Sarcomas: An Overview

Lee D. Cranmer MD, PhD, FACP

Director, Sarcoma Oncology Program, Seattle Cancer Care Alliance

Professor of Medicine, University of Washington

Professor, Fred Hutchinson Cancer Center

24 September 2024

Disclosures

Research Funding to Institution

- Tracon
- AADi
- Eli Lilly
- Advenchen
- Iterion
- Blueprint
- Exelixis
- CBA Research
- Philogen
- Gradalis
- Monopar
- Avacta

Advisory Board Participation

- AADi
- Avacta

Outline

- General Sarcoma Background
- Doxorubicin
- Other Systemic Therapy Agents
- Targeted Therapies
- ImmunoTherapeutics
- Gastrointestinal Stromal Tumors

Sarcoma

- Plural: *sarcomas* or *sarcomata*
- 1650s, "fleshy excrescence," from Greek *sarkoma* "fleshy substance"
- A "harmful tumor of the connective tissue," more or less malignant (Abernethy, 1804).
- Same root as *sarcasm*, "a biting taunt or gibe, a satirical remark or expression."

Sarcoma Background

• <u>By The Numbers</u>	Site	New
 1% of solid tumors Young population->Increased impact1 	Soft Tissue	Cases 13,590
 Long recognized as an area of unmet need. 	Bone	3,970
• Great Heterogeneity	Total US 2024	17,560
• At least 173 different types.	GIST	4-6K

- "Sarcoma" is to mesenchymal tumors as "Carcinoma" is to epithelioid tumors.
- Bone versus Soft Tissue.
- Fusion protein: Yes (30%) vs. No (70%)
- Anatomic: Trunk/extremities vs. Retroperitoneal

Risk Factors

- Genetics (Li-Fraumeni Syndrome)
- Environmental Factors (Herbicides, prior radiation)
- Unknown in most cases

Siegal 2024. CA: Cancer J Clin 74: 12-49

https://www.cancer.org/cancer/types/gastrointestinal-stromal-tumor/about/key-statistics.html Sarcoma Progress Review Group. A Roadmap for Sarcoma Research. Sarcoma Progress Review Group Roundtable Meeting: National Cancer Institute, U.S. Department of Health and Human Services, 2004. Avhttps://sarcomahelp.org/assets/2004roadmap.pdf.

Deaths

5,200

2,050

7,250

Staging

- "Stage" = "Stage at initial diagnosis"
- **GRADE**/Primary Tumor/Node (uncommon)/Metastasis
- American Joint Commission on Cancer 8th ed. (2017)
 - Soft Tissue Sarcoma Sub-Staging Systems
 - Head/Neck (No I-IV)
 - Extremities/Trunk
 - Thoracic/Abdominal Viscera (No I-IV)
 - Retroperitoneal
 - Gastrointestinal Stromal Tumors (GIST)
 - Bone
- 5-Year Survival
 - I 80-100% (Typically low-grade)
 - II 60-80% (Not low-grade)
 - III 30-50% (Not low-grade)
 - IV <20% (anatomic definition)

<u>Sarcoma Drug</u>

- Doxorubicin*
- > Dacarbazine
- Ifosfamide
- Liposomal Doxorubicin* (Kaposi's)
- Gemcitabine
- Pazopanib*
- > Eribulin* (Liposarcomas)2010
- Trabectedin* (L-sarcomas)2015
- Denosumab* (Giant Cell Tumor of Bone) 2018
- Pexidartinib* (Tenosynovial Giant Cell Tumor)
- > Tazemetostat* (Epithelioid sarcoma)
- Nab-sirolimus* (PEComa)
- Nirogacestat* (Desmoid Tumors)
- > Afamitresgene autoleucel* (Synovial)
- * Sarcoma as FDA-labeled indication.

Year of FDA Approval

1974

1975

1988

1995

1996

2009

2019

2020

2022

2023

2024

Other Agents In Use

Temozolomide (Leiomyosarcoma) Etoposide Taxanes (Angiosarcoma) Cisplatin/Methotrexate (Osteosarcoma) Actinomycin-D/Vincristine (Ewing's, Rhabdo) Sorafenib/Pazopanib (Desmoid tumors)

Primary Treatment

- Surgery + Neoadjuvant/Adjuvant Radiotherapy
 - About 90% effective in achieving local cure.
 - Only about 50% effective overall
- Systemic Therapy
 - Essential-Sarcomas of Childhood-Major Contribution to Curability!!!
 - Osteosarcoma
 - Ewing's sarcoma
 - <u>Alveolar/Embryonal Rhabdomyosarcoma</u>
 - Other Soft Tissue Sarcoma-Controversial
 - Probably some modest benefit (<10%?) in treating micrometastatic disease
 - Utility in improving resectability in difficult cases

