

Updates in Gynecologic Oncology:

Uterine Cancer & Cervical Cancer

Renata Urban, MD Professor, Division of Gynecologic Oncology Fellowship Director, Gynecologic Oncology Fellowship September 2024

Land Acknowledgement

Fred Hutchinson Cancer Center acknowledges the Coast Salish peoples of this land, the land which touches the shared waters of all tribes and bands within the Duwamish, Puyallup, Suquamish, Tulalip and Muckleshoot nations.

Disclosures

- UpToDate, Inc: royalties, editorial duties
- Clinical Care Options: presentation fees
- I have no other financial disclosures
- I will be discussing the unlabeled use of products

Objectives

- Describe molecular subtypes of endometrial cancer
- Discuss factors utilized in treatment planning for endometrial cancer cases
- Review treatment options for endometrial and cervical cancer
- Describe approaches that are most applicable for medical oncology practice

Uterine Cancer

Which of the following factors are incorporated into the updated FIGO 2023 staging for endometrial cancer?

- A. Histologic subtype
- B. Histologic grade
- C.Extent of LVSI
- D.Anatomic extent of disease
- E. All of the above

Question 1

Which of the following factors are incorporated into the updated FIGO 2023 staging for endometrial cancer?

- A. Histologic subtype
- B. Histologic grade
- C. Extent of LVSI
- D. Anatomic extent of disease
- E. All of the above

Question 2

You are meeting a new patient with stage IIIC2 grade 3 endometrioid endometrial cancer. On imaging, there is residual paraaortic lymphadenopathy. Pathologic and molecular assessment reveals a tumor with MSS, p53 wild-type, Her-2neu 1+ on IHC, no POLE mutation. What treatment would you recommend for her?

- A. Carboplatin, paclitaxel, dostarlimab followed by dostarlimab maintenance
- B. Carboplatin, paclitaxel, pembrolizumab followed by pembrolizumab maintenance
- C. Carboplatin, paclitaxel, trastuzumab followed by trastuzumab maintenance
- D. Carboplatin and paclitaxel
- E. A or B

Question 2

You are meeting a new patient with stage IIIC2 grade 3 endometrioid endometrial cancer. On imaging, there is residual paraaortic lymphadenopathy. Pathologic and molecular assessment reveals a tumor with MSS, p53 wild-type, Her-2neu 1+ on IHC, no POLE mutation. What treatment would you recommend for her?

- A. Carboplatin, paclitaxel, dostarlimab followed by dostarlimab maintenance
- B. Carboplatin, paclitaxel, pembrolizumab followed by pembrolizumab maintenance
- C. Carboplatin, paclitaxel, trastuzumab followed by trastuzumab maintenance
- D. Carboplatin and paclitaxel

E. A or B

FDA Approvals – primary advanced or recurrent endometrial carcinoma

Aug 1, 2024: Dostarlimab-gxly with carboplatin & paclitaxel followed by dostarlimab maintenance (expanded from initial indication for only patients with dMMR/MSI-H tumors)

June 17, 2024: Pembrolizumab with carboplatin & paclitaxel followed by pembrolizaumb maintenance

Fred Hutchinson Cancer Center

Subtypes of Uterine Cancer

CARCINOMAS

- Endometrioid
 - Grades 1, 2, 3
 - Variants: squamous, mucinous, secretory
- Serous
- Clear Cell
- Carcinosarcoma (MMMT)
- Undifferentiated/dedifferentiated
- Mixed
- Other rare carcinomas (eg mesonephric)

SARCOMAS

- Endometrial stromal sarcoma (high & low grade)
- Undifferentiated uterine sarcoma
- Adenosarcoma
- Leiomyosarcoma
- Other rare sarcomas (eg PEComa, rhabdomyosarcoma, UTROSCT)

Epidemiology

- Most common gynecologic cancer in the United States
- Median age at diagnosis 63
- In contrast to other solid tumors, incidence & mortality from uterine cancer in US are rising

Incidence

Female

	Breast	310,720	32%	
	Lung & bronchus	118,270	12%	
C	Colon & rectum	71,270	7%	
	Uterine corpus	67,880	7%	
	Melanoma of the skin	41,470	4%	
	Non-Hodgkin lymphoma	36,030	4%	
	Pancreas	31,910	3%	
	Thyroid	31,520	3%	
	Kidney & renal pelvis	29,230	3%	
	Leukemia	26,320	3%	
	All sites	972,060		

	Mortality			
	Lung & bronchus	,280	21%	
	Breast	42,250	15%	
[Pancreas	24,480	8%	
	Colon & rectum	24,310	8%	
	Uterine corpus	13,250	5%	
	Ovary	12,740	4%	
	Liver & intrahepatic bile duct	10,720	4%	
	Leukemia	10,030	3%	
	Non-Hodgkin lymphoma	8,360	3%	
	Brain & other nervous system	8,070	3%	
	All sites	288,920		

Il skin cancers and in situ carcinoma except urinary bladder. Estimates do not include liffer from the most recent observed data.

©2024, American Cancer Society, Inc., Surveillance and Health Equity Science

- In a recent review of SEER data, the mortality from uterine cancer is now similar to that of ovarian cancer.
- Causes?
 - Changing disease risk
 - Improved treatment options for patients with ovarian cancer (e.g. PARP inhibitors)
 - Deficit in research investment in 2018, NCI funding for uterine cancer was 1/7th that for ovarian cancer
 - High disparity for Black women, with twofold higher mortality compared with White women despite similar incidence

Giaquinto AN et al. Obstet Gynecol 2022

ENDOMETRIAL CARCINOMA **Risk Factors**

Demographic	Unopposed/Excess Estrogen	Protective Factors
Increasing ageBlack race	 Obesity Early menarche, late menopause, nulliparity 	Oral contraceptive pillsPregnancyPhysical activity
Other risk factors	 Chronic anovulation (eg polycystic ovarian syndrome) Hormone replacement therapy 	
Diskatas	Ovarian granulosa cell cancers	

- Diabetes
- Lynch syndrome ٠
- Cowden syndrome ٠

Tamoxifen

Lheureux S & Wilson MK. Exp Opin Investig Drugs 2014

Fred Hutchinson Cancer Center

Endometrioid endometrial cancers can be further categorized based on molecular profile

An integrated genomic analysis by TCGA network classified endometrioid endometrial cancers into 4 categories

Copy-number low	 High frequency of mutations in CTNNB1, KRAS, SOX17; frequent PIK3CA and PIK3R1 mutations co-occurring with PTEN mutations; elevated levels of progesterone receptor and RAD50 expression Represents ~49% of endometrioid tumors^a
MSI hypermutated	 High mutation rate and few copy number alterations; high rate of <i>MLH1</i> promoter methylation; high phospho-AKT; low PTEN expression; frequent <i>PIK3CA</i> and <i>PIK3R1</i> mutations co-occurring with <i>PTEN</i> mutations Represents ~39% of endometrioid tumors^{a,b}
Copy-number high	 Greatest transcriptional activity; frequent <i>TP53</i> mutations; decreased levels of phospho-AKT; mutually exclusive <i>PIK3CA</i>, <i>PIK3R1</i>, and <i>PTEN</i> mutations Represents ~8% of endometrioid tumors^a Worst prognosis
<i>POLE</i> ultramutated	 Ultra-high somatic mutation frequency; MSS; frequent mutations in the exonuclease domain of <i>POLE</i>; high ASNS and CCNB1 expression Represents ~4% of endometrioid tumors^a Best prognosis

