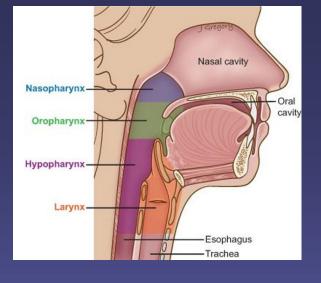
Head and Neck Cancer

15th Annual Comprehensive Hematology and Oncology Review Course

Cristina P. Rodriguez, MD
Professor
University of Washington

Disclosures

	Cristina Rodriguez(Presenter)	Spouse
Institutional Research Funding	AstraZeneca Ayala Bristol Myers Squibb Cue Biopharma Kura Merck Prelude Therapeutics Sanofi Aventis Seagen	Acerta Pharma BV Astrazeneca Bayer Beigene De Novo Biopharma Incyte Corporation Merck Sharp and Dohme Corp. Pharmacyclics Portola Pharmaceuticals
AdvisoryBoard/ Consultancy	Cue Biopharma Coherus Eisai Vaccitech Pionyr (DSMC)	Astrazeneca Millenium/Takeda Beigene Karyopharm KITE pharma Incyte ADC Therapeutics


I. Mucosal Squamous Cell Carcinomas

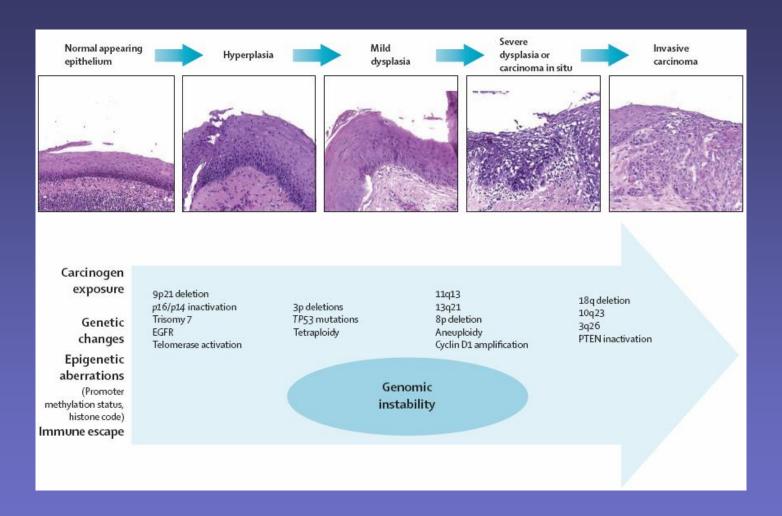
- anatomy epidemiology and pathogenesis
- staging
- treatment by subset
 - locally advanced disease
 - unresectable/organ preservation
 - postoperative therapy
 - metastatic disease