Adjuvant Chemotherapy

Overall RFS					U		0.0	1.0		1.5	2.0
GOG	52/113	62/112	-6 75	28.42			L				
MDAH	12/18	15/17	-4.65	5.88							
Mayo	12/22	11/23	0.21	5 71		· · · ·					
NCI4	9/17	5/8	-1.42	2.64		r					
NCI5	22/38	24/41	-0.33	11.47							
NCI6	9/21	11/20	-2.00	4.90		L					
EORTC	92/193	105/188	-13.31	48.84						•	
DFCI/MGH	7/21	8/25	-0.20	3.74		⊢+		┍╴╸			
ECOG	9/24	11/23	-1.70	4.96							
Bergonie	11/28	19/26	-7.60	6.96		· · · · ·				•	
SSĞ	65/121	69/119	-5.35	32.72		1			—		
Rizzoli	7/16	13/22	-2.10	4.85					• •		
IGSC	14/40	25/46	-5.09	9.73		, i				•	
SAKK	4/12	4/12	0.08	2.00		⊢ ∔	-	┝──┤━┘			
Total	325/684	382/682	-50.21	172.83							
AII					ò		0.5	1.0		1.5	2.0

• Improvement in RFS

Adjuvant Chemotherapy

Overall surviva	d				U	0.0	1.0	1.0	2.0
GOG MDAH Mayo NCI4 NCI5 NCI6 EORTC DFCI/MGH ECOG	51/113 15/26 14/28 9/17 22/38 8/21 94/234 6/21 9/24	55/112 20/28 12/29 5/8 23/41 9/20 96/233 7/25 10/23	-1.37 -3.13 1.46 -1.57 1.32 -1.01 -0.60 0.15 -1.29	26.43 8.65 6.45 2.54 11.15 4.21 47.47 3.22 4.69					
Bergonie SSG Rizzoli IGSC SAKK	10/33 57/121 12/34 16/43 5/14	18/32 57/119 25/43 23/49 3/15	-5.94 -1.30 -5.83 -2.72 1.55	6.82 28.48 9.19 9.72 1.94				+ + 	4
Total	328/767	363/777	-20.29	170.95			\blacklozenge		· · · · ·
					ò	0.5 Chemotherapy	1.0 better	1.5 Control better	2.0

"Trend" but not significant improvement in OS

Adjuvant Chemotherapy: EORTC study

- Randomized
- Doxo 75+lfos 5 vs. no chemo
- All pts had surgery and RT as per SOC
- "Trend" towards but non-significant OS benefit (the primary endpoint)

Woll et al, Lancet Onc 2012

• Stratification by pts with 10-year predicted OS: 60%

- Chemotherapy improves OS of highest risk patients
 - (but post hoc analysis....)

Pasquali et al, EJC, 2019 www.sarculator.com

Adjuvant Chemotherapy Summary

- Adjuvant chemo improved relapse free survival
- No significant benefit in OS
 - Histotype-Tailored?
- Controversial because many argue sub-par chemotherapy dosing and patient selection
- *Board answer: No adjuvant chemotherapy

SMAC, Lancet 1997 Gronchi et al., 2017. Lancet Oncol 18:812-822. Slide adapted from R. Ratan

Advanced Disease

- Systematic Review 2021
- 1044 patients from 8 retrospective studies
- 5-yr OS 20-58%
- Factors associated with better OS
 - R0 resection
 - Smaller and lesser number of mets
 - Longer (>12m) disease-free interval

Doxorubicin/Adriamycin

- Approved in 1974
- Biosynthetic derivative of daunorubicin
- Triumph of search for anti-neoplastic natural products
 - Streptomyces derivative
 - Active at nM concentrations
- Broad anti-neoplastic spectrum
 - Activity not well defined prior to approval
- Dose-dependent cardiomyopathy
 - Limits total lifetime dosing
 - Dexrazoxane from C1 proposed to mitigate?¹

Von Hoff 1979 Ann Intern Med 91:710

1) Van Tine et al., 2021. Clin Cancer Res 2021;27:3854–60.

