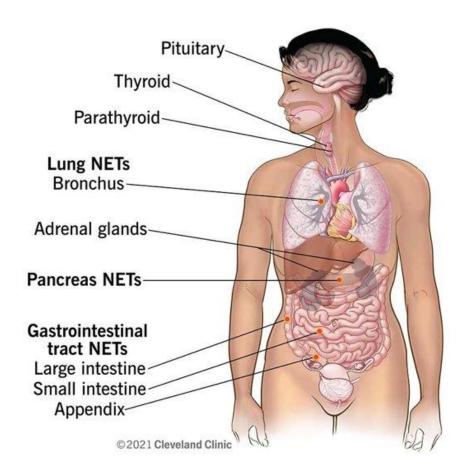


Gastroenteropancreatic Neuroendocrine Neoplasms (GEP-NEN)

David B. Zhen, MD Associate Professor, GI Medical Oncology Co-director, Neuroendocrine Tumor Program Fred Hutch Cancer Center I University of Washington September 23, 2024


- Advisory Board/Consulting: Exelixis, Boehringer Ingelheim, Bristol Myers Squibb, Legend Biotech, Medigene
- Independent Data Monitoring Committee: Jazz Pharmaceuticals/Zymeworks, Inc
- Research Funding: AstraZeneca, Bayer, Bristol Myers Squibb, Cornerstone Pharmaceuticals, Daiichi-Sankyo, Eli Lilly, Ipsen, Roche/Genentech, Legend Biotech, Medigene, Merck, Pfizer

Outline

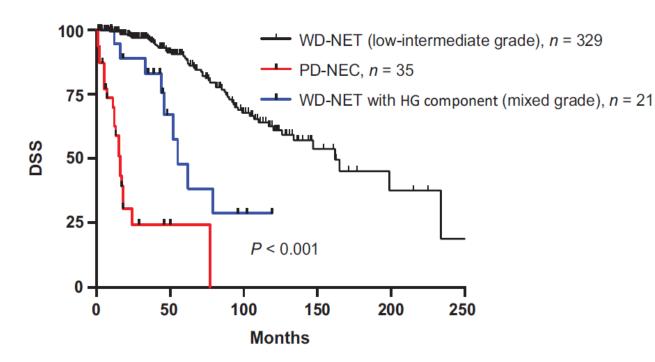
- Overview and Clinical Symptoms of GEP-NEN
- Workup and Staging of GEP-NEN
- Systemic Therapies for GEP-NET
- Systemic Therapies for GEP-NEC

Overview and Clinical Presentations of GEP-NEN

Neuroendocrine Neoplasms (NEN)

https://my.clevelandclinic.org/health/diseases/22006-neuroendocrine-tumors-net

- Neuroendocrine cells found through various body sites
- Produce hormones and peptides with biological activity
- NEN arise in different organs
- GI tract and lung are common sites of origin for NEN
- Some cases of unknown primary
- GI NEN often referred as gastroenteropancreatic (GEP-NEN)

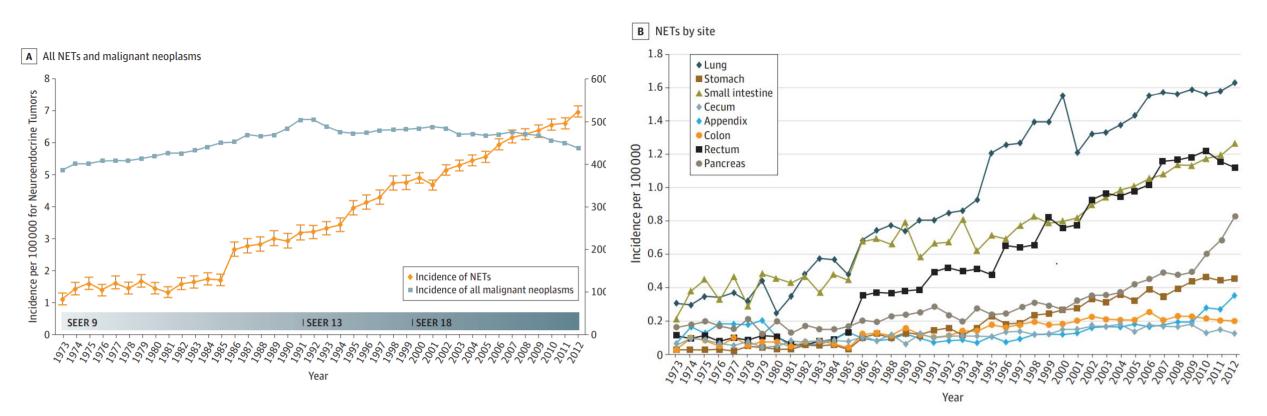

2019 WHO Pathological Classification of GEP-NEN

Differentiation	Proliferation Indices	Designation
Well differentiated Neuroendocrine tumor (NET)	Ki-67 <3% Mitotic index <2/HPF	Low grade/ Grade 1
	Ki-67 3 – 20% Mitotic index <2-20/HPF	Intermediate grade/ Grade 2
New category compared to prior WHO classifications	Ki-67 >20% Mitotic index >20/HPF	High grade/ Grade 3
Poorly Differentiated Neuroendocrine carcinoma (NEC)	Ki-67 >20% Mitotic index >20/HPF	High grade by default Subclassified by histology • Small Cell • Large Cell

Fred Hutchinson Cancer Center

Adapted from Rindi G et al. *Mod. Pathol.* 2018; **31**; 1770 – 1786.

Relevance of 2019 WHO Pathological Criteria



Tang et al. Clin Cancer Res 2015; 22:1011.