II. Thyroid Cancer

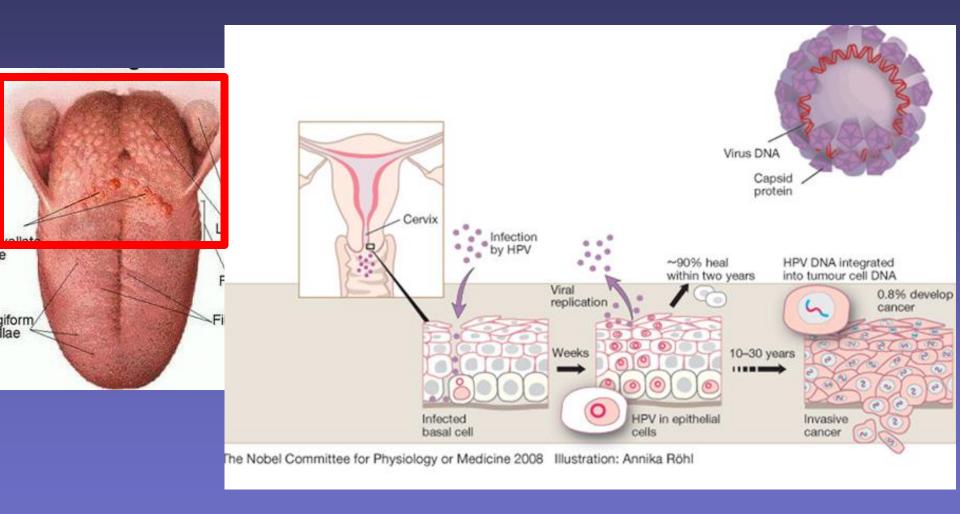
III. Salivary Gland Cancer

Part I Mucosal squamous cell carcinomas of the head and neck

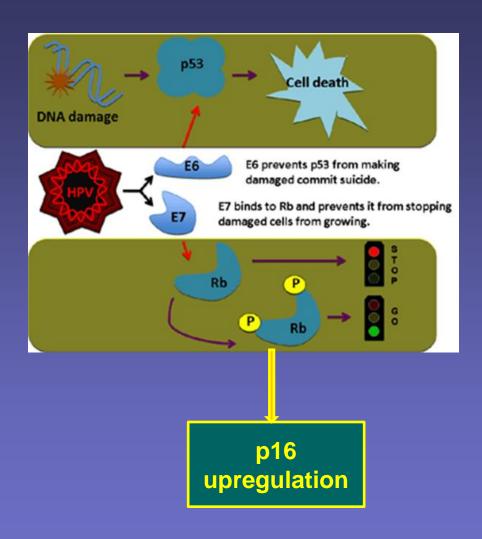
Pathogenesis

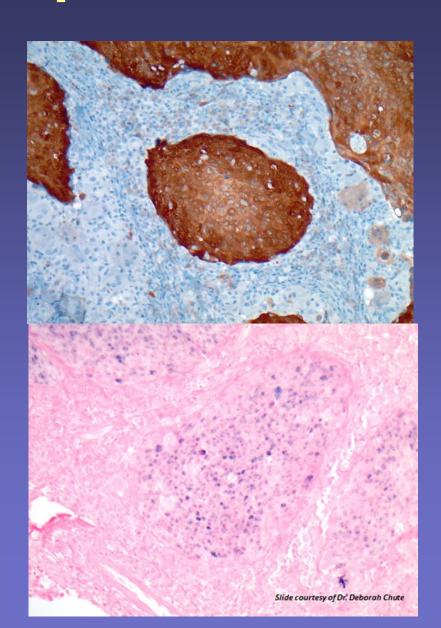

1. Tobacco and alcohol

- oral cavity, larynx, hypopharynx
- declining in incidence
- economic and racial disparity


2. Viral exposure

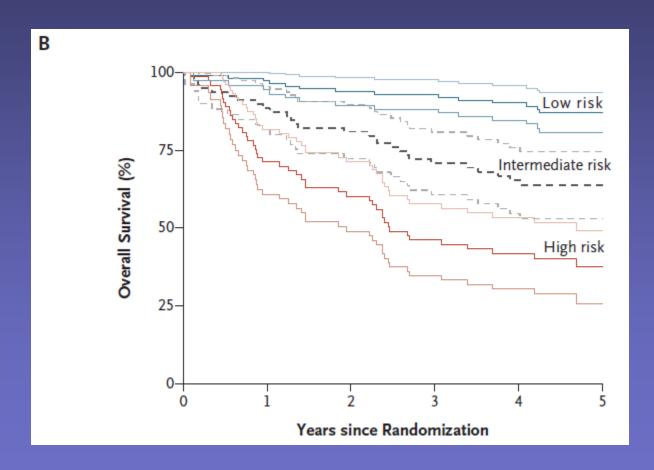
- HPV in oropharynx, increasing incidence
- EBV in nasopharyx


Tobacco and Alcohol


The oropharynx and HPV16

HPV and p16

http://genetics.thetech.org/ask/ask359



HPV+ OPC vs HPV- HNSCC

- Demographically distinct
 - Lower median age, caucasian males
 - Sexual risk factors
 - Minimal comorbidity
- Tumor characteristics
 - p53/Rb WT
 - Cystic LAD, BOT/Tonsil primaries
- Clinical behavior
 - Improved prognosis
 - Second primaries uncommon

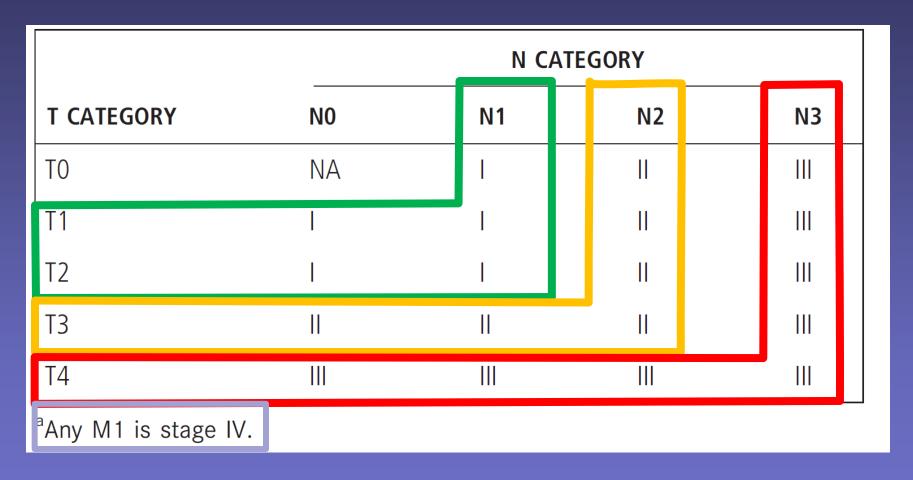
HPV+ OPC is heterogenous

RTOG 0129

Key points on HPV+OPC

- IHC for p16 is highly correlated with HPVpositivity in the oropharynx
- Completion of HPV+ clinical trials have established standards of care
- Treatment de-escalation remains a research question in active investigation

Staging

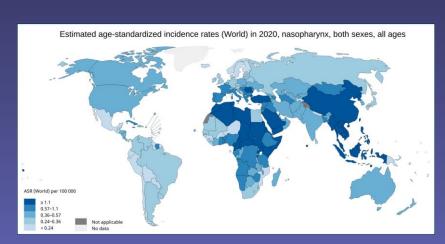

- General Principles:
 - T1-2 lesions small
 - T4 lesions invade into surrounding structures
 - N3 >6cm nodes
- Unknown primaries (Tx)
 - Occur in 10-13% of cases
 - Curable
- HPV related OPC is now staged separately

STAGING: AJCC v. 8 NonHPV related

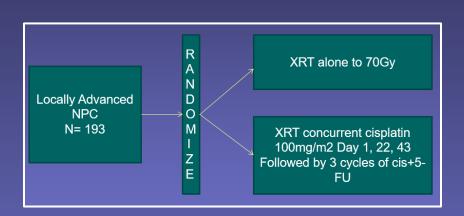
Stage I	T1	N0	M0	15% new diagnoses Surgery or XRT with curative intent 70% or greater 5 year Overall Surviva	
Stage II	T2	N0	M0		
Stage III	13 T1-3	NU N1	MO	75% of new diagnoses Curable with multimodality therapy Usually chemotherapy + XRT	
Stage IVA	T4a T1-4a	N0-1 N2	M0 M0		
Stage IVB	T4b Any T	Any N N3	M0 M0	30-50% 5 year over all survival	
Stage IVC	Any T	Any N	M1	10% new diagnoses Incurable, median survival <1 yr	