Doxorubicin in Soft Tissue Sarcoma

- Meta-analysis¹
 - 7 EORTC studies
 - Anthracycline regimens
 - 2233 patients
 - Median OS=51 wk
 - ORR=26%
- Control arm randomized trial²
 - Median OS=12.8m/51 wk
 - ORR=14%

Fig 1. Overall survival. O, observed failures; N, total number of cases.

Combination Therapy: Doxorubicin + Ifosfamide*

Fig 1. Response rate related to treatment. (■) Not assessable, including early death due to toxicity or other causes; (□) progressive disease, including early death due to malignant disease; (□) no change; (■) partial response; (■) complete response.

*Board Hint: Ifosfamide toxicities and countermeasures

Hemorrhagic cystitis: Mesna Neurotoxicity: Methylene Blue 2014²

DRUG	MECHANISM	PHASE II SOFT TISSUE SARCOMA			PHASE I	II SOFT TIS	SUE SARCC	OMA	
		Primary Endpoint	Dox	Dox+D	Positive Trial?	Primary endpoint	Dox	Dox+D	Positive Trial?
Olaratumab	PDGFR-α mAb	PFS	4.1m (OS 14.7m)	6.6m (OS 26.5m)	No P=0.06	OS	19.7m	20.4m	No P=0.69
Palifosfamide	"New and Improved Ifosfamide"	PFS	4.4m	7.8m	Yes P=0.02	PFS	5.2m (OS 16.9m)	6.0m (OS 15.9m)	No P=0.16
Evofosfamide	Hypoxia- activated prodrug	PFS	N/A	6.5 m (OS 21.5m)	Yes (vs. historic)	OS	19.0m	18.4m	No P=0.53 (PFS yes)
Trabectedin	Novel alkylating agent	6-m PFS	N/A	58%	Yes (vs. historic)	PFS (OS) (LMS)	6.2m 24 m	12.2m 33 m	Yes PFS, OS, ORR

 Tap 2020 JAMA 323:1266

 Chawla 2014. JCO 32:3299

 Tap 2017. Lancet Oncol 18:1089

 Blay 2008. Clin Cancer Res 14:6656.

 Sessa 2009. Eur J Cancer 45:1153.

 Verschraegen 2010. JCO 28 (15S): Abstract#10004.

 Pautier 2022. Lancet Oncol 23:1044

 Pautier 2024. NEJM 391:9

Doxorubicin/Trabectedin with Trabectedin Maintenance in Lyomyosarcoma

Doxorubicin alone

Overall Survival

No. at Risk (censored data) Doxorubicin+trabectedin Doxorubicin alone

 74 (0)
 70 (1)
 64 (1)
 57 (1)
 50 (1)
 38 (1)
 33 (1)
 28 (2)
 23 (6)
 13 (15)
 10 (17)
 4 (23)
 0 (27)

 76 (0)
 73 (1)
 64 (1)
 51 (1)
 37 (1)
 30 (1)
 22 (1)
 20 (1)
 16 (2)
 10 (7)
 5 (11)
 0 (16)

	Dox/Trabectedin	Dox	р
Objective Response Rate	36% (27/71; 3 CR, 24 PR)	13% (19/76; 10 PR)	0.009
G3-4 AE	97%	56%	<0.001

Doxorubicin-Based Soft Tissue Sarcoma Therapy

- 1995
 - "In advanced soft tissue sarcomas of adults, single-agent doxorubicin is still the standard chemotherapy against which more intensive or new drug treatments should be compared."¹
- 2014
 - "If the goal of [STS] treatment is disease control, doxorubicin alone remains an appropriate treatment, but combination treatment can be justified if tumor shrinkage is desired, either to relieve symptoms or before another intervention."²
- 2024
 - "The trial results **support the use of doxorubicin plus trabectedin** for the first-line treatment of advanced or metastatic leiomyosarcomas, offering hope for improved outcomes in this challenging disease area."^{3,4}

- 1) Santoro 1995. JCO 13:1537
- 2) Judson 2014. Lancet 15:422
- B) Pautier 2022. Lancet Oncol 23:1044
- 4) Pautier 2024. NEJM 391:9

Sarcoma Systemic Therapy: Second-Line and Beyond 2) Garcia-del-Muro, 2011. JCO 29: 2528

Gemcitabine-Based Therapy

- +Docetaxel¹
 - vs. Gemcitabine
 - Adaptive Randomization
 - Median OS
 - 11.5 vs. 17.9m
 - Probability Comb>Gem=97%

- +Dacarbazine²
 - vs. Dacarbazine
 - Median OS
 - 7.8 vs. 18.3 m
 - Median PFS
 - 2.1 vs. 4.9 m

Doxorubicin versus Gemcitabine/Docetaxel(GT)

- Treatment-naïve STS
 - Dox 75mg/m2
 - Gem/Tax 675/75mg/m2
- Primary: PFR at 24 wk.
 - 27% uterine Leio
 - 4% Synovial
 - 12% Pleomorphic
 - 56% Other
- 257 pts randomized

"Dox was less toxic and easier to deliver than [GemTax], and should remain standard first-line treatment for locally advanced/metastatic STS."