The Cancer Genome Atlas Project (TCGA)

	POLE (Ultramutated)	MSI (Hypermutated)	COPY-NUMBER LOW	COPY-NUMBER HIGH (Serous-like)
Copy Number Alterations	Low	Low	Low	High
MSI/MLH 1Mixed MSI high, low, stableMSI High		MSI stable	MSI stable	
MutationVery HighHighRate(232 x 104)(18 x 104)Mutations/Mb)Mutations/Mb)		Low (2.09 x 104 Mutations/Mb)	Low (2.3 x 104 Mutations/Mb)	
Genomic Profile	Genomic Profile POLE (100%) PTEN (94%) P1K3CA (71%) PTEN (88%) RPL22 (32%) RPL22 (32%) P1K3R1 (65%) FBXW7 (82%) AR1D1A (76%) KRAS (35%) P1K3CA (54%) P1K3R1 (40%) KRAS (53%) AR1D1A (37%) AR1D5b (47%) PD1/PD-L1 Overexpression		PTEN (77%) CTNNB1 (52%) P1K3CA (53%) P1K3R1 (33%) AR1D1A (42%) FGFR2 (10.9%)	TP53 (92%) PPP2R1A (22%) FBXW7 (22%) P1K3CA (47%) PTEN (11%) FGFR Amplifications & mutations (7%) HER2 amplified 25%
Histology	Endometrioid	Endometrioid	Endometrioid	Serous, Endometrioid, and Mixed
Grade	Grades 1-3	Grades 1-3	Grades 1-2	Grade 3

- The POLE, MSI and CNL clusters are composed mostly of endometrioid ECs.
- Serous and 25% of endometrioid ECs are found in the CNH.
- Black women more likely to have CNH ECs
- All have clinically actionable targets for treatment.

Fred Hutchinson Cancer Center

Kandoth et. al. Nature. 2013;497(7447):67-73; Walsh et. al., Gyn Oncol, 168 (2023) 48-55

Endometrial Cancer Surgical Staging

- Total hysterectomy/removal of tubes and ovaries ± pelvic/paraaortic lymphadenectomy
 - More extensive surgery may be beneficial for stage II

- RCT of laparoscopic vs. open surgery showed equivalent recurrence and survival rates
- Sentinel lymph node mapping is preferred option for staging

2009 FIGO Staging

Stage	Anatomic involvement		
Stage I	Tumor confined to the uterine corpus		
IA	No or <50% myometrial invasion		
IB	≥50% myometrial invasion		
Stage II	Cervical stromal involvement		
Stage III	Local and/or regional tumor spread		
IIIA	Tumor invasion into uterine serosa and/or adnexal involvement		
IIIB	Vaginal and/or parametrial involvement		
IIIC	Metastases to lymph nodes		
IIIC1	Positive pelvic lymph nodes		
IIIC2	Positive para-aortic lymph nodes		
Stage IV			
IVA	Bladder and/or bowel involvement		
IVB	Distant metastases, including abdominal disease and/or inguinal lymph node involvement		

Adjuvant Therapy

- Stage
- Tumor histology
- Tumor grade
- Lymphovascular invasion (present/absent)

- Age

Fred Hutchinson Cancer Center

2023 FIGO Staging

Stage	Description
Stage I	Confined to the uterine corpus and ovary ^c
IA	Disease limited to the endometrium OR non-aggressive histological type, i.e. low-grade endometroid, with invasion of less than half of myometrium with no or focal lymphovascular space involvement (LVSI) OR good prognosis disease
	IA1 Non-aggressive histological type limited to an endometrial polyp OR confined to the endometrium
	IA2 Non-aggressive histological types involving less than half of the myometrium with no or focal LVSI
	IA3 Low-grade endometrioid carcinomas limited to the uterus and ovary ^c
IB	Non-aggressive histological types with invasion of half or more of the myometrium, and with no or focal LVSI ^d
IC	Aggressive histological types ^e limited to a polyp or confined to the endometrium
Stage II	Invasion of cervical stroma without extrauterine extension OR with substantial LVSI OR aggressive histological types with myometrial invasion
IIA	Invasion of the cervical stroma of non-aggressive histological types
IIB	Substantial LVSI ^d of non-aggressive histological types
IIC	Aggressive histological types ^e with any myometrial involvement
Stage III	Local and/or regional spread of the tumor of any histological subtype
IIIA	Invasion of uterine serosa, adnexa, or both by direct extension or metastasis
	IIIA1 Spread to ovary or fallopian tube (except when meeting stage IA3 criteria) ^c IIIA2 Involvement of uterine subserosa or spread through the uterine serosa
IIIB	Metastasis or direct spread to the vagina and/or to the parametria or pelvic peritoneum
	IIIB1 Metastasis or direct spread to the vagina and/or the parametria IIIB2 Metastasis to the pelvic peritoneum
IIIC	Metastasis to the pelvic or para-aortic lymph nodes or both ^f
	IIIC1 Metastasis to the pelvic lymph nodes IIIC1i Micrometastasis IIIC1ii Macrometastasis IIIC2 Metastasis to para-aortic lymph nodes up to the renal vessels, with or without metastasis to the pelvic lymph nodes IIIC2i Micrometastasis IIIC2i Macrometastasis
Stage IV	Spread to the bladder mucosa and/or intestinal mucosa and/or distance metastasis
IVA	Invasion of the bladder mucosa and/or the intestinal/bowel mucosa
IVB	Abdominal peritoneal metastasis beyond the pelvis
IVC	Distant metastasis, including metastasis to any extra- or intra-abdominal lymph nodes above the renal vessels, lungs, liver, brain, or bone

Summary of Major Changes

- Introduction of non-anatomical parameters (stages I/II) histologic type/grade, extent of LVI, molecular subgroup
- Subdivision of stage II/IV categories according to location and size of disease
- Creation of a stage for "synchronous" low grade endometrioid tumors of endometrium and ovary

Stage designation	Molecular findings in patients with early endometrial cancer (Stages I and II after surgical staging)
Stage IAm _{POLEmut}	POLEmut endometrial carcinoma, confined to the uterine corpus or with cervical extension, regardless of the degree of LVSI or histological type
Stage IICm _{p53abn}	p53abn endometrial carcinoma confined to the uterine corpus with any myometrial invasion, with or without cervical invasion, and regardless of the degree of LVSI or histological type

Postoperative Treatment Relevant Factors

- Anatomic involvement
- Histology & grade
- Extent of lymphovascular invasion
- Lymph node metastases
 - Number of positive lymph nodes
 - ITCs, micro- or macrometastases
- Molecular profile
 - MMR/MSI
 - P53 mutation
 - POLE mutation