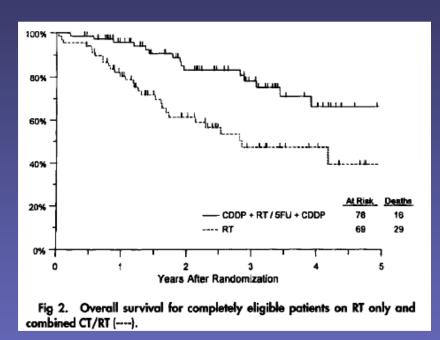
AJCC Cancer Staging Manual, Eighth Edition 2016

STAGING: AJCC v. 8 HPV related OP Cancer



Locally Advanced Disease


- Curative intent approach is possible
 - Surgery (preferred for oral cavity)
 - Radiation
 - Chemotherapy : NOT curative
- Multidisciplinary assessment is critical
- Functional outcome/ long term QOL

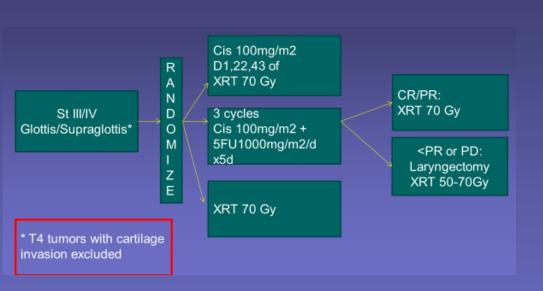

Organ Preservation: Nasopharyngeal Carcinoma (NPC)

- Epidemiologically distinct
- EBV associated
- Unresectable at diagnosis
- Classic presentation:
 - Middle ear effusions in adults
 - Level V (post triangle) LAD

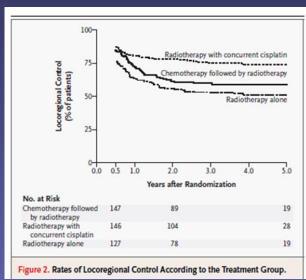
NPC: Intergroup 0099

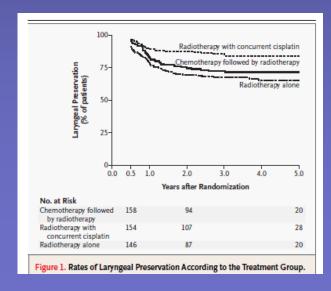
- PFS and OS advantage to experimental arm
- Endemic area Phase III studies comparing CRT to CRT + adj cisFU negative

Locally Advanced NPC: systemic therapy strategies


Therapeutic Strategy	Stage	Evidence
Weekly cisplatin + XRT ¹	II-IVB	OR/Toxicity similar
Neoadjuvant gem+cis followed by cisXRT ²	Stage III-IVB Heavy nodal burden	RFS and distant FFS benefit
Adjuvant capecitabine post cisXRT ³	III-IVA	FFS and OS Benefit

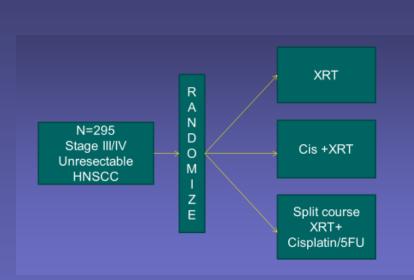
¹Lee et al. Ann Oncol 2015 Oct 1 ²Zhang et al. N Engl J Med. 2019 May 31 ³Chen et al. Lancet 2021 Jun 4


Organ Preservation: Laryngeal Carcinoma

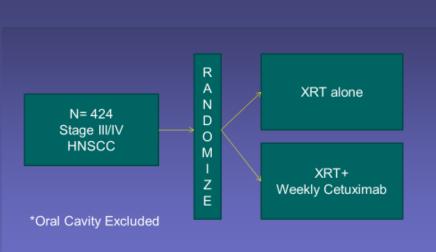

- Laryngectomy was historical standard of care
- VA Larynx Trial (NEJM 1991)
 - Randomized phase III study
 - surgery vs. chemo followed by XRT for PR/CR
 - 64% in experimental arm had successful organ preservation
 - OS similar, attributed to successful surgical salvage

Landmark Studies in Organ Preservation: Larynx Ca RTOG 91-11

Forastiere AA et al. NEJM. 2003; 22(349) 2091-98.



Landmark Studies in Organ Preservation: RTOG 91-11


- Significantly higher Gr ≥3 toxicities in chemoXRT vs XRT
- Distant metastasis decreased in groups receiving chemotherapy
- OS not different among treatment groups
 - Success of salvage surgery
- Long term results reported in 2013
 - Results hold up with 6.9 years median F/U

Organ Preservation: Intergroup Study

	Arm A XRT	Arm B cisXRT	Arm C splitXRT
OS (3yr)	23%	37% A vs B p=0.14	27%
DSSurvival (3yr)	33%	51% A vs B p=0.01	41%
Distant Failure	17.9%	21.8%	19.1%
Toxicity	51%	85% A vs B p<.0001	72% A vs C P<.0001

Organ Preservation with cetuximab: Bonner Study

	XRT alone	XRT+ Cetux	p Value
LRCI(3yr)	34%	47%	p<.01
PFS(3yr)	31%	37%	p=.04
OS(3yr)	45%	55%	p=.05
Gr ≥3 toxicity	52%	56%	ND

