

Indolent Non-Hodgkin Lymphoma

Solomon A. Graf, MD Associate Professor, University of Washington School of Medicine Associate Professor, Fred Hutchinson Cancer Center

September 25, 2024

Disclosures

Institutional Research Support

AstraZeneca / Acerta Pharma; BeiGene; Genentech; Janssen

Review key presenting and pathologic features of iNHL

Management of iNHL in frontline and relapsed/refractory settings: newly gained (and lost) therapies for R/R disease

> Explore areas of unmet need in iNHL and anticipated next steps

iNHL Natural History

- Presents with advanced disease that progresses slowly
- Iterative treatment responses and relapses
- Incurable with conventional therapies
 - Possible exceptions? Limited stage disease, cellular therapies \geq
 - Α Low-grade B-cell lymphoma (LGBCL) all subtypes cause of death competing risks
- Often not life-limiting

Fred Hutchinson Cancer Center

Epidemiology

Estimated Cases and Distribution of Mature Non-Hodgkin Lymphoid Neoplasm Subtypes: US, 2016

Risk Factors

Follicular lymphoma

- Autoimmune conditions
- Benzene, other solvents
- Agent Orange (herbicides)
- Radiation
- Burn pits
 - PACT Act Aug 2022 (presumptive conditions)

Marginal zone lymphoma

As above, also certain infections (e.g. H pylori, C psittaci)

Fred Hutchinson Cancer Center

Teras et al. CA Cancer J Clin 2016;66:443–459 https://www.publichealth.va.gov/exposures

Work-up

- > Excisional or incisional biopsy preferable to core for morphology and architecture (FNA inadequate)
- \blacktriangleright Labs include LDH, hepatitis B; sometimes β 2M and SPEP can be helpful
- Diagnostic CT, FDG-PET
- Marrow exam (consider if clinical stage I-II disease; not needed outside of clinical trials in known advanced stage)

Normal

Follicular lymphoma

Centrocytes/Centroblasts

FL in PB (uncommon)

Fred Hutchinson Cancer Center

Choi et al. Arch Pathol Lab Med. 2018

Pathogenesis: Classic FL (cFL; > 85% of FL)

- > Normal B cells differentiate in lymph node germinal centers
- > Normal maturation occurs by random genetic modification followed by antigen driven selection
- 1st step: somatic rearrangement t(14;18) in bone marrow (pre-B cell)
 - Promotes expression of anti-apoptotic BCL2
 - Of note, can be identified in PB of > 50% of healthy individuals
- ➢ B cells with t(14;18) enter the germinal center
 (highly mutagenic environment) → clonal expansion,
 further mutation mutations → classic FL
- Light chain restricted, CD20+, CD19+, CD10+
- ➢ CD5-

Fred Hutchinson Cancer Center

Lackraj et al Best Pract Res Clin Haematol 2018

FL Pathogenesis: Genetic Landscape

Huet. Nat Rev Cancer. 2018

FL Pathogenesis: Molecular Pathways

Fred Hutchinson Cancer Center

Other FL

WHO Revised 4 th Edition	WHO 5 th Edition	ICC 2022
Follicular lymphoma	Follicular lymphoma*	Follicular lymphoma**
- In situ follicular neoplasia	- In situ follicular B-cell neoplasm	- In situ follicular neoplasia
- Duodenal-type follicular lymphoma	- Duodenal-type follicular lymphoma	- Duodenal-type follicular lymphoma
Diffuse follicular lymphoma variant (not considered an entity)	FL with predominantly diffuse pattern (not considered an entity)	BCL2-R-negative, CD23-positive follicle center lymphoma (provisional entity)
Primary cutaneous follicle center lymphoma	Primary cutaneous follicle center lymphoma	Primary cutaneous follicle center lymphoma
Pediatric-type follicular lymphoma	Pediatric-type follicular lymphoma	Pediatric-type follicular lymphoma

*Grading (1,2,3A) no longer required, citing poor reproducibility and limited significance; ** Grading persists