HISTOLOGIC GRADE/ADJUVANT TREATMENT^{g,h,m}

CLINICAL FINDINGS (Endometrioid Histology)^a

	FIGO Stage	Histologic Grade	Adjuvant Treatment
	IA	G1, G2	Observation preferred or Consider vaginal brachytherapy if lymphovascular space invasion (LVSI) and/or age ≥60 y ⁿ
Surgically staged:		G3	Vaginal brachytherapy preferred or Consider observation if no myoinvasion or Consider EBRT if either age ≥70 y or LVSI (category 2B)
	IB	G1	Vaginal brachytherapy preferred or Consider observation if age <60 y and no LVSI
		G2	Vaginal brachytherapy preferred or Consider EBRT if ≥60 y and/or LVSI or Consider observation if age <60 y and no LVSI
		G3	RT (EBRT and/or vaginal brachytherapy) ± systemic therapy (category 2B for systemic therapy)

Endometrial carcinoma ADJUVANT TREATMENT for Stages I/II

- Stage I risk stratified into low risk, low intermediate risk, high intermediate risk and high risk depending on pathologic risk factors: grade, depth of myometrial invasion, LVSI
 - GOG 99
 - PORTEC 1 and 2
- Low risk and low intermediate risk require no adjuvant therapy
- High intermediate risk is treated with vaginal brachytherapy (VBT)
- High risk, early-stage disease is treated with some combination of EBRT, VBT and systemic therapy (usually 3-6 cycles of carboplatin / paclitaxel)
 - GOG 249
 - GOG 258
 - PORTEC 1, 2, 3

GOG 99 High Intermediate Risk Risk factors: Grade 2-3, DOI ≥ 66%, LVSI

Age < 50 and 3 RF Age 50-70 and 2 RF Age \geq 70 and 1 RF

PORTEC 1, 2 High Intermediate Risk Risk factors: Age > 60, Grade 3, DOI >50%

2 of 3 RF must be present

Postoperative Treatment EARLY Stage Disease

- Radiation if pathology suggests increased risk for recurrence
 - Deep myometrial invasion
 - G2-3 histology
 - LVSI
- Vaginal brachytherapy equivalent to external beam pelvic radiation for prevention of recurrence at vaginal cuff with less toxicity

Endometrial carcinoma ADJUVANT chemotherapy for stages I/II

Major Phase III trials looking at adjuvant chemotherapy that included Stage I/II disease

Trial	Inclusion Criteria	Arms	Results
NSGO-EC 9501/EORTC-5591 + MaNGO ILIADE-III	I-III (no RD) and high- risk factors	(1) EBRT(2) EBRT + chemo	Chemo improved PFS but not OS
GOG 249	EEC: I HIR, II S/CC: I-II w neg cytol	(1) EBRT(2) C/T x 3 + VBT	No difference in RFS or OS
PORTEC-3	EEC: IA G3 w LVSI, IB G3, II-III S/CC: all stages	(1) EBRT(2) CisRT + C/T x 4	Improved RFS, no different in OS in early stages
GOG 258	III-IVA (<2 cm RD) I/II S/CC w pos cytol	 (1) C/T x 6 (2) CisRT + C/T x 4 	No difference in RFS or OS Fewer vaginal/nodal failures w RT Fewer distant failures with C/Tx6
ENGOT-EN2-DGCG	EEC: I G3, II S/CC: I-II	(1) C/Tx x 6 + VBT(2) VBT	Ongoing

Hoberg T et al *Eur J Ca*Randall ME et al *J Clin Oncol*De Boer SM et al. *Lancet Oncol*Matei D et al *N Engl J Med*

High-risk histologic types

Finited by Menala orban on arzarzaze a, to, the min, their personal use only. Not approved for distribution, copyright wizaze mational co

NCCN National Comprehensive Cancer Network®

NCCN Guidelines Version 3.2024 Uterine Neoplasms

NCCN Uterine Neoplasms Panel Members Summary of the Guidelines Updates

Uterine Neoplasms

Uterine Neoplasms (UN-1)

Endometrial Carcinoma

Disease Limited to the Uterus (ENDO-1) Suspected or Gross Cervical Involvement (ENDO-2) Suspected Extrauterine Disease (ENDO-3) Incompletely Surgically Staged (ENDO-7) Criteria for Considering Fartility Sparing Options (ENDO-8) Surveillance (ENDO-9) Locoregional Recurrence (ENDO-10) Serous Carcinoma (ENDO-11) Clear Cell Carcinoma (ENDO-12) Undifferentiated/Dedifferentiated Carcinoma (ENDO-13) Carcinosarcoma (ENDO-14)

Principles of Pathology and Molecular Analysis (ENDO-A) Principles of Imaging (ENDO-B) Principles of Evaluation and Surgical Staging (ENDO-C) Systemic Therapy for Endometrial Carcinoma (ENDO-D)

- Poorer prognosis
- Higher risk of extrauterine spread at diagnosis
 - Individualized treatment paradigms
 - Systemic therapy
 - ± radiation

Review of PORTEC-3 Trial Design – Radiation/Advanced EC

High risk Endometrial Cancer (HREC)

High-risk endometrial cancer:

- (1) Stage I, endometrioid grade 3 with deep myometrial invasion or lymph-vascular space invasion (or both)
 (2) Stage II or III, endometrioid
 (3) Stage I to III with serous or clear cell histology.
- At a median follow-up of 73 months, five-year OS was 81% with chemoradiation versus 76% compared with RT alone (adjusted HR 0.70, 95% CI 0.51-0.97), and five-year failure-free survival was 77 versus 69 percent (HR 0.70, 95% CI 0.52-0.94)
- Benefit was seen particularly in <u>stage III patients</u> (five-year OS, 79 versus 69 percent; HR 0.63, 95% CI 0.41-0.99) and in patients with <u>serous tumors</u> (five-year OS, 71 versus 53 percent; HR 0.48, 95% CI 0.24-0.96).
- More Grade 3 or higher toxicity with chemoradiation versus RT alone (61% vs 13%)

RAINBO Chemoradiotherapy R **p53abn** 14 (MI+) to III Chemoradiotherapy p53abn \rightarrow Olaparib RAINBO Completely resected Radiotherapy endometrial cancer MMRd stage II(LVSI+)/III R Radiotherapy Molecular MMRd Eligible histotypes: + Durvalumab Classification endometrioid, NSMP ER+ stage II(LVSI+)/III RAINBO Chemoradiotherapy serous, POLEmut stage 1-111 R clear cell, Radiotherapy → Progestin NSMP un/dedifferentiated, mixed and RAINBO carcinosarcoma No adjuvant therapy or de-escalation POLEmut

Ongoing PORTEC-4a:

Fred Hutchinson Cancer Cente Molecular-integrated risk profile to determine optimal therapy in endometrial cancer

Refining adjuvant treatment in endometrial cancer based on molecular features: the RAINBO clinical trial program *International Journal of Gynecologic Cancer* Published Online First: 20 December 2022. doi: 10.1136/ijgc-2022-004039

Endometrial Cancer Treatment – 1st Line

• GOG 177 – Doxorubicin/Cisplatin (AP) vs Doxorubicin/Cisplatin/Paclitaxel (TAP)

- ORR of 57% for TAP vs 34% for AP (PFS 8.3 vs 5.3 months)
- 1st trial to show a survival benefit for EC
- GOG 209¹ TAP vs Carboplatin/Paclitaxel
 - PFS HR 1.03 (14 months in both arms)
 - OS HR 1.01 (38 vs 32 months)
 - Carboplatin/paclitaxel less toxic first line treatment
- GY018 and RUBY Carboplatin/Paclitaxel + PD-1 Inhibitor