- PFR@24w: 46%
- HR=1.28 favored Doxorubicin (p=NS)
- Median PFS
 - 23 w D vs.24 w GT
- RR
 - 66% D vs. 59% GT
- Median OS
 - 71w D vs. 63 w. GT

Seddon, 2015. JCO 33(suppl): Abs.#10500

Trabectedin

- Compound isolated from sea squirt
- Binds DNA minor groove, novel alkylator
- Initial studies showed it has activity in "L-sarcomas"- LPS and LMS

Trabectedin

- L-sarcomas¹
- After anthracycline
- Primary: PFS
- <u>No OS benefit as</u> <u>monotherapy</u>
- Approved in Europe/US
 - Lipo- and Leiomyosarcomas
 - Unable to show benefit over DOX^{2,3}
 - Esp. myxoid liposarcoma⁴
 - Dox/Trabectedin combination in Leio.^{5,6}

Table 4: Efficacy Results for Trial 1

Efficacy endpoint	YONDELIS N=345	Dacarbazine N=173]
Progression-free survival		^]
PFS Events, n (%)	217 (63%)	112 (65%)]
Disease progression	204	109]
Death	13	3	
Median (95% CI) (months)	4.2 (3.0, 4.8)	1.5 (1.5, 2.6)	
HR (95% CI)*	0.55 (0.4	44, 0.70)]
p-value ^b <0.001			
Overall survival ^c]
Events, n (%)	258 (67%)	123 (64%)]
Median (95% CI) (months)	13.7 (12.2, 16.0)	13.1 (9.1, 16.2)	
HR (95% CI)*	0.93 (0.3	75, 1.15)	
p-value ^b 0.49			
Objective Response Rate (ORR: CR+	PR)]
Number of patients (%)	23 (7%)	10 (6%)]
95% Cld	(4.3, 9.8)	(2.8, 10.4)]
Duration of Response (CR+ PR)	·]
Median (95% CI) (months)	6.9 (4.5, 7.6)	4.2 (2.9, NE)]

- 1) Yondelis Package Insert, Oct., 2015
- 2) Blay, 2014. Eur J Cancer 50:1137
- 3) Bui-Nguyen, 2015. Eur J Cancer 51: 1312
- 4) Dossi, 2015. Int J Cancer 136: 721
- 5) Pautier 2022. Lancet Oncol 23:1044
- 6) Pautier 2023. NEJM 391:9

Eribulin

- Novel tubulin inhibitor: G2/M cell cycle block
- Phase III L-sarcomas
- Eribulin (n=228) vs. dacarbazine (n=224)
- Primary endpoint: OS

Eribulin

Group	n	HR for OS	mOS vs Dacarbazine
All	452	0.77 (0.62-0.95)	13.5 vs 11.5
Liposarcoma	143	0.51* (0.35-0.75)	15.6 vs 8.4
Leiomyosarcoma	309	0.93 (0.71-1.20)	12.7 vs 13.0

- "...however, this study was not powered to draw definitive conclusions from such subgroup analyses."
- Approved in US for
 - "Unresectable or metastatic liposarcoma who have received a prior anthracycline-containing regimen." -US Eribulin Package Insert 10/2016

Targeted Therapy in Sarcomas

- Opportunities abound for targeted therapies in sarcomas
 - Fusion protein-driven sarcomas (~30%)
 - Less viable in sarcomas with complex pathogenetic mechanisms (~70%)
- Recurrent pathogenetic mechanisms!
 - Existing therapies may be applicable to specific diseases
 - Imatinib: Chronic myelogenous leukemia/Gastrointestinal stromal tumors
 - Denosumab: Osteoporosis/Giant cell tumor of bone
 - Anti-Angiogenic TKI's
 - Cediranib/Others: Alveolar Soft Part Sarcoma
 - Sorafenib/Pazopanib: Desmoid tumors, chordomas
 - More specific biological understanding: more effective/less broadly applicable
 - Pexidartinib: CSF1R inhibitor in Tenosynovial Giant Cell Tumor
 - Less specific understanding: less effective/more broadly applicable