WD: Well differentiated, PD: Poorly differentiated Gr: Grade; HG: High grade

- Prognosis:
 - WD-Gr1/2 NET: Years (Median ~12 years)
 - PD-NEC: <12 months</p>
 - WD-Gr 3 NET: In between the above
- WD-Gr3 NET mutational profiles more similar to WD-Gr1/2 NET
 - NET: MEN1, DAXX, ATRX
 - NEC: TP53, RB1
- WD-Gr3 NET less responsive to platinum/etoposide compared to PD-NEC
- Differentiating WD-Gr3 from PD-NEC is important for prognostic and treatment considerations

Epidemiology of GEP-NET

Multiple factors likely contributing to increased incidence but most likely due to increased awareness/diagnosis

Fred Hutchinson Cancer Center

Dasari A, et al. JAMA Oncol. 2017;3(10):1335-1342

Hereditary Syndromes Associated with GEP-NET

- Most cases of GEP-NET don't have an obvious risk factor
- ~10-20% of pNET are associated with hereditary syndrome
- Hereditary associated pNETs tend to more indolent
- Importance of screening for other cancers in these patients!!

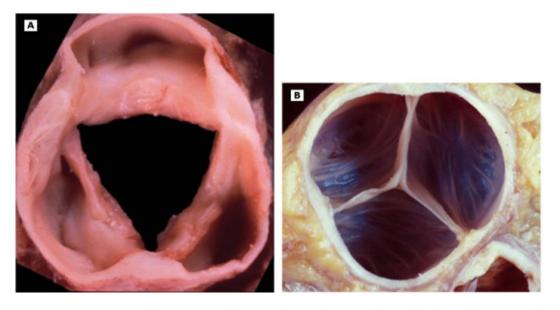
Inherited disorders associated with pancreatic neuroendocrine tumors

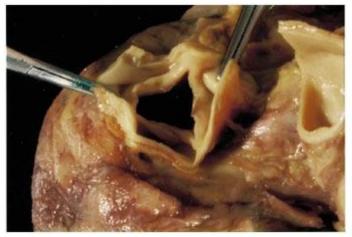
Syndrome	Associated clinical features	Chromosomal location	Pancreatic neuroendocri type	ne tumor
MEN1	Primary hyperparathyroidism Pituitary tumors Less commonly Adrenocortical tumors Carcinoid tumors Nonmedullary thyroid tumors	11q13	Nonfunctional Gastrinoma Insulinoma Various	<mark>fetime Risk</mark> 80-100%
Von Hippel-Lindau disease (VHL)	Pheochromocytoma (often bilateral) Retinal and cerebellar hemangioblastomas Renal cell carcinoma	3p25-26	Nonfunctional Various, including cystic tumors	<mark>~20%</mark>
Neurofibromatosis 1 (von Recklinghausen disease)	Neurofibromas Café au lait spots Pheochromocytoma	17q11.2		<mark>~10%</mark>
Tuberous sclerosis	Cardiac rhabdomyomas Renal cysts Angiomyolipomas	9q33.34 and 16p13.3		~1%

Reproduced with permission from: Milan S, Yeo CJ. Neuroendocrine tumors of the pancreas. Curr Opin Oncol 2012; 24:46. Copyright © 2012 Lippincott Williams & Wilkins.

Symptoms of Hormonal Excess in GEP-NET

- GEP-NET may produce and secrete hormones & neuromodulators causing symptoms ٠
- Classified as functional vs. non-functional ۰
- Symptoms do not correlate with tumor burden
- Treatment of hormone excess: somatostatin analogue (SSA), except insulinoma ٠
- Based on prevalence below, many patients have non-functional tumors (ie often asymptomatic) •

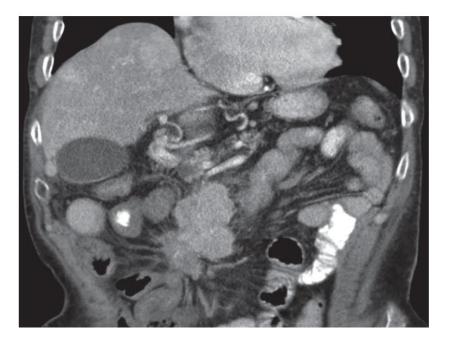

	(i.e. hormone excess is not always "Carcinoid Syndrome")
Carcinoids (WD Gr1/2 midgut NET) (8-35% functional)	pNETs (10-40% functional)
 Carcinoid syndrome → flushing, diarrhea, bronchoconstriction, carcinoid heart dx Due to excess serotonin, tachykinins, or histamine Typically associated with midgut NETs and in the setting of liver metastases 	 *Insulin (insulinoma) → hypoglycemia *Gastrin (gastrinoma) → peptic ulcer disease Vasoactive intestinal peptide (VIPoma) → diarrhea, hypokalemia Glucagon (glucagonoma) → flushing, diarrhea, hyperglycemia


1. Choti et al. J Clin Oncol 2012;30:suppl abstr 4126. 2. Soga et al. J Exp Clin Cancer Res 1999;18:133. 3. Oberg K. Semin Oncol 2010;37:594. 4. Halfdanarson et al. Ann Oncol 2008;19:1727.

NOTE: Carcinoid Syndrome is less common in pNETs

Clinical Symptoms of GEP-NET: Carcinoid Heart Disease

- ~1/3 of carcinoid syndrome-related deaths
- 20-65% of pts with carcinoid syndrome develop valvular pathology
- High serotonin and tachykinin levels released by carcinoid tumor cells → valvulitis and fibroblast proliferation
- Plaque-like fibrous thickening involving classically right heart valves (ie tricuspid)
- Treatment of carcinoid syndrome and management of heart failure
- Valvular replacement needed if severe
- Need to screen for this if clinical concern (e.g. murmur, cardiac symptoms) and conduct surveillance echocardiogram if found



Fred Hutchinson Cancer Center

1. Druce et al. Nat Rev Endorcinol 2009;5:276. 2. Pellikka et al. Circulation 1993;87:1188. 3. Kulke and Mayer. NEJM 1999;340:858l.