Other FL

Pediatric-type FL

- Localized disease required (H&N location typical)
- Males > Females, younger age (though *not* required)
- Hi Ki67 (> 30%); no BCL2-R or BCL2 expression, and low genom ¹/¹/₂
- Must distinguish from large B-cell lymphoma with IRF4 rearrangement (subtype of DLBCL), FL grade 3B
- Preferred management: local therapy including excision, radiation

Duodenal-type FL

- Multiple small polyps
- · Confined to mucosa: no infiltration of deeper structures or LN involvement
- Usually incidental finding, very indolent

BCL2-R negative, CD23-positive follicle center lymphoma (ICC entity only)

- Females > Males, favorable prognosis (manage as cFL)
- Common STAT6 and CREBBP mutations along with 1p36 deletion or TNFRSF14 mutation

Nationa

FLIPI

- ➢ N = 4,167 diagnosed 1985 1992
- Adverse factors
 - Nodal areas (> 4)
 - LDH (elevated)
 - ➢ Age (> 60)
 - ➢ Stage (III/IV)
 - Hemoglobin (< 12 g/dL)</p>

Advanced Stage FL: Management

. <u></u> *	No. of Patients (%)	Mont Regr	THS TO ESSION	Mo Rec	NTHS OF GRESSION
		median	range	median	range
Total	19/83	8	2–120	>13	>4->72

19% of control: no treatment at 10 years

(For limited stage FL, ISRT can be considered but must be done so in clinical context)

Indications for Treating Advanced Stage* iNHL: GELF Criteria

Median time between diagnosis and start of treatment = 2 to 3 years

Fred Hutchinson Cancer Center

* Will circle back to early-stage management – less evidence basis

Solal-Celigny et al. J Clin Oncol. 1998 Nastoupil et al. Br J Haematol. 2016

FL 1L Treatment: Include anti-CD20

Fred Hutchinson Cancer Center

FL: Maintenance antiCD20?

Bachy et al, J Clin Oncol. 2019

PRIMA: Toxicity

	Observation (n=508)		Rituximab maintenance (n=501)	
	Grade 3/4	Leading to treatment discontinuation	Grade 3/4	Leading to treatment discontinuation
All adverse events	84 (17%)	8 (2%)	121 (24%)	19 (4%)†
Neoplasia	17 (3%)	6 (1%)	20 (4%)	5 (1%)
Neutropenia	5(1%)	0	18 (4%)	0
Febrile neutropenia	2 (<1%)	0	1(<1%)	1(<1%)
Infections	5 (1%)	0	22 (4%)	4(1%)
CNS disorders	13 (3%)	0	10 (2%)	0
Cardiac disorders	5(1%)	0	11 (2%)	1(<1%)
Pregnancy	NA	2 (<1%)	NA	3 (1%)

• Logistics, financial

Fred Hutchinson Cancer Center

BR vs CHOP-R (StIL NHL1)

Rummel et al. Lancet. 2013

StIL NHL1

	BR	CHOP-R	Р
ORR	93%	91%	NS
CR	40%	30%	0.03

- No difference in OS
- Comparable findings in North America "BRIGHT" study

FL 1L: R-Chemo vs O-Chemo: GALLIUM

- ➢ FL meeting GELF criteria, grades 1 − 3A
- Maintenance antibody given q2 mo x2 years
- Dosing: obinutuzumab: 1000 mg days 1, 8, 15 of C1 then 1000 mg D1 subsequent cycles; rituximab: 375 mg/m2 on day 1 qcycle

- Obinu: binds overlapping epitope of CD20 (as R) but in different orientation
- Glycosylation manipulation → improved direct cell death and antibody dependent cell-mediated cytotoxicity
- Lower complement dependent cytotoxicity

GALLIUM Results

Approximately 35% more O than R

- Most treated with bendamustine as chemo
- No difference in OS (5 yr OS 90.2% vs 89.4%)

Table 3. Adverse Events and Serious Adverse Events, According to Treatment Phase, and Treatment Phase in the Safety Population.*