Current NCCN Guidelines for Systemic Therapy (March 2024)

- Preferred Regimens:
 - Carboplatin/paclitaxel
 - Carboplatin/paclitaxel/pembrolizumab (for stage III-IV, except for carcinosarcoma)
 - Carboplatin/paclitaxel/dostarlimab-gxly (for stage III-IV)
 - Carboplatin/paclitaxel/trastuzumab (for stage III-IV HER2-positive uterine serous carcinoma or carcinosarcoma)

Immune Checkpoint Blockade + Chemotherapy

- Cytotoxic chemotherapy $\rightarrow \rightarrow$ robust stimulation of the immune system¹
 - ↑ presentation of tumor-specific antigens
 - \uparrow PD-L1 expression on cancer cells
 - ↑ penetration of cytotoxic T-cells into tumor tissue
- GY018: pembrolizumab vs placebo + paclitaxel/carboplatin
- RUBY: dostarlimab vs placebo + paclitaxel/carboplatin
- AtTEnd: atezolizumab vs placebo + paclitaxel/carboplatin
- All enrolled women regardless of MMR status

NRG-GY018 Survival Results

dMMR Cohort:

- Median f/u 12 months
- PFS 74% in pembrolizumab group vs 38% in placebo group (HR 0.30, 95% CI 0.19-0.48)
- Median PFS not reached in pembrolizumab group versus
 7.6 months in placebo group
- SGO 2024: median OS not reached in either arm (HR 0.55, 95% CI, 0.25-1.19, *P*=.0617)

pMMR Cohort:

- Median f/u 7.9 months
- Median PFS 13.1 months in pembrolizumab group versus
 8.7 months with placebo (HR 0.54, 95% CI, 0.41 to 0.71)
- SGO 2024: median OS was 27.96 months in pembrolizumab are versus 27.37 months in placebo arm (HR 0.79, 95% CI, 0.53-1.17, P=.1157)

RUBY Results

Fred Hutchinson Cancer Center

Overall Population:

- PFS at 24 months was 36.1% in dostarlimab group and 18.1% in placebo group (HR 0.64, 95% CI, 0.51 to 0.80, *P*<0.001)
- OS at 24 months was 83.3% in dostarlimab group and 58.7% in placebo group (HR 0.30, 95% CI, 0.13 to 0.70)

dMMR-MSI-H Population:

- PFS at 24 months was 61.4% in dostarlimab group and 15.7% in placebo group (HR 0.28, 95% CI, 0.16-0.50, *P*<0.001
- OS at 24 months was 71.3% in dostarlimab group and 56% in placebo group (HR 0.64, 95% CI, 0.46-0.87, *P*=0.0021

pMMR-MSS Population (not pictured):

- PFS at 24 months was 28.4% in dostarlimab group and 18.8% in placebo group (HR 0.76, 95% CI, 0.59-0.98)
- OS at 24 months was 67.7% in dostarlimab group and 55.1% in placebo group (HR 0.73, 95% CI, 0.52-1.02)

HER2/neu-positive Endometrial Cancers

• 25-30% of serous/carcinosarcomas ECs are HER2/neu-positive

- NCT01367002¹ Randomized Phase 2 Carboplatin/Paclitaxel vs Carboplatin/Paclitaxel/Trastuzumab
- Advanced and recurrent serous endometrial cancer
 - IHC score 2-3+, confirmed by FISH
 - Scoring performed by 2007 guidelines of ASCO/CAP as for breast cancer

Randomized Phase 2 Carboplatin/Paclitaxel +/- Trastuzumab

- Maintenance trastuzumab until progression or toxicity (n=61)
- PFS in P/C vs P/C/T = 8 vs 12.9 months
- OS = 24.4 vs 29.6
- Stage 3 and 4, primary treatment
 - 41 patients, Median PFS 9.3 vs 17.7 mo
 - OS = 24.4 mo vs not reached
- Recurrent
 - 17 patients, Median PFS 7.0 vs 9.2 mo

Fred Hutchinson Cancer Center

Role of Radiation for Stage III/IVA EC?

- Pelvic RT incorporation and timing of pelvic RT lacking robust data
- ASTRO Clinical Practice Guidelines
 - Conditionally recommended
 - Chemotherapy (6 cycles) + EBRT
 - ChemoRT + chemotherapy (4 cycles)
- When to add a vaginal cylinder boost?
 - Per ASTRO Guidelines: High risk patients with cervical stromal involvement (Stage II), and/or close or positive vaginal margins
 - Institutional dependent practice based on extensive LVSI or high-ris histology

Figure 3 Stage III to IVA endometroid carcinoma. *Abbreviations:* EBRT = external beam radiation therapy; GOG = Gynecologic Oncology Group; RT = radiation therapy.

Chemotherapy alone is also an option based on GOG 258. 20

Endometrial Cancer

Matei D et al. New Engl J Med 2019.

Recurrent Disease

- Local (oligometastatic) imaging and biopsy, vaginal recurrences most common
 - Radiation therapy (if not seen prior radiation) PORTEC-1, CR of 87%¹
 - Surgical resection (including pelvic exenteration)
 - Intra-operative radiation
 - Chemotherapy
 - Multi-modality
- Disseminated disease palliative chemotherapy
 - OS 14-15 months

Fred Hutchinson Cancer Center
Targeted Agents for Treatment

- PD-1/PD-L1 inhibitors (other immunotherapy targets)
- mTOR pathway inhibitors
- HER2/neu inhibitors
- PARP inhibitors
- Anti-angiogenic agents
- Antibody-drug conjugates

Recurrent Uterine Adenocarcinoma Pembrolizumab & lenvatinib ("len/pem")

- Options for MSS tumors? Only 16-31% of EC have dMMR
- Lenvatinib: multitargeted tyrosine kinase inhibitor of VEGF-R 1-3, FGF-R 1-4, PDGF-R α, RET& KIT
 - Limited efficacy as second-line treatment for recurrent endometrial carcinoma (OR 14.3%)
- KEYNOTE 146 unselected for MSI or PD-L1 status: 38.0% ORR for len/pem
 - FDA approval Sept 2019
- KEYNOTE-775
 - Phase III of len/pem vs IC chemo for advanced/ recurrent/metastatic
 - Longer PFS & OS compared to chemo

Fred Hutchinson Cancer Center

Le DT et al. *N Engl J Med* 2015., Ott PA et al. *J Clin Oncol* 2017., Makker V et al. *J Clin Oncol* 2020. Makker V et al, *N Engl J Med* 2022.