Clinical Symptoms of NET: Fibrosis/Desmoplastic Reaction

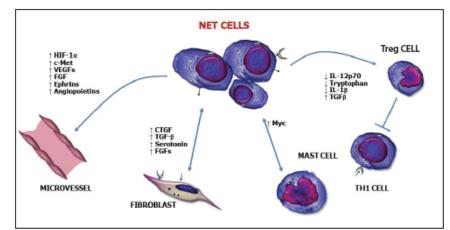


Figure: Role of the Microenvironment in the Pathogenesis of Neuroendocrine Tumors (NETs)—NET cells mutually interact with their microenvironment, prompting angiogenesis through cytokine secretion; inhibiting T-cell function by T-regulatory cell (Treg) dysregulation; promoting infiltration of mast cells via Myc upregulation; and driving fibroblast activation, which in turn enhances NET cell proliferation. CTGF = connective tissue growth factor; FGF = fibroblast growth factor; HIF-1 α = hypoxia inducible factor alpha; IL = interleukin; TGF = transforming growth factor; TH1 = T helper type 1 cell; VEGF = vascular endothelial growth factor. Information from References 19,22,23, and 81.

Daskalakis K et al. Br J Surg, 2017: 104(1).

Cives M & Strosberg J. Oncology (Williston Park) 2014; Sep 28(9): 749-56, 758

- Excess hormone production can lead to a fibrotic/desmoplastic reaction
- Tethers nearby bowel and place patients at risk of bowel obstruction
- Need to monitor closely for symptoms of bowel obstruction (e.g. pain, cramping, difficulty BM's, N/V, etc)
- Palliative resection of primary tumor (even if metastatic disease) often considered to avoid future risk of bowel obstruction
 Fred Hutchinson Cancer Center

Workup and Staging of GEP-NEN

Workup of GI NET

Goals of workup

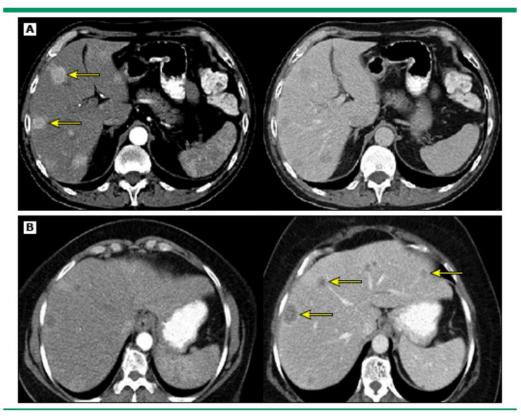
- Assess primary site and stage
- Characterize aggressiveness (grade, differentiation) need tissue
- Establish functionality

Testing modalities

- Imaging
 - Multiphase CT scan or MRI
 - Somatostatin receptor-based imaging: ⁶⁸Ga Dotatate-PET scan or ⁶⁴Cu Dotatate-PET scan
- Endoscopy
- Biochemical evaluation as clinically indicated (if suspicious symptoms present)

Importance of Multiphase CT Imaging

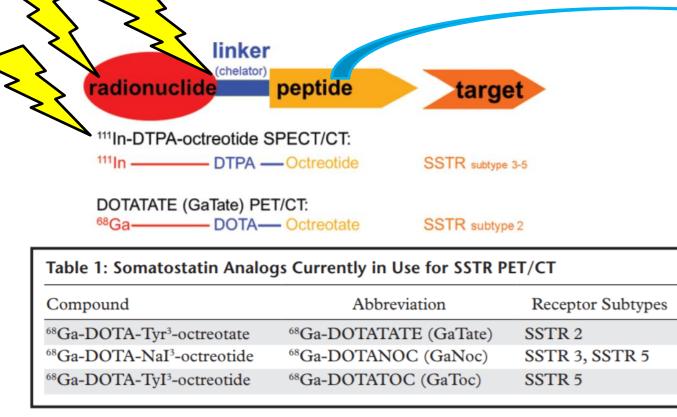
Arterial Phase


- ~20 sec post-contrast injection
- Most NET seen better on this phase

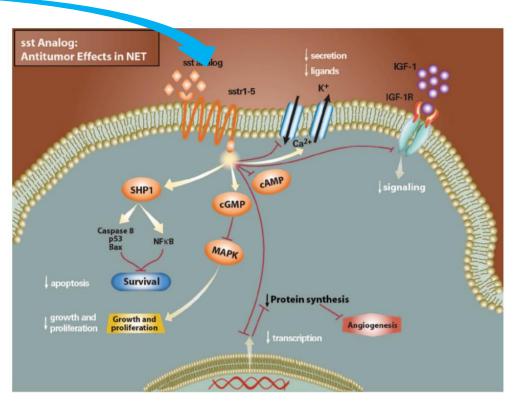
Portal venous phase

- ~70 sec post-contrast injection
- Better for adenocarcinoma & some NET

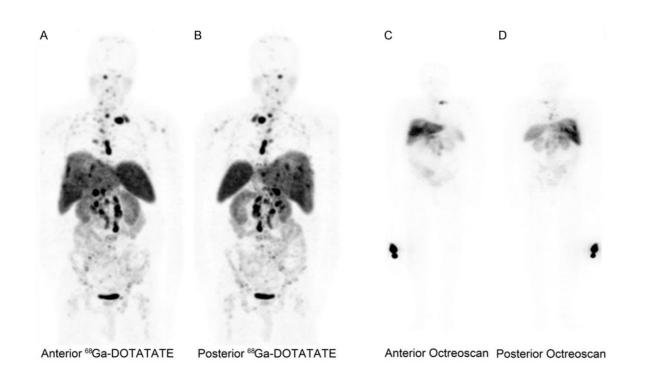
© 2020 UpToDate, Inc. and/or its affiliates. All Rights Reserved.