Landmark Studies in Organ Preservation: Bonner Study

- 60% had oropharynx primaries
 - –Subsequent HPV testing lower magnitude of benefit in HPV- OPC
- No impact on distant metastatic failure rate
- No identifiable biomarker for response
- Control arm not regarded as standard of care
 - RTOG 1016 with published showing inferiority compared to cis+XRT in HPV+ population

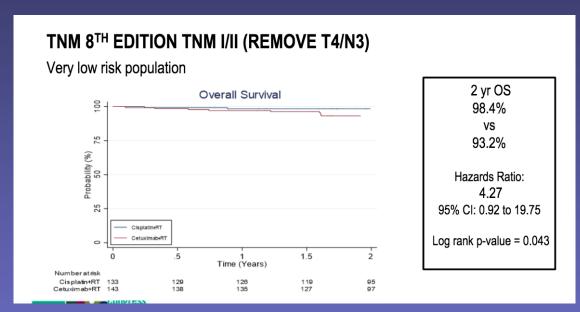
Alternative cisplatin dosing in definitive setting

ASCO 2022 #6004

- Concert phase III study (India)
 - Weekly 40mg/m2 vs Bolus 100mg/m2 in definitive XRT setting
- Primary endpoint: LRC at 2 years
- Patient population (N=278)
 - p16 positive in 5-8%
 - 20% with PS 2
- 2D radiation therapy, majority with delays/interruptions

Alternative cisplatin dosing in definitive setting

- 2 yr LRC similar 56% (bolus) vs 60% (weekly)
- Similar median OS in mos: 30 (bolus) vs 25 (weekly)
- Toxicity favors weekly arm:
 - Grade 3 mucositis, myelosuppression, renal, vomiting
- Health care utilization metrics favor weekly arm
 - Reduced need for IVF, hospitalization, treatment interruption


Organ Preservation: Oropharyngeal Carcinoma

Gillison et al. Lancet.2019 Jan 5;393(10166):40-50 Mehanna et al. Lancet. 2019 Jan 5;393(10166):51-60

Phase III clinical trials in HPV + OPC

- Both trials"
 - CisplatinXRT superior OS,LRC
 - No difference in acute/late tox
 - T score higher in cisXRT in 1016

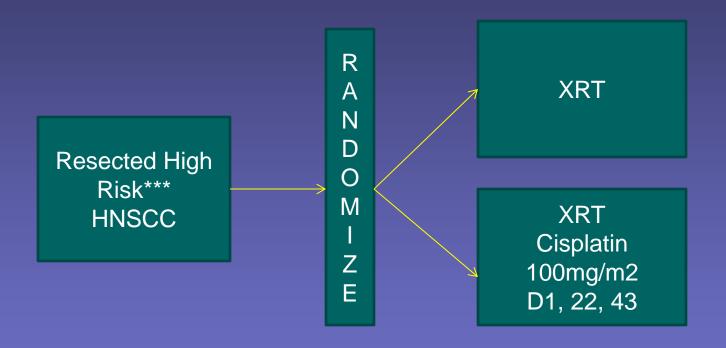
De-escalation remains a research question in HPV+ OPC

Alternative cisplatin dosing for definitive XRT in p16+ OPC

- TROG 12.01
 - Randomized phase III of good risk p16+ OPC
 - cisplatin 40mg/m2 XRT to cetuximab XRT
 - -N=189
 - Primary endpoint: symptom severity
 - FFS superior in cisplatin arm, OS similar
 - No difference in primary endpoint

Functional Imaging after definitive chemoradiation

- Planned neck dissections (ND) post chemoXRT was SOC for N3 or bulky N2b disease
- PET-NECK randomized 564 pts to ND vs.
 surveillance with PET-CT 12wk post chemoXRT
- Necks with nonPETavid LNs <1cm observed in exp arm
- Less NDs done in exp arm, no difference in OS


KEY POINTS:Locally advanced disease

- Organ preservation/unresectable disease
 - Concurrent cisXRT supported by RTOG 91-11,
 Intergroup, RTOG 1016, DE-ESCALaTE, Intergroup 099
 - Weekly cisXRT supported by CONCERT trial in predominantly p16- population
 - CetuximabXRT is inferior to cisXRT in the HPV+OPC
 - Neoadjuvant gem/cis for NPC with nodal burden
- PET-CT can be used to guide need for neck dissection post XRT

More KEY POINTS: Locally advanced disease

- A multidisciplinary approach is essential
- Patient selection is critical
 - Not everyone is meant for nonsurgical treatment approach
 - Remember exclusion criteria in organ preservation studies
- Deescalation in HPV+ remains a research question

Postoperative therapy RTOG and EORTC studies

*** Eligibility criteria varied in 2 studies

RTOG 9501

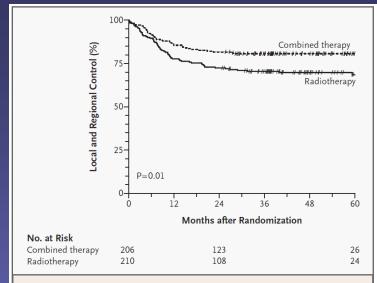


Figure 1. Rates of Local and Regional Control.

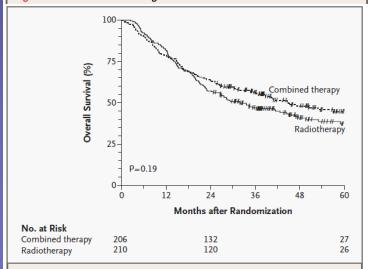


Figure 3. Kaplan–Meier Estimates of Overall Survival.