PI3K/Akt/mTOR Pathway

Somatic Aberration	Potential Clinical Actionability	Endometrioid (Type 1)	Non- endometrioid (Type 2)	POLE	MSI-H	CNL	CNH
Mutated PTEN	 PI3K-Akt-mTOR pathway inhibition Synthetic lethality with PARP inhibition CDK4/6 inhibition 	64-80%	2-3%	94%	88%	77%	11%
Mutated PIK3CA	 PI3K-Akt-mTOR pathway inhibition 	22-39%	15-35%	71%	54%	53%	47%
Mutated PIK3R1	 PI3K-Akt-mTOR pathway inhibition 	9-43%	5-8%	65%	40%	33%	-

Fred Hutchinson Cancer Center

PI3K/Akt/mTOR Pathway Inhibitors

- Single-agent mTORC1 inhibitors modest activity (<25%)
- No advantage of temsirolimus added to paclitaxel/carboplatin (GOG86P)¹
 - TSC2 mutations ↑ PFS
 - Single agent temsirolimus on NCCN guidelines
- Newer generation agents limited response but others are in development

Fred Hutchinson Cancer Center

¹Aghajanian et. al., Gynecol Oncol 2018 150(2):274-281; Slomovitz, B.M., & Coleman, R.L. (2012). The PI3K/AKT/mTOR Pathway as a Therapeutic Target in Endometrial Cancer. *Clinical Cancer Research, 18*, 5856 - 5864.

GOG 3007 – Phase 2: Letrozole + Everolimus vs Medroxyprogesterone + Tamoxifen

22% response rate in the everolimus/letrozole arm

- PFS 6 mo, OS 31 mo
- 28 mo PFS chemo-naïve vs 4 mo prior chemo (25% ORR in chemonaïve)
- Serous tumors had limited response

25% response rate in the megestrol acetate/tamoxifen arm

- PFS 4 mo, OS 17 mo
- 5 mo PFS chemo-naïve vs 3 mo prior chemo

Fred Hutchinson Cancer Center

Slomovitz et. al., Gyn Oncology, 164 (2022) 481-491

Cyclin-dependent Kinase Inhibition

- CDK4/6 inhibition proposed to have synergistic activity with hormonal inhibition
- Phase II two-stage study of letrozole with abemaciclib in ER+ recurrent EC
 - ORR 30%
- Phase II clinical trial of ribociclib & letrozole in ER+ EOC & EC
 - 55% PFS at 12 weeks

Fred Hutchinson Cancer Center

DESTINY-PanTumor 02 Endometrial CA Cohort

- Open-label phase II study for Her2-expressing locally advanced or metastatic disease after ≥1 systemic treatment or without alternative treatments
- ORR 37.1% in all cohorts

Defined as IHC 3+

Fred Hutchinson Cancer Center

PARP Inhibitors and Endometrial Cancer

- ARID1A mutations common
- ARID1A deficiency impairs homologous recombination DNA repair associated with PARP sensitivity
- Rates of homologous recombination deficiency (HRD) in non-endometrioid ECs to range between 15-24%^{1,2}, no standardized definition

Trial Name	Phase & Type	EC Patients included	Mutation	Treatment	Primary Outcome
RAINBO	III	Early and late stage	POLE dMMR TP53 mutant NSMP	TP53 mutant – chemoradiation +/- olaparib	5-year RFS
CAN-STAMP	11-111	Early and late stage	TP53 mutant Serous	Late stage – chemotherapy +/- niraparib	3-year RFS

Fred Hutchinson Cancer Center

¹de Jonge et al. Clin Cancer Res. 2019;25(3):1087-97. ²Ashley et al. Gynecol Oncol. 2019;152(1):11-9.

DUO-E Trial Role of PARP Inhibition

Fred Hutchinson Cancer Center

PMID 37864337

Anti-Angiogenics and Endometrial Cancer

- **Bevacizumab** 14% response rate, 40% 6-month PFS rate
 - Compares favorably with other second-line cytotoxic regimens
- **GOG86P** phase II study of frontline paclitaxel/carboplatin/bevacizumab, paclitaxel/carboplatin/temsirolimus, or ixabepilone/carboplatin/bevacizumab in advanced/recurrent EC¹
 - None better than historical controls
- MITO END-2 randomized phase II trial of carboplatin-paclitaxel +/bevacizumab in advanced/recurrent EC²
 - No improvement in PFS, no biomarkers

GOG-86P – TP53 Status

 Mutations in TP53 were associated with improved PFS and OS for patients that received bevacizumab as compared to temsirolimus

- PFS: HR 0.48, 95% CI 0.31, 0.75
- OS: HR: 0.61, 95% CI 0.38, 0.98.
- No significant difference in PFS or OS between arms for patients with WT TP53.

Vaginal Cuff Recurrent Disease

- Early-stage patients managed with observation may have 10-15% risk of recurrence, most often in first 2-3 years
- 60-70% of recurrences are at the vaginal cuff
- If no prior EBRT or vaginal cylinder HDR
 - Recommendation:

Pelvic RT (45-50 Gy) -Treat LN region -Shrink primary disease Vaginal brachytherapy using cylinder/multichannel cylinder/interstitial catheters

Steiner, A., Alban, G., Cheng, T. *et al.* Vaginal recurrence of endometrial cancer: MRI characteristics and correlation with patient outcome after salvage – radiation therapy. *Abdom Radiol* **45**, 1122–1131 (2020). https://doi.org/10.1007/s00261-020-02453-2; Patel et al, Journal of Contemporary Brachytherapy 2020; Patel P, Deufel C, Haddock M, Petersen I. Preliminary results of modified interstitial MIAMI brachytherapy applicator for treatment of upper and apical vaginal tumors. Journal of Contemporary Brachytherapy. 2020;12(6):562-571. doi:10.5114/jcb.2020.101689.

Recurrent Disease – Prior Chemotherapy

- Platinum-free interval ≥ 6 months retreat with carboplatin/paclitaxel +/- PD-1 inhibitor
- Platinum-free interval <6 months 2nd line agents, i.e., Pembrolizumab +/- Lenvatinib
- Relapse on immunotherapy maintenance stop immunotherapy, resume carboplatin/paclitaxel

Cervical Cancer

Which of the following treatment strategies are FDA approved in cervical cancer?

- A. Radiation with concurrent cisplatin and pembrolizumab for a patient with IIA squamous cell cervical cancer
- B. Radiation with concurrent cisplatin and pembrolizumab for a patient with stage IIIA squamous cell cervical cancer
- C.Radiation with concurrent cisplatin for patients with stage IB2-IVA cervical cancer
- D.All of the above
- $\mathsf{E}.\,\mathsf{B}\,\mathsf{and}\,\mathsf{C}$
- F. A and C

Which of the following treatment strategies are FDA approved in cervical cancer?

- A. Radiation with concurrent cisplatin and pembrolizumab for a patient with IIA squamous cell cervical cancer
- B. Radiation with concurrent cisplatin and pembrolizumab for a patient with stage IIIA squamous cell cervical cancer
- C.Radiation with concurrent cisplatin for patients with stage IB2-IVA cervical cancer
- D.All of the above
- E. B and C
- F. A and C

January 12, 2024 FDA approves pembrolizumab with chemoradiotherapy for FIGO 2014 Stage III-IVA cervical cancer

Based on KEYNOTE A-18

Your 55 year-old patient with recurrent squamous cell carcinoma has progressed on pembrolizumab and bevacizumab therapy after completing carboplatin, paclitaxel, bevacizumab and pembrolizumab. IHC of her tumor has shown 1+ expression. Which of the following therapies would be appropriate for her?