CT of neuroendocrine tumor liver metastases

In patient A (top two images), the hypervascular liver metastases are more clearly observed on the arterial phase (left) compared to the portal venous phase (right); whereas in patient B (lower two images), the liver metastases are not as hypervascular and more clearly delineated on the portal venous phase (right) compared to the arterial phase (left).


Up to Date, 2020. Legmann P et al. AJR Am J Roentgenol 1998;170(5):1315.

Basics of Somatostatin Receptor (SSTR) Imaging


Hofman MS, Lau WFE, Hicks RJ. RadioGraphics 2015; 35:500-516

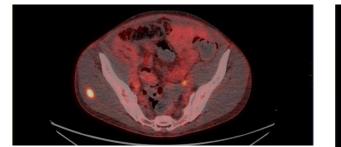
- NET often express SSTR on the surface of NET cells
- There are 5 isoforms of SSTR (ie SSTR 1-5); most relevant in NET SSTR 2 (i.e. dotaTATE)
- Take advantage of this by developing a radiolabel that bind to SSTR on NET cell surface

Sideris L, Dube P, Rinke A. The Oncologist 2012; 17: 747-755

SSTR Imaging: ⁶⁸Ga Dotatate is Standard

- Old standard was OctreoScan
 (¹¹¹Indium pentotreotdie radiolabel)
- ⁶⁸Ga-DOTATATE has increased sensitivity and more convenient
- Combined with PET/CT scans allow for better imaging visualization
- ⁶⁸Ga-DOTATATE FDA approved 2016 and
- Dotatate-PET scans are standard of care (and superior to OctreoScan)

⁶⁴Cu-dotatate PET scan

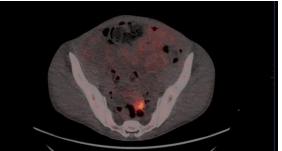

- Limitations of ⁶⁸Ga dotatate
 - Short half-life (1.1 hr)
 - Needs to be locally produced via a generator
 - Thus needs to given close to time of scan (Potentially limiting scan availability)
- ⁶⁴Cu dotatate has a longer half life (12.7 hr), eliminating need for a generator and increase scan availability
- Studies show same quality and safety as ⁶⁸Ga dotatate PET scans
- FDA approved in 9/2020
- While either 68Ga dotatate and 64Cu dotatate can be used interchangeably, consistency of use of one modality helps with radiology interpretations

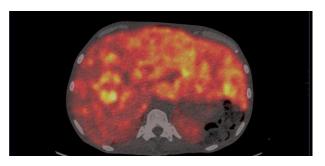

Differentiation and Somatostatin Receptor Expression

- WD-lower grade NET
 - +⁶⁸Ga-dotatate PET avid (express SSTR)
 - Negative on FDG-PET
- High grade NET/PD-NEC
 - Often neg ⁶⁸Ga-dotatate PET (little to no expression of SSTR)
 - Positive on FDG-PET
- In some instances, both FDG-PET scan and ⁶⁸Ga- dotatate PET scan can be helpful
 - Determine NET de-differentiation (ie to higher grade status)
 - Guide treatment options

WD-G1 NET rectal primary seen N only on dotatate-PET

Mixed FDG avid and dotatate avid lesions in liver (Mixed PD-NEC and WD-G2 NET)





F-18 FDG

PET

*Images from patient with mixed WD-Gr1 NET of the rectum and mixed WD-NET and PD-NEC in liver

Biochemical Testing

NCCN National Comprehensive Cancer Network[®] NCCN Guidelines Version 1.2023 Neuroendocrine and Adrenal Tumors

PRINCIPLES OF BIOCHEMICAL TESTING"

CCN Guidelines Index

Footnotes on NE-C 3 of 4

References on NE-C 4 of 4

> NE-C 1 OF 4

Table of Contents

Discussion

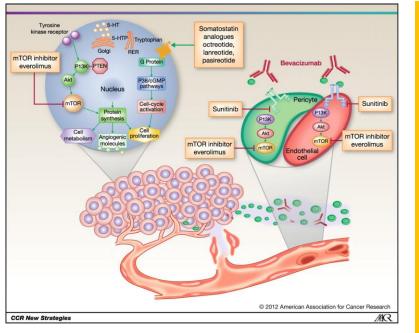
Some NETs can secrete specific neuroendocrine hormones. Hormonal workup should be guided by the presence of symptoms of the excess hormone. Screening for hormones in individuals with asymptomatic disease is not routinely required.

Patients with functional tumors have clinical symptoms related to tumor-associated hormone excess.

PPIs, other drugs, some medical conditions, and certain foods are known to cause false elevations in serum gastrin and chromogranin A. To confirm diagnosis, serum gastrin should ideally be checked when fasting and off PPI for >1 week. However, PPI should be continued in patients with overt clinical symptoms of gastrinoma and/or risks of complications.