Overall survival did not differ significantly between groups (P=0.19 by the log-

EORTC 22931

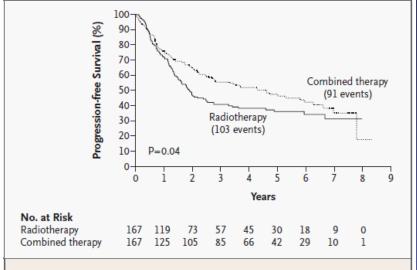
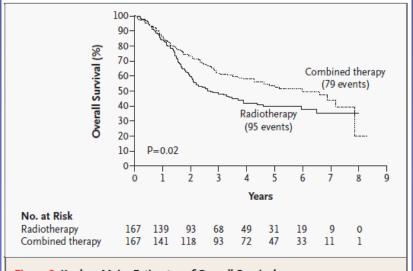
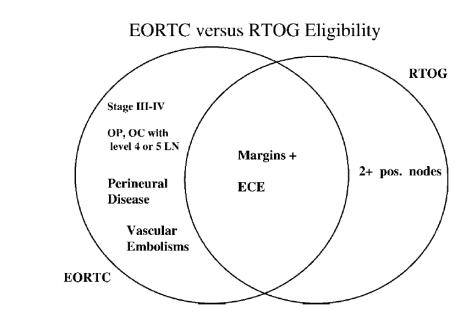


Figure 1. Kaplan-Meier Estimates of Progression-free Survival.




Figure 2. Kaplan-Meier Estimates of Overall Survival.

Pooled Analysis

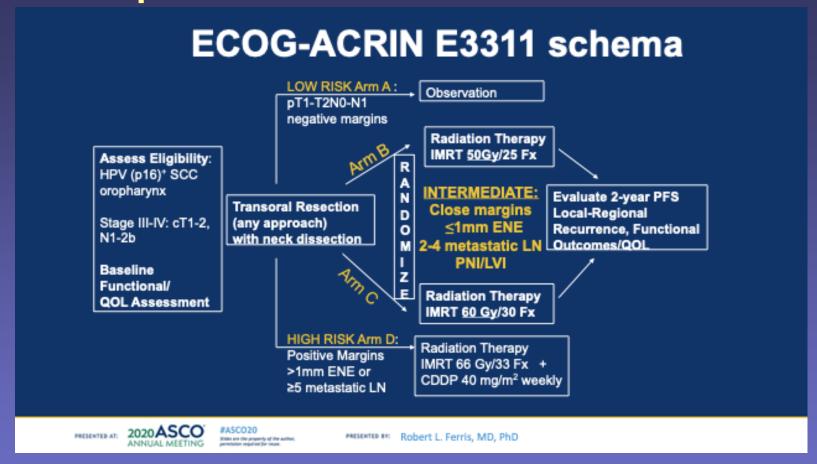
Overall survival advantage to Cisplatin + XRT for

- Positive surgical margin
- Extracapsular extension

LRC, PFS benefit confirmed

FIGURE 1. Eligibility criteria in EORTC 22931 and RTOG 9501 trials. OP, oropharynx; OC, oral cavity; LN, lymph node; ECE, extracapsular extension.

Alternative cisplatin dosing + XRT in postoperative setting


- Randomized phase III study of 30mg/m2 vs 100mg/m2
 - Indian population, mostly adjuvant post resection
 - Inferior LRC with weekly

Noronha, et al JCO 2018.

- Randomized phase III study of 40mg/m2 vs 100mg/m2
 - Japanese study in adjuvant setting for high risk disease
 - Weekly dosing non-inferior

Kiyota et al. JCO 2022

Postop treatment in HPV+ OPC

 Arm B met 2 yr PFS threshold, will be compared to nonsurgical therapy

KEY POINTS: postoperative therapy

- High Risk pathologic features that benefit from concurrent cis+XRT:
 - Positive margins
 - Extracapsular nodal extension
- Most data is with 100mg/m2 on days 1,22,
 43 of therapy
 - If weekly cisplatin given, use 40mg/m2

The Cisplatin Ineligible Patient

- Historically excluded from studies
- This is changing

Trial	N	Intervention	Primary endpoint/Results
NCT02707588 ¹ GORTEC 2015- 01 PembroRad	133	Pembrolizumab/XRT vs Cetuximab/XRT	2 yr LRC Similar in both arms (60% vs 59%)
NCT02999087 ² GORTEC REACH	277	Avelumab/cetuximab/XRT vs Cetuximab/XRT	2 yr PFS Similar in both arms (44% vs 31%)
NCT03258554 NRG-HN004	523	Durvalumab/XRT vs Cetuximab/XRT	2 yr PFS Similar in both arms (51% vs 66%)
ASCO 2022 ABSTRACT 6003	356	XRT vs docetaxel XRT in both definitive and postoperative setting	2 yr DFS and OS superior with weekly docetaxel

Bournis et al. ESMO 2021 ²Tao et al. ESMO 2020 ³Patil et al. ASCO 2022

Noncisplatin concurrent regimens in definitive XRT

Trial	N	Intervention	Exp Arm Results	Exp arm Toxicities
GORTEC 9401 ^{1,2}	226	Carboplatin/5FU/XRT vs. XRT	OS DFS superior	Mucositis/Skin/Nutrition/Heme toxicity worse
GORTEC 2007-01 ³	406	Carboplatin/5FU/Cetuxim ab/XRT Vs. Cetuximab XRT	PFS and LRC superior OS similar	LFT elevation, leucopenia, PEG, hospitalizations worse
Bonner IMCL9815 ⁴	253	Cetuximab/XRT vs. XRT	OS and LRC superior	More rash and infusion reactions