<u>Pazopanib</u>

- Anti-angiogenic tyrosine kinase inhibitor
- 1-4 prior therapies
- vs. Placebo
- Primary: 6-m PFS
- ORR:
 - 0% placebo
 - 6% pazopanib
- Approved for STS
 - (BOARD Hint: except liposarcomas)

Van der Graff, 2012. Lancet 379: 1879

Immunotherapy of Sarcomas

- Major advances in immune treatment of cancer
- Several major mechanisms of immune evasion have been identified
- Sarcomas do not necessarily have factors associated with immune response
- Diversity of sarcomas is probably an issue
- May be especially important in sarcomas with less well understood biology
 - Undifferentiated pleomorphic sarcoma
 - Alveolar Soft Part Sarcoma
 - Myxofibrosarcoma
 - Angiosarcoma

Pembrolizumab in Soft Tissue Sarcomas

Tawbi 2017. Lancet Oncol. 18: 1493

Ipilimumab/Nivolumab in Angiosarcoma

- ~400 cases per year in US
- 5-year survival 30-40%, even if localized
- Different clinical presentations/scenarios
 - Face/Scalp: high mutational burden
 - Visceral
 - Radiation-associated (often antecedent breast cancer treatment)
- Case reports suggesting activity of checkpoint inhibitors.
- DART Study
 - Serial single-arm phase II screening studies.
 - Primary Endpoint: Objective Response Rate
 - 2-stage Design
 - Stage 1: At least one response out of 6 patients.
 - Stage II: 2 or more responses our of 16 total patients->merits further investigation.

Wagner 2021. JITC 9:e002990

Afamitresgene autoleucel in Synovial Sarcoma

- Autologous CAR-T against MAGE-A4 antigen
 - Expressed frequently in synovial sarcoma (also myxoid round cell liposarcoma)
- HLA-A-02-restricted
- SS with progression after doxorubicin or ifosfamide
- Primary endpoint ORR
- Cytokine Release Syndrome
 - 75% Any Grade
 - 2% >Grade 2
- Immune Effector Cell-associated Neurotoxicity: Grade 1 2% (n=1)

Table 4. Efficacy Results* for SPEARHEAD-1 (Cohort 1)

Endpoint	TECELRA Treated Population
	N=44
Overall Response Rate	43.2%
(95% CI) ¹	(28.4, 59.0)
Complete response rate, n (%)	2 (4.5%)
Partial response rate, n (%)	17 (38.6%)
Median Duration of Response [#] in months	6.0
(95% CI) ²	(4.6, NR)
Min, Max	1.9, 36.1+
Patients with DoR \geq 6 months, % ²	45.6%
Patients with DoR \ge 12 months, % ²	39.0%

Gastrointestinal Stromal Tumors

Gastrointestinal Stromal Tumors (GIST)

- Tumors arising from Interstitial Cells of Cajal
- From esophagus to anus
- c-KIT/CD117 mutations are characteristic
 - Leads to constitutive activation of tyrosine kinase
- Another marker is DOG1 (a calcium channel seen on GIST cells)-more specific than c-KIT

	KIT (CD117)	CD34	SMA	Desmin	S-100
GIST Smooth muscle tumor	+ -	+ (60% to 70%) + (10% to 15%)	+ (30% to 40%) +	Very rare +	5%+ Rare
Schwannoma Fibromatosis	 Disputed*	+ (usually Antoni B) Rare	+	Rare cells	+ -

TABLE 1. Immunohistochemical Schema for the Differential Diagnosis of Spindle Cell Tumors of the GI Tract

Abbreviation: SMA, smooth muscle actin.

Fletcher et al, Human Path 2002

Medical Management: Targeting GIST Biology

- Mutations in GIST- these are different from IHC and can only be detected by PCR or other sequencing based methods
 - KIT (~80%)- NOTE: KIT expression by IHC is not the same as having a KIT mutation
 - Exon 11- most common, 400 mg imatinib
 - Exon 9- often in small bowel, 800 mg imatinib
 - PDGFR (~10%)- most mutations responsive to imatinib
 - Exon 18 mutations, ****D842V**- use avapritinib**
 - "WT"- 85% of GISTs in children and 10% in adults
 - SDH
 - BRAF
 - NF1
 - NTRK fusion
 - Other...