If MEN2 is suspected, then patients should be evaluated for pheochromocytoma/paraganglioma prior to any procedures

Syndrome	Location	Clinical Signs or Symptoms	Testing
Carcinoid syndrome (NETs of Gastrointestinal Tract)	Primary tumors in small bowel and appendix; rarely in rectum	 Primary tumors in the GI tract usually are not associated with symptoms of hormone hypersecretion unless extensive metastasis. Symptoms of hormone secretion may include flushing, diarrhea, cardiac valvular fibrosis, and bronchoconstriction 	 24-hour urine or plasma 5-HIAA Foods to avoid for 48 hours prior to and during testing: avocados, bananas, cantaloupe, eggplant, pineapples, plums, tomatoes, hickory nuts/pecans, plantains, kiwi, dates, grapefruit, honeydew, or walnuts
Carcinoid syndrome (NETs of Lung and Thymus)	Primary tumors in lung or thymus	 Bronchial/thymic tumors may be associated with classic carcinoid syndrome as well as hypercortisolemia (± Cushing's syndrome) 	 24-hour urine or plasma 5-HIAA Foods to avoid for 48 hours prior to and during testing: avocados, bananas, cantaloupe, eggplant, pineapples, plums, tomatoes, hickory nuts/pecans, plantains, kiwi, dates, grapefruit, honeydew, or walnuts Test for hypercortisolemia (± Cushing's syndrome) (NE-C 2 of 4)
Insulinoma	Pancreas	Hypoglycemia	 While hypoglycemic: ▶ Serum insulin ▶ Pro-insulin ▶ C-peptide See Workup for insulinoma (PanNET-5)
VIPoma	Most common in pancreas, rarely extra pancreatic	Severe watery diarrhea, hypokalemia	Serum VIP
Glucagonoma	Pancreas	Flushing, diarrhea, hyperglycemia, dermatitis, hypercoagulable state	Serum glucagon
Gastrinoma	Pancreas or duodenum	Gastric ulcers, duodenal ulcers, diarrhea	Serum gastrin ^a
Somatostatinoma	Pancreas or duodenum	Hyperglycemia, cholelithiasis, diarrhea/ steatorrhea	Serum somatostatin


Note: All recommendations are category 2A unless otherwise indicated. Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.	

/ersion 1.2023, 08/02/2023 © 2023 National Comprehensive Cancer Network® (NCCN®), All rights reserved. NCCN Guidelines® and this illustration may not be reproduced in any form without the express written permission of NCCN

- Generally workup is guided by symptoms
- For most asymptomatic patients, hormone levels don't change management
- Often use as biomarkers for response (e.g. Chromogranin A), but remember they can fluctuate due to other factors
- Some exceptions for asymptomatic patients (e.g. screening for Cushing's syndrome/pituitary tumors in setting of MEN1)
- Assessment of response and treatment should be based on the entire clinical picture (not just biochemical testing)

Systemic Therapies for GEP-NET

Systemic Therapies for GEP-NET

Dong M, Phan AT, Yao JC. Clin Cancer Res, 2012; 18(7): 1830-6.

Pancreatic NET (pNET)

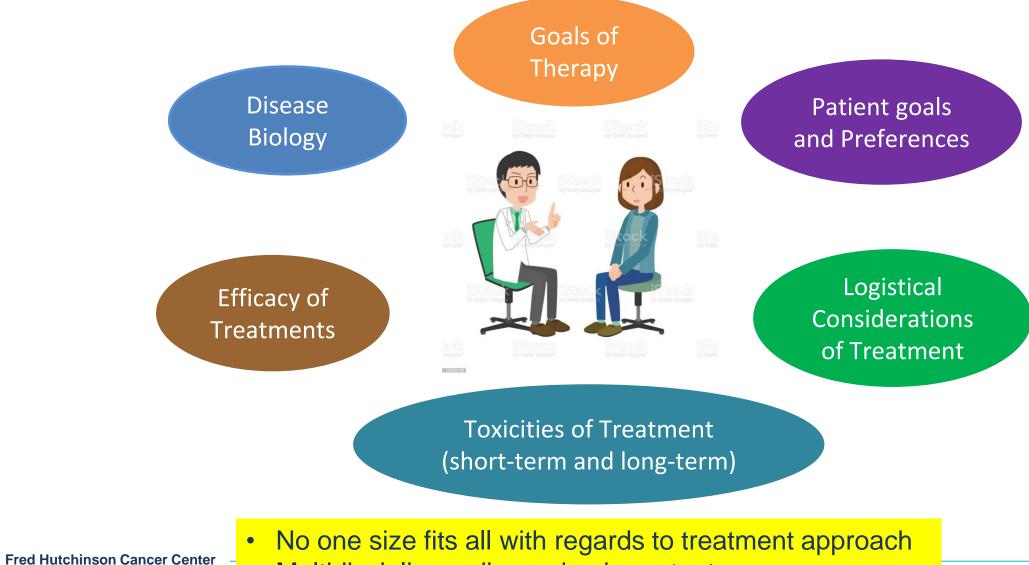
- Somatostatin analogs (SSAs) (octreotide LAR, lanreotide)
- PRRT/¹⁷⁷Lutetium (¹⁷⁷Lu)dotatate
- Everolimus
- Capecitabine/Temozolomide (CAPTEM)
- Sunitinib
- Belzutifan (germline VHL only)
- *Teloristat ethyl (for refractory carcinoid syndrome diarrhea)

Other GI NET

- SSAs (octreotide LAR, lanreotide)
- PRRT/¹⁷⁷Lutetium (¹⁷⁷Lu)dotatate
- Everolimus
- *Teloristat ethyl (for refractory carcinoid syndrome diarrhea)