¹Calais et al. J Natl Cancer Inst 1999 ²Denis et al. J Clin Oncol 2004 ³Tao et al. J Clin Oncol 2018 ⁴Bonner et al. N Eng J Med 2006

Other Considerations

- Supportive care during curative intent therapy is critical to success
 - Frequent OTVs with MD/APP
 - Infusion space for IVF
 - Access to enteral nutrition/PEG
 - Speech and swallowing therapy before/during/after
 - Tobacco cessation

Ongoing Clinical Investigation: Themes

- Therapeutic intensification
 - Incorporation of IO agents into standard of care chemoXRT, including neoadjuvant and maintenance PD1
- Therapeutic deintensifcation for HPV+
 - Upfront surgical approaches
 - IO + XRT in NRG HN005
- Cisplatin ineligible pts

Clinical Investigation: definitive therapy

ırıaı	reatment Population	N	intervention
KEYNOTE- 412 ¹	LAHNSCC (HPV+ for select stages/primary sites)	780	Pembro + cis + RT vs. placebo + cis + RT
JAVELIN HN100 ²	LAHNSCC HPV- HNSCC (HPV+ for select stages/primary sites)	640	Avel + chemoRT vs chemoRT alone
IMSTAR-			Negadiuvant nivo surgery and adi chemoRT + adi
HN ³	Stage III/IV p16- OPC, L, HP, OC	276	nivo ± ipi vs SOC surgery + chemoRT
KEYNOTE- 689 ⁴	Resectable stage III/IVa L, HP, OC, p16-OPC Stage III p16+ OPC	600	Pembro prior to surgery/with adj chemoRT vs surgery
IMvoke010 ⁵	LAHNSCC treated with curative- intent therapy	400	Atezo vs placebo after chemoRT
KEYCHAIN ⁶	LAHNSCC p16+ OPC, L, OC	114	Cis + RT vs pembro + RT
HN005 ⁷	Locally advanced good risk p16+ OPC	711	Cis 70GyRT vs Cis 60GyRT vs Nivo 60GyRT

^{1.} NCT03040999. 2. NCT02952586. 3. NCT03700905. 4. NCT03765918. 5. NCT03452137

^{6.} NCT03383094 7. NCT03952585

Metastatic Disease

- Poor prognosis, survival measured in months (longer for HPV+ patients)
- Multiple active single agents
- Combination vs. single agent chemotherapy trials largely negative except for 2008 EXTREME study:
 - 1st line R/M: cetuximab+PF vs PF
 - •OS: 10.1 vs 7.4 mo (p=0.04)

PD1 inhibitor in First Line R/M Setting

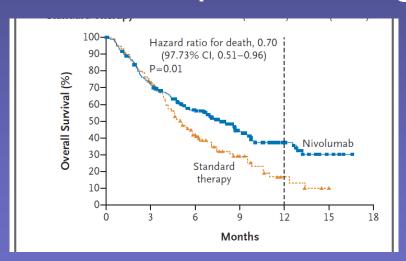
KEYNOTE-048 Study Design (NCT02358031)

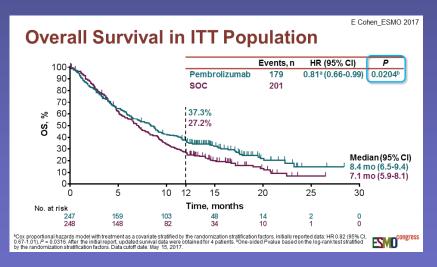
Key Eligibility Criteria Pembrolizumab Pembrolizumab 200 mg Q3W Monotherapy SCC of the oropharynx, oral cavity, hypopharynx, for up to 35 cycles or larynx R/M disease incurable by local therapies ECOG PS 0 or 1 Pembrolizumab 200 mg + Pembrolizumab Tissue sample for PD-L1 Pembrolizumab Carboplatin AUC 5 OR assessment^a 200 mg Q3W + Chemotherapy Cisplatin 100 mg/m² + 1:1:1 Known p16 status in the for up to 5-FU 1000 mg/m²/d for 4 days oropharynx^b 35 cycles total for 6 cycles (each 3 wk) **Stratification Factors** • PD-L1 expression^a Cetuximab 250 mg/m² Q1W^c + (TPS ≥50% vs <50%) Carboplatin AUC 5 OR p16 status in oropharynx **EXTREME** Cetuximab Cisplatin 100 mg/m² + (positive vs negative) 250 mg/m² Q1W 5-FU 1000 mg/m²/d for 4 days

for 6 cycles (each 3 wk)

^aAssessed using the PD-L1 IHC 22C3 pharmDx assay (Agilent). TPS = tumor proportion score = % of tumor cells with membranous PD-L1 expression. ^bAssessed using the CINtec p16 Histology assay (Ventana); cutpoint for positivity = 70%. ^cFollowing a loading dose of 400 mg/m².