Event	Overall Trial†		
	Obinutuzumab Group (N=595)	Rituximab Group (N=597)	
No. of events	10,311	9343	
Patients with ≥ 1 adverse event — no. (%)			
Any event	592 (99.5)	587 (98.3)	
Event of grade 3 to 5	444 (74.6)	405 (67.8)	
Event of grade 5‡	24 (4.0)	20 (3.4)§	
Patients with \geq 1 serious adverse event — no. (%)	274 (46.1)	238 (39.9)	

Bendamustine Toxicity in Older Patients

SEER Dataset, age > 65

Clinical Infectious Diseases

MAJOR ARTICLE

Increased Risk of Infectious Complications in Older Patients With Indolent Non-Hodgkin Lymphoma Exposed to Bendamustine

Monica Fung,¹ Eric Jacobsen,² Arnold Freedman,² Daniel Prestes,³ Dimitrios Farmakiotis,⁴ Xiangmei Gu,³ Paul L. Nguyen,⁵ and Sophia Koo^{2,3}

- N = 9395 with iNHL
- 2006 2013
- 75% with FL
- Suspect prolonged CD4+ T-lymphopenia as culprit

NCCN advises prophylaxis for PJP and VZV if bendamustine given

Fred Hutchinson Cancer Center

FL 1L: R-Lenalidomide (R²): RELEVANCE

- Co-primary endpoints: CR/CRu at 120 weeks and PFS by IRC based on 1999 IWG criteria
- The prespecified second interim analysis was done after 75% of total PFS events were reached

Fred Hutchinson Cancer Center

Morschhauser et al. NEJM. 2018

RELEVANCE: Results

- ➤ N = 1,030
- CR/CRu at 24 mo
 - ➢ R2 = 48%
 - ➢ R-chemo = 53% (P = 0.13)

Toxicities

- > Overall, comparable frequencies
- R2 = less nausea, febrile neutropenia
- R2 = more rash, diarrhea
- R2 = toxicities drawn out

No FDA approval

NCCN listed as a preferred option (BR, BO, RCHOP, OCHOP, RCVP, OCVP)

Fred Hutchinson Cancer Center

FL 1L: Special Circumstances

Frail/Elderly/Low Tumor Burden

Fred Hutchinson Cancer Center

Confirmed Limited Stage

> ISRT

- Consider volume to encompass adjacent LNs
- Definitive RT dose of 24-30 Gy
 - 4 Gy (2 + 2) inferior but effective (eg palliative)

Ardeshna et al, Lancet Oncol 2014. Hoskin et al, Lancet Oncol 2014.

FL: After 1L Treatment

A All Patients Achieving EFS12

B Immunochemotherapy Treated Patients Achieving EFS12

Fred Hutchinson Cancer Center

Maurer et al. Am J Hematol, 2016

FL: Relapse

In the 20% with "early" (< 24 mo) progression, survival markedly worse

RFs for early POD: male (OR 1.3); PS > 1 (OR 1.6); High B2M (OR 1.4); High FLIPI (OR 3.1)

FL POD24

	POI	D	noPOD		
Landmark	OS (%) at 2 years post-landmark	95% CI	OS (%) at 2 years post-landmark	95% CI	
6 months	20	2.5-37.5	95.8	94.6-97.0	
12 months	58.4	45.5-71.3	97.6	96.7-98.6	
18 months	76.5	67.0-86.0	97.8	97.0-98.9	
24 months	82.4	74.2-91.34	98.2	97.1-99.2	

Fred Hutchinson Cancer Center

 \rightarrow HT occurring after 1L treatment tends to occur early

Freeman et al. Blood 2019 Sarkozy et al, J Clin Onc 2016 Seymour et al, Haematologica. 2019

Relapsed FL: Treatment

Evaluate for indication

R² for Relapsed iNHL: AUGMENT

FL grade 1 – 3A or MZL, previously treated, and in need of treatment for relapse. Prior treatment includes rituximab; cannot be considered rituximab-refractory.

Lenalidomide: 20 mg daily, days 1-21 of 28, up to 12 cycles. Prophylactic AC rec'd for at-risk patients.