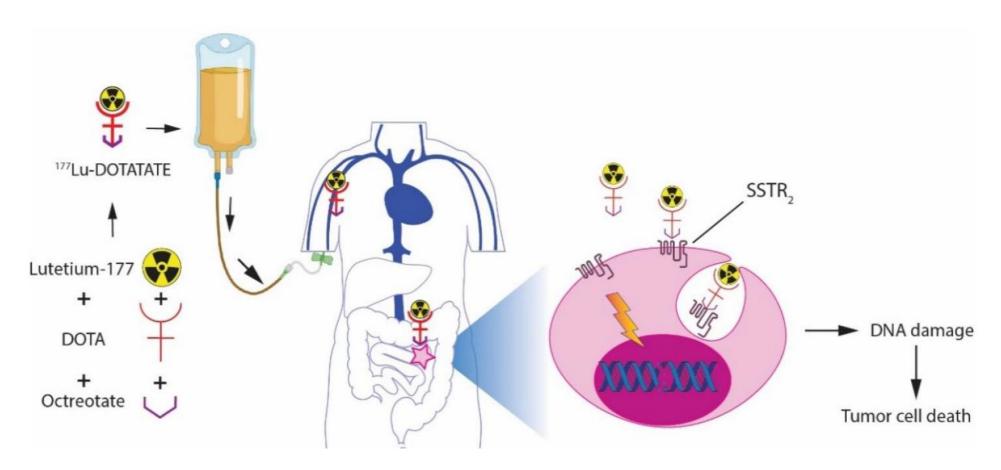
- For symptom and tumor control
- Observation may be appropriate for patients with low grade/indolent disease
- Based on current data, there is no established sequence of therapies

Summary of Clinical Outcomes of GEP-NET Systemic Therapies

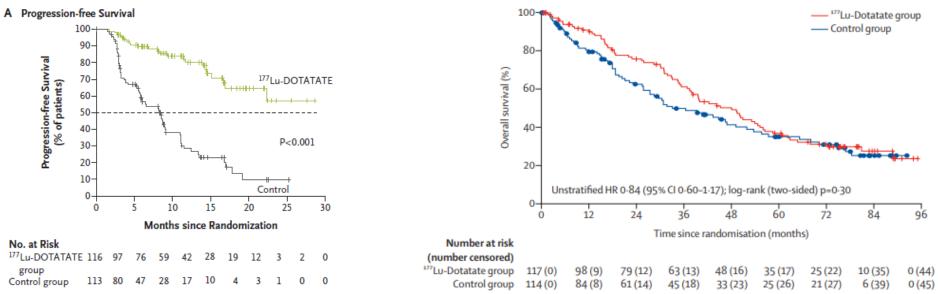

	Somatostatin Analogs ^{1,2} (Octreotide LAR, Lanreotide)	Everolimus ^{3,4}	Sunitinib⁵ (for pNET only)	CAPTEM ⁶⁻⁹	IV Chemo (e.g. streptozocin, FOLFOX) ¹⁰	177Lu- dotatate (PRRT) ¹¹⁻¹³
Objective response rate (ORR)	2-3%	 pNET: 5 Other GI NET: 2% 	9.3%	 pNET: 40% Other GI NET: ? (~4-50%) 	20-40% (↑ for higher grade disease and pNET)	18-50% (↑ in pNET)
Progression Free Survival (PFS, months)	Rate of 2 yr-PFS: 50-65%	 pNET: 11.4 Other GI NET: 11-14 	11.4	 pNET: 22.7 Other GI NET: ? (>30) 	>30	>30
Overall Survival (OS, months)	Median not reached (NR)	Median NR	Median NR	pNET: 58.7 Other GI NET: ? (>20-30)	20-40	50-60
Common Toxicities	Diarrhea, abdominal discomfort, gallstones	Mouth sores, diarrhea, fatigue, rash, hyperglycemia, potential pneumonitis	Diarrhea, nausea, fatigue, hand-foot syndrome	Cytopenias, nausea, diarrhea, fatigue, potential risk of MDS with long term temozolomide use	Cytopenias, nausea, fatigue, peripheral neuropathy	Nausea, fatigue, cytopenias, ~1.5% risk MDS/AML

Fred Hutchinson Cancer Center

¹Rinke A, et al. J Clin Oncol, 2009. ²Caplin ME et al. N Eng J Med 2014. ³Yao JC, et al. N Eng J Med 2011 ⁴Yao JC et al, Lancet 2016. ⁵Raymond E, et al. N Eng J Med 2011.
 ⁶Kunz P, et al. Abstract 4004, ASCO 2022 Annual Meeting ⁷Fine RL et al. Abstract 179, GI ASCO 2014 ⁸Thomas K et al. Cancers 2020. ⁹Al-Toubah T et al. Curr Oncol 2022.
 ¹⁰Das S, et al. Cancers 2021. ¹¹Brabander T et al. Clin Cancer Res 2017. ¹²Strosberg J et al. N Eng J Med 2017. ¹³Strosberg J et al. Abstract 4112. ASCO 2021.