ECOG performance status


(0 vs 1)


Pembrolizumab in 1st line R/M HNSCC: Keynote 48

- In CPS≥1, Pembro mono vs EXTREME
 - OS 12.3 vs 10.4 m (p=0.0008)
 - Gr≥3 AE 17% vs. 70%
 - ORR 19%, DoR 23.4 m vs 4.5
- All-comers Pembro+Chemo vs EXTREME
 - OS 13 vs 10.7 m (p=0.0008)
 - Gr≥3 AE 72% vs 70%
 - ORR 36% DoR 6.7m vs 4.3

PD1 inhibitors: second line (post-cisplatin)

- Two similarly designed trials
 - Checkmate 141 nivo vs clinician choice
 - Keynote-40 pembro vs clinician choice
- PDL1 expression agnostic

Phase III clinical trials in 1st line R/M NPC

Trial	Treatment Arms	Results in PD-L1 arm	High Grade AEs	ORR/mDOR
JUPITER -02 ¹	GC + placebo vs GC + toripalimab	PFS and OS advantage	89% vs 89.5%	66.4% (5.7 mo) 77.4% (10 mo)
CAPTAIN-1ST ²	GC + placebo vs GC + camrelizumab	PFS advantage	91% vs 94%	80.6 (5.6 mo) 87.3% (8.5 mo)
RATIONALE-309 ³	GC + placebo vs GC + tislelizumab	PFS advantage	80.9% VS 81.8%	55.3 (6.1 mo) 69.5 (8.5 mo)

¹Mai et al. Nat Med 2021 ²Yang et al. Lancet Oncology 2021 ³Yang et al. Cancer Cell 2023

KEY POINTS: Metastatic Disease

Non NPC

- PembroPFu prolongs OS vs EXTREME
- Pembro mono prolongs OS in CPS≥1
- Nivo and Pembro prolong OS in plat treated R/M vs (independent of PDL1 or HPV status)

NPC

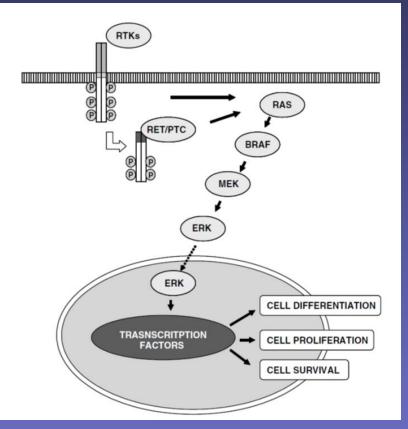
- Gem+Cis+PD1 improves OS vs. GemCis

Future landscape of head and neck cancer therapy

- Deescalation in good risk HPV
 - Upfront surgical resection vs lower dose XRT
- Immune checkpoint combinations in R/M
- Cellular therapeutics in R/M
- Integration of immune checkpoint inhibitors into curative intent therapy
- Epidemiologic changes with prophylactic vaccines
- ctDNA, cHPVDNA in LA and R/M disease

Part II Thyroid Cancer

Thyroid Cancer Review


- Differentiated Thyroid Cancer
 - Papillary (85%) and Follicular (5%)
 - Familial in 3-9% (AFP, Cowden's, Werner's)
- Medullary thyroid Cancer (5%)
 - Parafollicullar C cells, produce calcitonin
 - Familial (less common, MEN2) or Sporadic (majority)
 - RET
- Anaplastic thyroid Cancer
 - Elderly patients, rapid growth, airway compromise
 - Evolved from prior differentiated cancers

The historical role of the medical oncologist

	Agent	N	Histology	Objective Response Rate	Overall Survival
Gottleib, 1974	doxorubicin	30	All	11 (37%)	Responding patients: 11 months
Shimaoka, 1985	Doxorubicin vs cisplatin & doxorubicin	92	All	7 (17%) vs. 11 (26%)	< 24 months
Williams, 1986	Doxorubicin and cisplatin	22	All	2 (9%)	NR
Ain, 2000	Paclitaxel	20	ATC	10 (53%)	Median OS: 25 weeks

Molecular targets in Thyroid Cancers

Tumor type	Prevalence (%
Papillary carcinoma	
\overrightarrow{BRAF}	45
RET/PTC	20
RAS	10
TRK	< 5
Follicular carcinoma	
RAS	45
$PAX8-PPAR\gamma$	35
PIK3CA	< 10
PTEN	< 10
Medulllary carcinoma	
Familial forms of <i>RET</i>	>95
Sporadic <i>RET</i>	50
Poorly differentiated carcinoma	
RAS	35
β -Catenin (<i>CTNNB1</i>)	20
TP53	20
BRAF	15
Anaplastic carcinoma	
TP53	70
β -Catenin (<i>CTNNB1</i>)	65
RAS	55
BRAF	20

MAPK signaling pathway

FDA approved TKIs in RAIR DTC

Agent/Line	Target	Evidence	ORR	PFS	os	AEs
Lenvatinib ¹ FIRST LINE	VEGF, BRAF, FGFR, RET, KIT	R Ph III vs. Placebo SELECT (N=392)	64.8% vs 1.5% (p<0.001)	18.3 vs 3m (p<0.001)	NS	75.9% vs 9.9%
Sorafenib ² FIRST LINE	VEGF, BRAF, RET RAF, PDGFR	R Ph III vs. Placebo DECISION (N=417)	12.2% vs 0.5%	10.8 vs. 5.8m (p<0.0001)	NS	37.2 vs 26.3%
Cabozantinib ³	VEGFR2, AXL, MET, RET	Phase III COSMIC-311 N=187	15% vs 0	Not reached vs. 1.9 mo	NS	64% vs 37%

Mutation specific approved TKIs in nonMTC

Agent	Target	Evidence	ORR	PFS	os	AEs
Selpercatinib ¹	RET	Ph1/2 N=19	79%	1 yr 92%	NR	Mostly Gr1/2
Pralsetinib ²	RET	Phase I/2 N=20	89%	1 yr 81%	1 yr 91%	Gr1/2
Entrectinib ³	NTRK	Ph1 N=121(all tumors)	54%	NR	NR	Gr1/2
Larotrectinib ⁴	NTRK	Ph1 N=29 (all thyroid)	71%	2 yr 69%	2 yr 76%	Gr1/2