- A. Cemiplimab
- B. Tisotumab-vedotin
- C. Pemetrexed
- D. Topotecan
- E. Trastuzumab-dereuxtecan

Your 55 year-old patient with recurrent squamous cell carcinoma has progressed on pembrolizumab and bevacizumab therapy after completing carboplatin, paclitaxel, bevacizumab and pembrolizumab. IHC of her tumor has shown 1+ expression. Which of the following therapies would be appropriate for her?

- A. Cemiplimab
- **B. Tisotumab-vedotin**
- C. Pemetrexed
- D. Topotecan
- E. Trastuzumab deruxtecan

INNOVA TV301/ENGOT-cx12/GOG3057

Phase III trial of tisotumab-vedotin versus IC chemotherapy in patients with recurrent cervical cancer showed improved overall survival

Global Cancer Facts & Figures, 4th ed. American Cancer Society

Cervical cancer epidemiology

Figure 19. International Variation in Uterine Cervix Cancer Incidence Rates*, 2018

*Per 100,000, age standardized to the world standard population. Source: GLOBOCAN 2018.

©2018, American Cancer Society, Inc. Surveillance Research

14,100 new cases per year (2022) **United States 4,280** deaths per year (2022) 660,000 new cases per year (2022) Worldwide **350,000** deaths per year (2018) >85% of all cases of cervical cancer occur in low-resource countries Significantly ↓ incidence in developed nations due to implementation of screening with Pap

• Peak incidence 40-60 years

Epidemiology

Fred Hutchinson Cancer Center

Siegel RL et al. CA Cancer J Clin 2024. Bray F et al. CA Cancer J Clin 2024.; Singh D et al Lancet Global Health 2023. Chi et al. Principles and Practice of Gynecologic Oncology 2017

Cervical cancer Histologic types

- Squamous cell carcinoma ~70%
- Adenocarcinoma ~25%
 - Classification based on HPV status, not morphology
 - 10-15% wil be HPV negative
 - HPVneg adenocarcinoma present at more advanced stages, have poorer prognosis
- Adenosquamous
- Glassy cell carcinoma
- Adenoid cystic carcinoma
- Neuroendocrine / small cell carcinoma
- Mixed
- Rhabdomyosarcoma
- Lymphoma

Squamous cell carcinoma

Fred Hutchinson Cancer Center

Cervical cancer Causative role of HPV

- >20 high-risk human papilloma virus (HPV) types associated with anogenital cancers
 - Types 16 & 18: >70% of cervical cancers
- Persistent infection can → dysplasia
- HPV incorporated into cellular genome
- HPV core proteins E6 and E7 lead to inactivation of p53 and Rb

Fred Hutchinson Cancer Center

Wright & Schiffman *N Engl J Med* 2003

HPV v. Non-HPV Associated Endocervical Adenocarcinoma

- HPV-associated endocervical adenocarcinoma (83%)
 - HPV types 18,16,45
- HPV-unassociated endocervical adenocarcinoma
 - Gastric type (10%)
 - Clear cell (3%)
 - Endometrioid (1.1%)
 - Mesonephric (0.3%)
 - Miscellaneous and not otherwise specified (2.4%)

Cervical Cancer FIGO Staging 2018

0	IA1 DOI <= 3	DOI <= 3 mm
. 8	IA2	3 mm > DOI <= 5 mm
	IB1	Microscopic > IA2 or visible lesion <= 2 cm
	IB2	2 cm > visible lesion <= 4 cm
	IB3	Visible lesion > 4 cm
	IIA1	Upper 2/3 vaginal involvement, lesion <= 4 cm
al Cancer	IIA2	Upper 2/3 vaginal involvement, lesion > 4 cm
-Uterus	IIB	Parametrial invasion (but not to pelvic side wall)
	IIIA	Lower 1/3 vaginal involvement
	IIIB	Pelvic wall and/or hydro / non-functioning kidney
	IIIC1	Pelvic node involvement (r and p notations)
	IIIC2	Para-aortic node involvement (r and p notations)
	IVA	Bladder or rectal mucosal involvement
2012 Terese Winslow LLC U.S. Govt. has certain rights	IVB	Distant metastases (includes peritoneal spread, supraclavicular, mediastinal, lung, liver, bone)

Definition

Stage

Fred Hutchinson Cancer Center —

Modalities of Staging

• Biopsy

Clinical

- Physical & pelvic exam
- Procedural/Surgical
 - Exam under anesthesia, cystoscopy, proctoscopy
 - Surgical lymph node assessment (can be done with sentinel lymph node biopsy)

Radiologic

- NCCN: "any imaging according to available resources"
- MRI best for assessment of tumor size, parametrial spread (role of PET/MR?)
- Meta-analysis has shown PET/CT to have superior sensitivity, specificity in predicting LN involvement
 - In setting of PET/CT showing (+) PLN but negative PALN → false negative rate up to 25% in PALN

NCCN Guidelines: Cervical Cancer, 2024. Ramirez PT et al. Cancer 2011

Management

- Diagnosis via biopsy most accurate
- Staging with exam, surgery, imaging

Spread	Stage	Recommended therapy
Confined to cervix	IA1	Hysterectomy, cone biopsy
Confined to cervix and upper vagina	IA2-IB2	Surgery (radiation)
Bulky cervix and/or locally advanced disease	IB3-IVA	Radiation + chemotherapy Surgery an option for IB3 – IIA2
Distant spread	IVB	Chemotherapy

Indications for Postop Treatment

Intermediate-Risk Pts +LVSI

- Tumor size >4 cm
- >50% stromal invasi
- >50% stromal invasion

Depending on combination of risk factors, **pelvic radiation** shown to ♥ risk of recurrence

High-Risk Pts

- Positive lymph nodes
- Parametrial disease
- Positive/close surgical margins

Postop adjuvant treatment with **radiation** and **chemotherapy** indicated to ♥ recurrence and improve overall survival

Locally advanced cervical cancer Standard of care

Trial	Intervention	Outcome	Citation
GOG 109	Adjuvant RT vs. CDDP-based RT	Superiority of Adjuvant ChemoRT	Peters III WA, et al. J Clin Oncol 2000;18:1606-13.
GOG 85	CDDP-based vs. HU-based RT	Superiority of ChemoRT	Whitney CW, et al. J Clin Oncol 1999;17:1339-48.
GOG 120	CDDP-based vs. HU-based RT	Superiority of ChemoRT	Rose PG, et al. N Engl J Med 1999;340:1144-53.
GOG 123	CDDP-based RT vs. RT alone	Superiority of ChemoRT	Keys HM, et al. N Engl J Med 1999;340:1154-61
RTOG 90-01	CDDP+5FU-based RT vs. RT alone	Superiority of ChemoRT	Morris M, et al. N Engl J Med 1999;340:1137-43.
GOG 191	ChemoRT±Erythropoietin	TERMINATED EARLY	
GOG 219	ChemoRT±Tirapazimine	TERMINATED EARLY	-
AIM2CERV	ChemoRT±Axalimogene Filolisbac	TERMINATED EARLY	
OUTBACK	ChemoRT±consolidation ChemoRx	NEGATIVE (OS)	Mileshkin, LR, et al. Lancet Oncol 2023;24:468-82.
CALLA	ChemoRT±anti-PD-L1 Durvalumab	NEGATIVE (PFS)	CALLA: Monk BJ, et al. Lancet Oncol 2023;24:1334-48, LBA#1, NCT03830866.
NRG-GY006	ChemoRT±Triapine	NEGATIVE (OS)	Leath CA, et al. ASCO 2023, Abstract #5502, NCT02466971.
KEYNOTE-A18	ChemoRT±anti-PD-1 Pembrolizmab	PFS significantly improved	Lorusso D, et al. ESMO 2023, LBA#38, NCT04221945.
INTERLACE	Induction ChemoRx followed by ChemoRT	OS & PFS significantly improved	McCormack M, et al. ESMO 2023, LBA#8, NCT01566240.