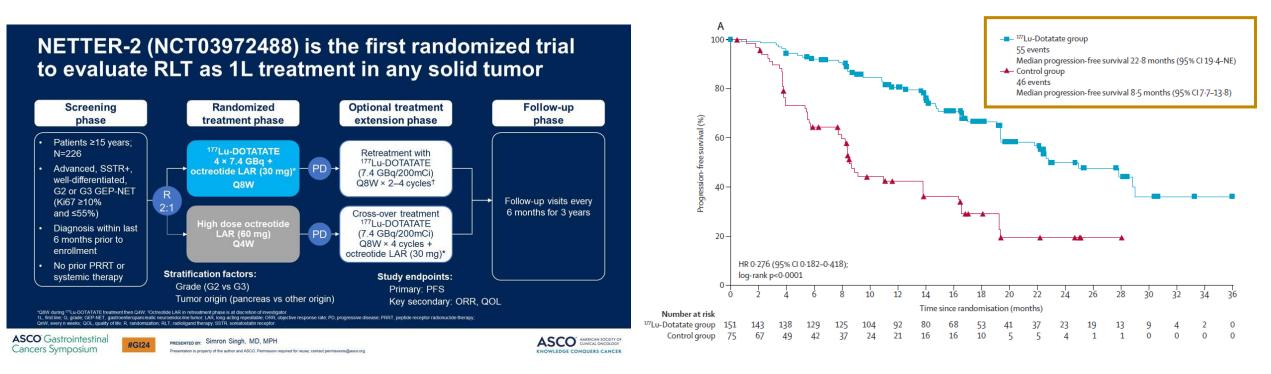

23

Systemic Therapy Considerations for GEP-NET


Multidisciplinary discussion important

Peptide receptor radionuclide therapy (PRRT): Revolutionized Treatment in GEP-NET

Becx MN et al. Cancers 2022; 14; 5792.

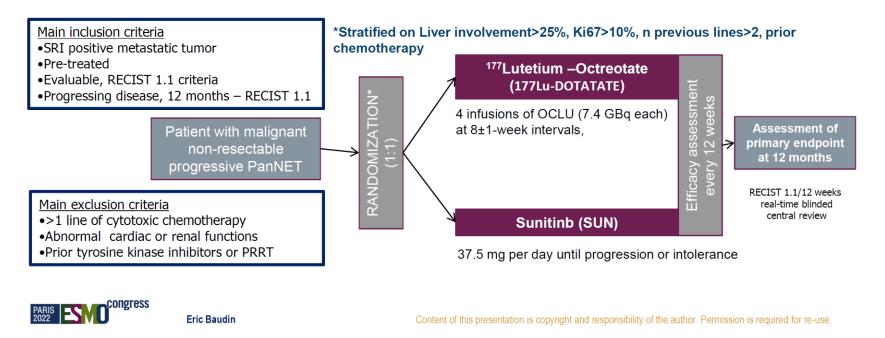

NETTER-1: Improved PFS in Previously Treated WD-Gr 1/2 Midgut NET

- ORR 18% vs 3%
- No OS benefit at final analysis, but 36% of pts on controlled arm received ¹⁷⁷Lu-dotatate at time of progression
- Median OS of 48.0 months in the ¹⁷⁷Lu-Dotatate group and 36.3 months (25.9–51.7) in the control group (HR 0.84 [95% CI 0.60–1.17]; two-sided p=0.30).
- Led to FDA approval in Feb 2018 for GEP-NET progressed on somatostatin analogs
- Data on non-midgut NET and higher grade disease lacking

26

NETTER-2: Improved PFS in 1L WD-Gr 2/3 GEP-NET

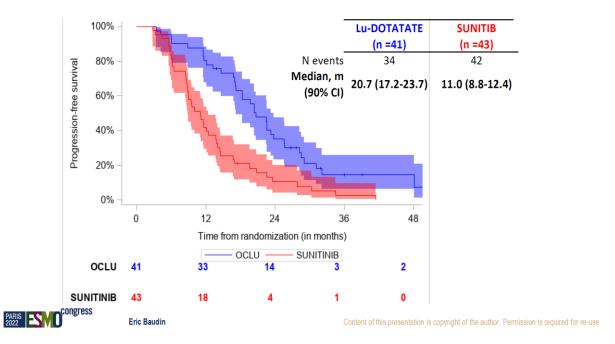
- First study demonstrating benefit of ¹⁷⁷Lu-dotatate in 1L treatment of GEP-NET, including WD-Gr2/3 NET and for pancreatic NET
- ORR 43% vs 9.3%, with higher ORR in pancreas vs small bowel NET (51.2% vs 26.7%)
- Most common AE's are low grade diarrhea, abdominal pain, nausea
- ~1% risk of MDS/AML, which can occur within first 2 years
- Questions remain:
 - 1) Do all patients need 1L Lutathera?
 - 2) Is high dose octreotide LAR a fair comparator in higher grade disease? Fred Hutchinson Cancer Center


Singh S et al. ASCO GI 2024, Abstract LBA588 Singh S et al. Lancet 2024; https://doi.org/10.1016/S0140-6736(24)00701-3 Singh S et al. ESMO-GI 2024, Abstract 211MO 27

OCULORANDOM Study

Academic randomized phase II trial in advanced progressive PanNET (well differentiated)

Inclusion between Feb 2015 – July 2020 in 10 French expert centers (GTE-RENATEN)



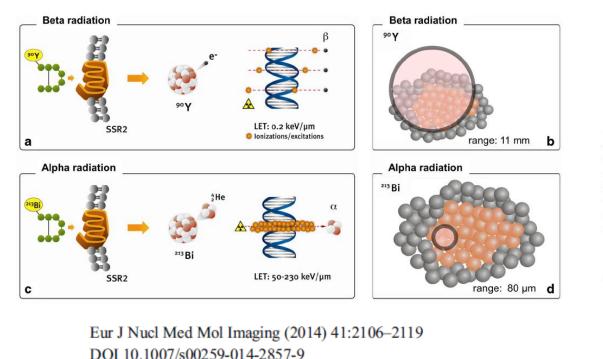
- First randomized study directly comparing PRRT to another systemic treatment
- Obtain prospective data of benefit of PRRT in a pNET specific population (as NETTER-1 investigated mainly midgut NET)
 Fred Hutchinson Cancer Center