FDA approved TKIs in MTC

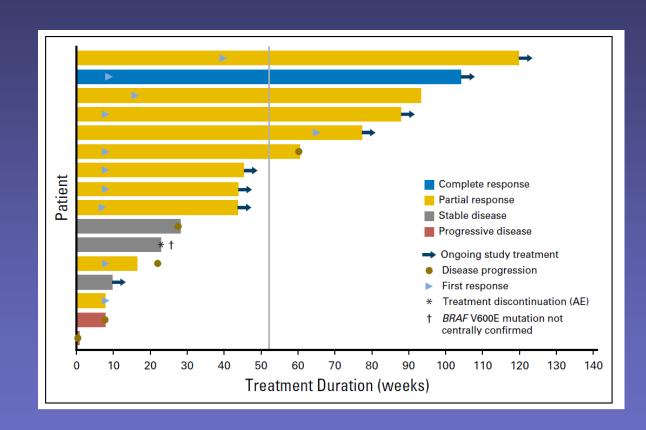
Agent	Target	Evidence	ORR	PFS	os	AEs
Vandetanib ¹	RET VEGF EGFr	R Ph III vs.Plac ZETA (N=331)	45% vs 13% (p<0.01)	NR vs 19.3 m (p<0.01)	NR	GI: 56 vs 26%
Cabozantinib ²	RET MET VEGF	R Ph III vs. Plac EXAM (N=330) noXover	28% vs 0%	11.2 vs. 4m (p<0.0001)	NS	Gr3 69% vs 33%
Selpercatinib ³	RET	Phase I/2 N=143	71%	NR	NR	Most Gr1/2

Pralsetinib FDA indication withdrawn 7/2023

Anaplastic Thyroid Cancer

- Often unresectable and metastatic at diagnosis
- Very poor prognosis
- Local control and QOL are priorities
 Radiation often concurrent with
 chemotherapy often used to achieve
 treatment goals
- Paclitaxel has a response rate of ~50%

BRAF and MEK inhibition


Phase I experience with dabrafenib/trametinib

N= 16 pts +BRAFV600E

Responses in 11 (69%)

80% previously treated with XRT

FDA approved

Key Points: Thyroid Cancer

- Independent of mutational status
 - RAI refractory differentiated thyroid cancer
 - Lenvatinib and sorafenib
 - Medullary Thyroid Cancer
 - Vandetanib and cabozantinib
- RET and NTRK specific TKIs for DTC and MTC
- Anaplastic thyroid cancer
 - Recognize and attempt local control
 - Test for BRAF V600E

Part III Salivary Gland Cancer

Salivary Gland Cancers

- Uncommon (5% of head and neck CA)
- Diverse histology (2017 WHO)
 - Most common: adenoid cystic (ACC),
 mucoepidermoid carcinoma, adenocarcinoma
- Variable clinical behavior
 - Indolent subtypes such as ACC
- Molecular profiling
 - Secretory Carcinoma (ETV6-NTRK3 fusion)

Salivary Gland Cancer: Local or Locally advanced

- Surgical resection of localized disease
- Postoperative radiation therapy in high risk disease
 - Data to support Neutron Radiation
 - Photon radiation also extensively studied and reported in postoperative setting
 - Concurrent chemoradiation being studied in RTOG 1008

Salivary Gland Cancer: Metastatic

- No current standard of care
 - Small trials with heterogeneous population
 - Low response rates, stable disease
 - Contemporary experience with single agent paclitaxel gemcitabine-cisplatin, carboplatin-paclitaxel
- Clinical trials preferred

Salivary Gland Cancer: Metastatic

- On label/tumor agnostic approvals
 - Entrectinib in NTRK mutant sal gland cancer
 - Selpecatinib in RET mutant sal gland cancer
 - Traztuzumab deruxtecan in Her2+
- Off label prospective data
 - Lenvatinib in adenoid cystic (15%ORR)
 - Androgen deprivation in AR+ sal gland cancer
 - Pembro in PDL1>1% (10% ORR

HN chemoXRT on treatment visits

- Weekly appointments for labs/chemo/hydration
- APP or MD see patients weekly
- APP to see patient in week 1 and week 2 post chemoXRT with labs/hydration
- APP to see patient 1 month post XRT
 - Evaluate for PEG removal
 - Discontinue pain medications/nausea meds
 - Evaluate for depression

HN LTFU Plan

YEAR 1

3 mo post XRT

- MD
- Scope
- CT Neck/Chest

6 mo post XRT

- APP/scope

9 mo post XRT -APP/scope

12 mo postXRT

- MD
- Scope
- CT chest/neck
- Screening TSH

YEAR 2

15, 18 and 21 mos post XRT -APP/scope

24 mo postXRT

- MD
- Scope
- CT chest/neck

YEAR 3-5

30 mos post XRT -APP/scope

3, 4, 5 yrs postXRT

- MD
- Scope
- CT chest/neck

HN LTFU Plan - Retreat Discussion

YEAR 1

3 mo post XRT

- Med onc/? Rad onc
- Scope
- Baseline Scan: CT Neck/Ches
- ? PET/CT for chemoXRT patients

6 mo post XRT

- APP/scope
- CT Neck should we do med onc or rad onc for review?

9 mo post XRT

-APP/scope

12 mo postXRT

- Med onc
- Scope
- CT chest/neck
- Screening TSH

YEAR 2

15 mos post XRT

-APP/scope

18

- -APP/scope
- CT Neck Neck should we do med onc or rad onc for review?

21 mos post XRT -APP/scope

24 mo postXRT

- Med onc
- Scope
- CT chest/neck

YEAR 3-5

30 mos post XRT -APP/scope

3 years postXRT

- Med onc
- Scope
- CT chest/neck

4, 5 yrs postXRT

- med onc
- Scope