CDDP, cisplatin; HU, hydroxyurea; OS, overall survival; PD-1, programmed cell death protein 1; PD-L1, programmed death-ligand 1; PFS, progression free survival; RT, radiotherapy.

5 RCTs in 1990s showed significant survival benefit with chemotherapy and radiation for stage IB2-IVB diseases

Fred Hutchinson Cancer Center

Garcia E et al. J Gynecol Oncol 2023

Cervical Cancer Locally Advanced Disease

UNDATION FOR MEDICAL EDUCATION AND RESEARCH. ALL RIGHTS RE

- Concurrent radiation with chemotherapy, followed by brachytherapy • Radiation dose goal: 80–85 Gy
- Importance of brachytherapy

"Brachytherapy is a critical component of definitive therapy for all patients with primary cervical cancer who are not candidates for surgery"

- Recent studies have shown decreased utilization of brachytherapy
 - May be secondary to presumed benefit of IMRT
 - However, lack of brachytherapy incorporation associated with increased recurrence and decreased survival

Chemotherapy after RT?

Duenas-Gonzalez

- International Phase III trial in advanced disease
- Arms
 - Weekly Cis/Gem with concurrent EBRT/VBT followed by Cis/Gem q21d x 2 cycles
 - Weekly Cis with concurrent EBRT/VBT
- Results
 - Significantly improved PFS & OS in Cis/Gem arm
 - Increased toxicity in Cis/Germ arm
- Issues
 - Toxicities MD (not patient) reported, concern for under-reporting → GOG trial stopped early due to excessive G3/4 toxicities
 - Unclear if benefit due to concurrent or postradiation chemotherapy

OUTBACK

GOG 274/Outback - Locally Advanced

No improvement in DFS or OS

Chemotherapy before RT?

The GCIG INTERLACE Trial

A randomized phase III trial of induction chemotherapy followed by chemoradiation compared with chemoradiation alone in locally advanced cervical cancer

68

Immunotherapy for LACC

No new safety signals Comparable discontinuation rate No meaningful QoL differences

24-mo rate (95% CI)

PFS

OS

KEYNOTE A-18

Phase 3 Trial of Pembrolizumab + Chemoradiotherapy for High-Risk Locally Advanced Cervical Cancer

Metastatic or 1st line recurrent disease

- GOG 204
 - Comparison of 4 cisplatin-based doublets for recurrent cervical CA
 - Favored Cis/Taxol
- GOG 240 →
 - No difference between chemo arms
 - Arms containing Bev associated with significant improvement in PFS, OS, ORR
- JCOG 0505
 - Randomized phase III trial of Cis/Taxol vs Carbo/Taxol
 - Similar OS
 - However, if no prior Cis, OS shorter with Carbo/Taxol
- **KEYNOTE 826**
 - Addition of pembrolizumab to chemo (2/3 received Bev)
 - Improved mPFS (10.4 v 8.2 mo) and 2y OS rates (50 v 40%)

Monk BJ et al. *J Clin Oncol*Tewari K et al. *N Eng J Med*Kitagawa R et al *J Clin Oncol*Colombo N et al *N Eng J Med*

Fred Hutchinson Cancer Center

KEYNOTE

Subgroup Analysis in Intention-to-Treat Population

Subgroup	No. of Events/ No. of Patients	Hazard Ratio	o for Death (95% CI)
Overall	312/617		0.67 (0.54-0.84)
Age			
<65 yr	265/517		0.64 (0.50-0.82)
≥65 yr	47/100	-	- 0.88 (0.47–1.64)
Race			
White	189/360		0.68 (0.50-0.91)
Non-White	107/221		0.70 (0.47-1.04)
ECOG performance-statu	is score		
0	141/348		0.68 (0.49-0.96)
1	169/267		0.68 (0.50-0.94)
PD-L1 combined positive	e score		
<1	40/69	\leftarrow	1.00 (0.53-1.89)
1 to <10	118/231		0.67 (0.46-0.97)
≥10	154/317		0.61 (0.44–0.84)
Concomitant bevacizum	ab		
Yes	166/389		0.63 (0.47-0.87)
No	146/228		0.74 (0.53-1.04)
Metastatic disease at dia	gnosis		
Yes	104/190		0.84 (0.56-1.26)
No	208/427		0.61 (0.46-0.80)
	0.25	0.5 1.0	2.0 4.0
I	Pemb	rolizumab I Better	Placebo Better

Subgroup Analysis in Intention-to-Treat Population

Subgroup	No. of Events No. of Patient	:/ Hazard F ts	Ratio for Disease Progression or Death (95% CI)
Overall	406/617		0.65 (0.53-0.79)
Age			
<65 yr	345/517		0.63 (0.50-0.78)
≥65 yr	61/100		- 0.77 (0.42–1.42)
Race			
White	239/360		0.70 (0.53-0.91)
Non-White	139/221		0.64 (0.45-0.90)
ECOG performance-status s	core		
0	197/348		0.65 (0.48–0.87)
1	207/267		0.69 (0.52–0.93)
PD-L1 combined positive sc	ore		
<1	51/69		0.94 (0.52–1.70)
1 to <10	152/231	-	0.68 (0.49–0.94)
≥10	203/317		0.58 (0.44–0.77)
Concomitant bevacizumab			
Yes	234/389		0.61 (0.47-0.79)
No	172/228		0.74 (0.54–1.01)
Metastatic disease at diagno	osis		
Yes	137/190		0.92 (0.64–1.30)
No	269/427		0.58 (0.45-0.75)
	C	0.25 0.5 1.0	2.0 4.0
	Р	Pembrolizumab Better	Placebo Better

Colombo N et al N Eng J Med 2021

72
Recurrent Cervical Cancer Treatment Options

• Radiation

Consider if no prior RT or have oligometastatic disease outside of the irradiated field

• Surgery

Patients with central (i.e. pelvic/vaginal) recurrence are candidates for either radical hysterectomy or pelvic exenteration

Recurrent Cervical Cancer Tisotumab vedotin-tftv

- Tissue factor-directed antibody and microtubule inhibitor drug conjugate
- In single arm, open-label study, RR 24% with 7% CR
- Subsequent phase III trial compared with IC chemotherapy showed improved PFS and OS
- Significant ocular toxicity

Approved by the US FDA for recurrent or metastatic cervical cancer that has progressed on chemotherapy