GIST Treatment

- Surgery
- Medicines
 - Tyrosine kinase inhibitors (TKIs)
 - Can be given before surgery if needed → may take a long time (many months) before enough tumor shrinkage to get to surgery
- Rarely radiation
- Radiofrequency ablation (RFA), embolization, or chemoembolization

Historic Surgical Outcomes

 50% of patients can recur postoperatively, usually in the liver or peritoneum, and will die within 5 years without additional treatment

DeMatteo, Ann Surg, 2000.

Predicting Postop Recurrence

• Who needs medicine after surgery?

Points	0 10 20 30 40 50 60 70 80 90 100
Size (cm)	0 5 10 15 25 35 45
Mitotic index	≤5/50 HPF
Site	Colon/rectum L Stomach/other Small intestine
Total points	0 20 40 60 80 100 120 140 160 180 200
Probability of 2	-year RFS
Probability of 5	-year RFS

Medical Management: Adjuvant Therapy

Improved RFS HR 0.60, p<0.001

Improved OS HR 0.60, p<0.036

• Adjuvant imatinib 3y vs. 1y improved RFS 20%, OS < 10%

Medical Management: Adjuvant Therapy

- <u>At least 3 years of treatment after surgery for a high risk</u> GIST is considered standard
- In the adjuvant setting the optimal treatment duration with imatinib is not known
- Although not formally studied in a published manuscript, many believe that longer treatment is even better and will continue patients for as long as they are tolerating the drug and there is no tumor recurrence
 - Can be lifelong, but often length of treatment beyond 3 years is a discussion with the patient of risks vs potential benefit

Medical Management: GIST Metastatic Disease

Imatinib (or Avapritinib/D842V) →
 Sunitinib → Regorafenib → Ripretinib →
 Clinical Trial

Medical Management: Metastatic Disease

• 1st line: imatinib (EORTC, SWOG S0033, MetaGIST)

2°: Overall Survival

Verweij et al. Lancet 2004, 364. 1127-34.

Medical Management: 2nd Line Metastatic Disease

• 2nd line: sunitinib (Demetri 2006)

Improved Progression Free Survival

Improved Overall Survival

• Median PFS on sunitinib was 27 weeks (about 7 months)

Medical Management: 3rd Line Metastatic Disease

• 3rd line: Regorafenib (Demetri 2013)

Medical Management: GIST Metastatic Disease

4th Line and beyond (Ripretinib recently approved)

Medical Management: GIST Metastatic Disease

Avapritinib in PDGFRA exon 18 mutant GIST • (D842V) 47

GIST Summary

- Most cases have KIT or PDGRA mutations
- Localized disease
 - Surgery +/- adjuvant imatinib based on risk stratification
- Metastatic disease
 - KIT/PDGFR mutation testing
 - 1st choice usually Imatinib 400 mg daily
 - Sunitinib, Regorafenib, Ripretinib
 - Avapritinib for PDGFRa D842V mutation
 - No role for standard chemotherapy

Special Other Histologies (simply recognizing the disease entity is a possible boards question)

- **Angiosarcoma- responsive to taxanes
- Dermatofibrosarcoma Protuberans (DFSP)- imatinib
- Pigmented Villonodular Tenosynovitis/Tenosynovial Giant Cell Tumor-<u>Pexidartinib</u> (CSF1R inhibition)
- **Desmoid- <u>nirogacestat (gamma-secretase inhibitor)</u>, sorafenib, imatinib. (associated with Familial Adenomatous Polyposis)
- Giant Cell Tumor of Bone- denosumab
- Inflammatory myofibroblastic tumor (IMT)- if ALK positive, can respond to ALK inhibitors
- Epithelioid Sarcoma-EZH2 methyltransferase inhibitor Tazemetostat
- **PEComa- mTOR inhibitors (**<u>nab-sirolimus</u>)
- Pediatric sarcomas in adults- aggressive multi-D care

Conclusions and the Future

• Primary Therapy

- Surgery is still the primary therapy of sarcomas.
- Radiotherapy improves local control.
- Systemic therapy
 - Important in sarcomas of childhood.
 - Still developing role in other types of sarcomas.

• Advanced Disease Therapy

- Doxorubicin-based therapy is still a backbone of treatment
 - Dox combination with trabected in in Leio=OS benefit!
 - "One-size-fits-all" may not be the way to progress
 - Need to identify key aspects of mesenchymal biology
- More recent progress based on biological understanding

Key to progress: Understanding BIOLOGY

- Biology of the disease (Targeted therapy)
- Biology of the host (immunotherapy)
- GIST Therapy