Leonard et al. J Clin Oncol. 2019; Leonart et al. ASH 2022

Relapsed FL, Rituximab "Refractory": GADOLIN

Defined as nonresponse to or progression during prior rituximab or PD within 6 months of last R

BO + Maintenance O

B dosed at 90 mg/m2 with O and 120 mg/m2 alone

Multiply Relapsed FL

Area of need and significant recent advances

Fred Hutchinson Cancer Center

Tun et al, Blood Advances 2022 Casulo et al, Lancet Haematol 2022

Multiply Relapsed FL: Small Molecule Inhibitors

	Setting	ORR, mPFS
Tazemetostat**	R/R after at least 2 prior systemic therapies (single arm) <i>EZH2</i> mutated (gain of function, found in ~20%), N = 45 <i>EZH2</i> WT, N = 54	69%, 13.8 mo 35%, 11.1 mo

** PO administration BID continuous

**Key toxicities: well tolerated

FDA approval: *EZH2* mutant FL: ≥2 prior systemic therapies; *any* FL: no satisfactory alternatives

Fred Hutchinson Cancer Center

Matasar et al, Lancet Oncol. 2021 Morschhauser et al. Lancet Oncol. 2020

Multiply Relapsed FL: Small Molecule Inhibitors

DAWN: Single arm phase 2 study showed only modest activity of single agent ibrutinib: ORR 21%, median PFS 4.6 mo

Rosewood: Randomized phase 2 showed improvement with addition of zanubrutinib to obinutuzumab monotherapy. AEs as expected: modest signals for marrow suppression, GI symptoms, infectious, cardiovascular complications

ORR: 69 vs 46%; CR 39 vs 19%; mPFS 28 vs 10 mo (HR 0.5)

FDA acc approval 2024: ZO for FL R/R after \geq 2 lines of systemic therapy

Fred Hutchinson Cancer Center

Zinzani et al, J Clin Oncol 2023 Gopal et al, J Clin Oncol 2018

Multiply Relapsed FL: Bispecific T-cell Engagers

Mosunetuzumab-axgb

- Single arm phase 2
- > R/R to ≥ 2L (antiCD20, alkylator)
- Ramp up C1 then q21 days (IV) to total of 8 or 17 cycles, depending on response
- CRS in 44% (G3+ in 2%); no correlation with ORR
- ➢ ICANS 4.4%, no G3+
- ORR 80% (CR 60%)
- > 24mo PFS 48%

Outcomes comparable in LEO Consortium "Real World" data

Multiply Relapsed FL: Bispecific T-cell Engagers

Epcoritamab-bysp

- Single arm phase 2 (N = 127 + 86 dose optimization with extra step-up dose)
- Administered subcutaneously
- > R/R to ≥ 2L (antiCD20, alkylator)
- Ramp up C1, weekly C2 and 3, biweekly C4-9, q4w C10+
- CRS in 49% (no G3+)
- ICANS 6.0%, no G3+
- Serious infections in 40%
- > ORR 82% (CR 60%)
- 12 mo DOR 68%

FDA acc. approval 2024: FL R/R after \geq 2 lines of systemic therapy

Fred Hutchinson Cancer Center

Multiply Relapsed FL: Anti-CD19 CAR T-cells

	Axicabtagene	Lisocabtagene	Tisagenlecleucel
Study	ZUMA-5	TRANSCEND-FL	ELARA
Ν	81	94	90
ORR	94%	97%	86%
CR	60%	94%	68%
mPFS	40.2 mo	NR	NR

robability	% (95% CI)	4
onths, all patients onths, all patients onths, patients in CP	67.2 (56.3-75.9) 57.4 (46.2-67.0) 87.2 (76.0.93.4)	3
onths, patients in CR	75.3 (62.4-84.3)	2

Kaplan-Meier medians All patients: NE months, 95% CI [18.2-NE] CR: NE months, 95% CI [NE-NE] PR: 5.9 months, 95% CI [4.9-6.3]

49% (0%)
37% (3%)
2022

Fred Hutchinson Cancer Center

Neelapu et al, Blood 2024 Morschhauser et al, Nat Med 2024 Fowler et al, Nat Med 2022

High Risk FL: Auto SCT?