A Overall Survival												
1.0-												
0.9-	Card and											
0.8-	1											
0.7	1											Madian
>]		1	~								No. of Events/	Overall
£ 0.6−		*	2								Total No.	Survival
-2.0 g	Tisotumab vedotin						tin				of Patients	(95% CI)
E 0.4–						and a start					Vedotin 123/253	mo 11.5 (9.8–14.9)
0.3-									1	lisotumab Vedotin		
0.2-			Che	emothe	rapy	1,	L.			Chemotherapy	140/249	9.5 (7.9-10.7)
0.1											Hazard ratio for de	ath. 0.70 (95% Cl. 0.54-0.
0.1-											P=0.004 by stratifie	ed log-rank test
0.0	2	6	0	12	15	19	21	24	27			
0	5	0	,	12	15	10	21	24	21			
				Mor	nths							
No. at Risk												
Tisotumab vedotin 253	234	191	109	52	29	14	4	1	0			
Chemotherapy 249	212	130	0/	57	19	11	1	0	0			
0405.040					,	10. of eve	ents/tot	al no. o	f patien	ts		
Intention-to-treat population	on					123/2	253	140	0/249			0.70 (0.54-0.8
Geographic region												
United States						13/	16	1	3/14		•	0.47 (0.19-1.1
Europe						52/2	106	5	l/104		· • +	0.76 (0.51-1.1
Asia						37/8	85	52	2/88			0.63 (0.41-0.9
Other						21/4	46	24	4/43		·•	0.87 (0.46-1.6
ECOG performance-status	score	at base	eline									
0						57/	137	6	5/136			0.74 (0.52-1.0
1 Devices hereiteren hade						66/.	116	7	5/113			0.67 (0.48–0.9
Previous bevacizumab adr	ninisti	ration				77/	164	0	1157			0.57 (0.40, 0.3
Tes						111	204	9.	2/15/			1.00 (0.42-0.7
Previous anti-PD-1 or anti		1 there	ny admi	nietrat	ion	40/0	09		5/ 52			- 1.00 (0.00-1.5
Yes		I unera	py aurin	mstrat	1011	42/	71	4	2/67			0.72 (0.46-1.1
No						81/	182	9	3/182			0.67 (0.50-0.9
									,			(
Histologic features						81/	160	93	2/157			0.69 (0.50-0.9
Histologic features Squamous-cell carcinon	na			oma		42/9	93	43	3/92			0.70 (0.45-1.1
Histologic features Squamous-cell carcinom Adenocarcinoma and ad	na Jenoso	quamou	is carcin	onna								
Histologic features Squamous-cell carcinom Adenocarcinoma and ad No. of previous systemic r or metastatic disease	denoso regime	quamou ins for r	ecurren	t								
Histologic features Squamous-cell carcinon Adenocarcinoma and ad No. of previous systemic r or metastatic disease 1	na denoso regime	quamou ens for r	ecurren	t		74/3	159	73	/149		· • •	0.83 (0.59-1.1
Histologic features Squamous-cell carcinon Adenocarcinoma and ad No. of previous systemic r or metastatic disease 1 2	na denoso regime	quamou ens for r	ecurren	t		74/2	159 93	73	/149 7/100	F	·	0.83 (0.59–1.1 0.56 (0.38–0.8
Histologic features Squamous-cell carcinom Adenocarcinoma and ad No. of previous systemic r or metastatic disease 1 2	na denoso regime	quamou ens for r	is carcir ecurren	t		74/3	159 93	73	/149 7/100	0.15	100	0.83 (0.59–1.1 0.56 (0.38–0.8

Coleman R et al. *Lancet Oncol* 2021 Vergote I et al. *N Engl J Med* 2024.

Tisotumab-vedotin ocular toxicities

By Numbers

- Any ocular toxicity (60%)
 - Conjunctivitis (26%)
 - Dry eye (23%)
 - Keratitis (11%)
- Grade ≥3 (3.8%)
 - Ulcerative keratitis (2%)
- 1.2 mos (0-6.5 mo) median onset
- 55% complete resolution, 30% partial improvement
- 0.7 mo(0.3-1.6 mo) median time to resolve

By Pictures

Muscles-

Conjunctiv

Comea

Vitreous

Lens

Iris Pupil Sclera

Retina

Macula

Cleveland Cleveland Cleveland Cleveland

Optic

nerve

Eye anatomy

75

Fred Hutchinson Cancer Center

Karpel HC et al. Am Soc Clin Oncol Educ Book 2003.

Recurrence & no prior IO

- No prior immunotherapy?
 - Single-agent pembrolizumab
 - o Cemiplimab
 - The EMPOWER trial (NCT 03257267) examined whether single-agent cemiplimab, a PD-1-blocking antibody, demonstrated improvement in OS in patients who had disease progression after first-line platinum-containing chemotherapy [32]. Cemiplimab was initially approved to treat skin and lung cancer but has shown potential for clinical efficacy in this patient population. Patients were randomized to receive cemiplimab as 350 mg every 3 weeks or the investigator's choice of single-agent chemotherapy [32]. The median OS was longer in the cohort that received cemiplimab versus chemotherapy (12 vs. 8.5 months) (HR=0.69; 95% CI=0.56–0.84). The survival benefit was seen regardless of histological subtype. This study is the largest randomized study to date in which a meaningful survival benefit was seen in rmCC following progression after failing first-line platinum-containing chemotherapy.No prior
- Her-2neu targeted therapy
 - - Approximately 2-6% of cervical cancers have Her-2neu overexpression

DESTINY PanTumor02: Trastuzumab Deruxtecan

T-DXd is included in the NCCN Guidelines[®] for HER2-positive tumors IHC 3+ or 2+ April 5, 2024: FDA accelerated approval for patients with HER-2 positive (IHC 3+) tumors

Fred Hutchinson Cancer Center

Conclusions

- Gynecologic cancers account for more than 100,000
 cancers/year in US females
- Treatment often involves multiple interventions, including surgery, chemotherapy and/or radiation
- Involvement of a gynecologic oncologist in patient care has been shown to improve outcomes

• We provide surgical skills, administer chemotherapy and work closely with our colleagues in Radiation Oncology

Division of Gynecologic Oncology University of Washington/FHCC

Barbara Goff, MD Chair, UW Department of Ob/Gyn

Heidi Gray, MD Nicole Fleming MD Director, Division of Gynecologic Associate CMO, FHCC Oncology

Kemi Doll, MD, MSCR

Elise Simons, MD

Barbara Norquist, MD

Soledad Jorge, MD MPH

Jennifer Burzawa, MD

Kalyan Banda, MD

Endometrial Adenocarcinoma

Clinicopathologic & Molecular Subtypes

High grade; MSI: Microsatellite instability.

	A	B		D
	2.11 5728	Sel 1 - 1	Contract of	
Histological type	Endometrioid	Endometrioid	Serous	Clear cell
Histological grade	Low	High	High	High
Metastasis	Uncommon	Lymph nodes Distant organs	Lymph nodes Peritoneal Distant organs	Lymph nodes Peritoneal -/+
Prognosis	Favourable	Poor	Poor*	Poor*†
Molecular markers ¹⁸⁻²¹				
ER/PR expression	+	+/-	-/+	-
PTEN expression	-/+	-/+	+	+
DNA MMR loss	-/+	-/+	-	-/+
Aberrant P53	-	-/+	+	-/+
Ki-67/MIB-1	Low	High	High	Low or high