!

mshadman@fredhutch.org

Cancer Center

W. Medicine