CUP trial (2003, pre-rituximab)

 Randomized 70 patients with at least PR to 3 cycles of CHOP for relapsed FL to HDT and autoSCT or 3 more cycles

Hazard Ratio

0.86 [0.59, 1.25]

0.88 [0.40, 1.92]

1.12 [0.77, 1.62]

0.97 [0.76, 1.24]

0.40 [0.18, 0.89]

0.40 [0.18, 0.89]

<u>'n n1</u>

0'1

Favours experimental Favours control

10

100

Weight IV, Random, 95% Cl

Experimental Control

Total

209

68

86

46

46

363

Total

192

66

80

338

44.9%

10.1%

44.9%

100.0%

24 100.0%

24 100.0%

Retrospective analysis of CIBMTR and NLCS (N = 350)

39

Test for subgroup differences: Chi² = 4.29, df = 1 (P = 0.04), l² = 76.7%

log[Hazard Ratio]

Heterogeneity: Tau² = 0.00; Chi² = 1.00, df = 2 (P = 0.61); l² = 0%

SE

-0.15 0.19

-0.13 0.4

0.11 0.19

-0.92 0.41

Fred Hutchinson Cancer Center

Study or Subgroup

GELA/GELF-94

GOELAMS 064

Subtotal (95% CI)

Subtotal (95% CI)

GITMO/IIL

CUP trial

1.1.1 Untreated patients

1.1.2 Relapsed patients

Heterogeneity: Not applicable

Test for overall effect: Z = 0.24 (P = 0.81)

Test for overall effect: Z = 2.24 (P = 0.02)

Applying HCT and CAR-T in FL: ASTCT + ESBMT

- Auto SCT: an option for consolidation in patients with POD24, no evidence of HT, and achieve CR or PR to salvage 2nd line therapy (70% agreement)
- CAR-T: considered a treatment option for patients not achieving CR or PR after 2nd or later lines of therapy (96% agreement)
- Allo SCT: considered for consolidation in select cases of relapsed chemosensitive FL after 3+ lines therapy and are post CAR-T failure or lack access to CAR-T or have a concurrent marrow disorder (81% agreement)
- CAR-T versus bispecifics: known differences and unknowns including comparison of efficacy, toxicity, logistics, duration of therapy

Marginal Zone Lymphomas

Nodal MZL and Extranodal Nongastric MZL

- Immunophenotype typically positive for CD20, CD19 and negative for CD10, CD5
- Principles for management of FL broadly apply
- Caveat 1: No established role for obinutuzumab in 1L
- Caveat 2: Preferred options in 2L include covalent BTK inhibitors (zanubrutinib = FDA acc approved 2021)

Fred Hutchinson Cancer Center

Marginal Zone Lymphomas

Splenic MZL

Hepatitis C+?

OF

ORR up to 75% with antiviral therapy

Otherwise, excellent, durable results (> 90% resolution of splenomegaly)

(> 90% resolution of splenomegaly) possible with rituximab alone;

Splenectomy can also be considered

Typical presentation = splenomegaly, lymphocytosis

Cytopenias often indication for Rx

Fred Hutchinson Cancer Center

Marginal Zone Lymphomas

Extranodal MZL of Stomach (gastric MALT)

- Complete staging: if localized (IE or II)*, determine *H. pylori* status
 - · If negative by histopathology conduct stool antigen or urea breath test
 - If H. pylori positive, can check for t(11;18) as it predicts poor response to *H. pylori* eradication
 - *H. pylori* eradication alone if positive and t(11;18) negative
 - *H. pylori* eradication + ISRT of *H. pylori* positive and t(11;18) positive
 - ISRT if *H. pylori* negative
 - 24–30 Gy in 20 fractions
 - Rituximab monotherapy if ISRT contraindicated
- Note, response after *H. pylori* eradication, radiation can take several months (restage at 6 mo)
- Higher stage (distant nodal/organ, invasion): manage as per advanced stage EMZL

*Stage I: confined to GI tract

Stage II: nodal involvement

- > Careful consideration of indication for treatment, avoid excessive toxicity
- > Early relapse and multiply relapsed disease remains area of unmet need but rapidly evolving
- Srowing list of T-cell engaging therapies, potential for movement to earlier lines if toxicity mitigated