Sequencing of PRRT in GEP-NET

Progression-free survival : real time blinded central review RECIST 1.1

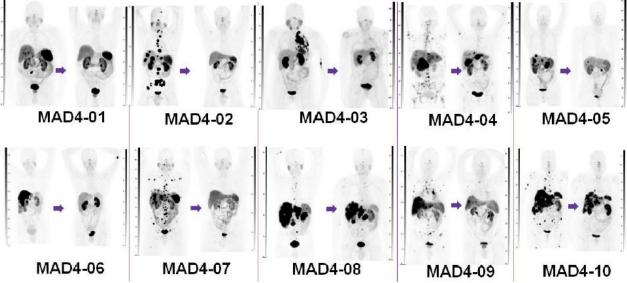
Baudin E et al. Abstract 8870. ESMO Congress 2022

Ongoing Studies Evaluating Sequencing of PRRT with Systemic Therapy


COMPETE (NCT03049189) PRRT vs. everolimus for GEP NET (G1-2)

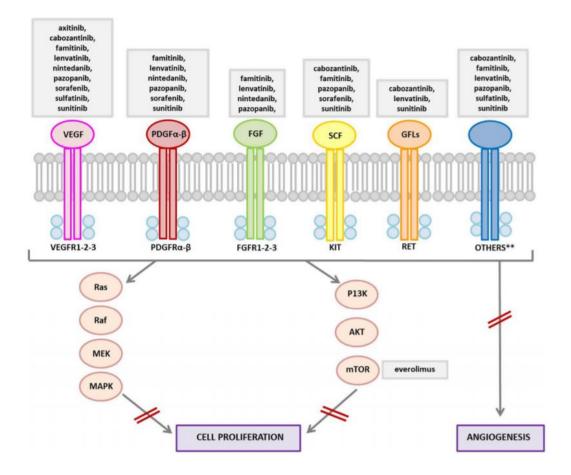
COMPOSE (NCT04919226) PRRT vs. everolimus/CAPTEM/FOLFOX for GEP NET (G2-3)

ComPareNET (NCT05247905) PRRT vs. CAPTEM for PanNET (G1-3)

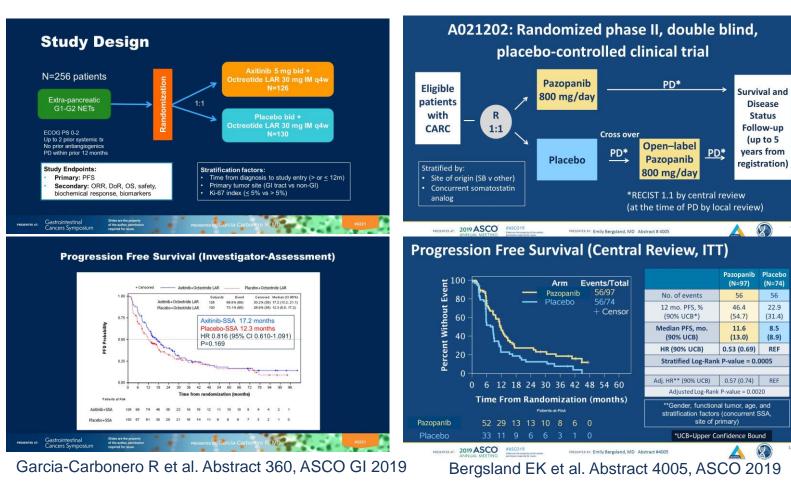

- OCULORANDOM suggests that earlier treatment with PRRT is better than using sunitinib earlier
- Ongoing studies will address PRRT compared to other systemic treatments and higher-grade GI NET
- Results of ongoing studies are important to better inform clinical practice and care of our patients
 Fred Hutchinson Cancer Center

Alpha-emitter PRRT: Evolving treatment in GEP-NET

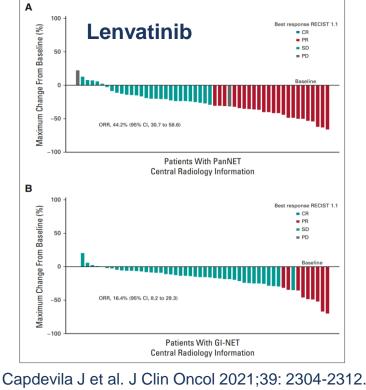
Targeted Alpha-Emitter Therapy With ²¹²Pb-DOTAMTATE for the Treatment of Metastatic SSTR-Expressing Neuroendocrine Tumors: First-in-Human, Dose-Escalation Clinical Trial

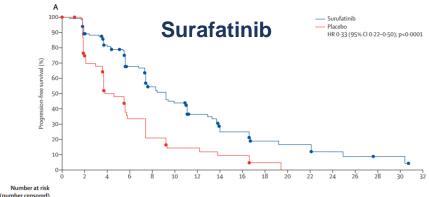

Ebrahim S Delpassand, Izabela Tworowska, Rouzbeh Esfandiari, Julien Torgue, Jason Hurt, Afshin Shafie and Rodolfo Núñez Journal of Nuclear Medicine January 2022, jnumed.121.263230; DOI: https://doi.org/10.2967/jnumed.121.263230

- Current PRRT treatments consists of beta-radiation
- Alpha-radiation particles penetrate cell with less scatter and increase chance for double stranded DNA breaks
- Preliminary studies suggest active even in patients who have received prior beta-emitter PRRT
- Phase 3 ACTION-1 Study ongoing against other systemic treatments (NCT05477576)
 Fred Hutchinson Cancer Center


Tyrosine Kinase Inhibitors/Angiogenesis Inhibition in GEP-NET

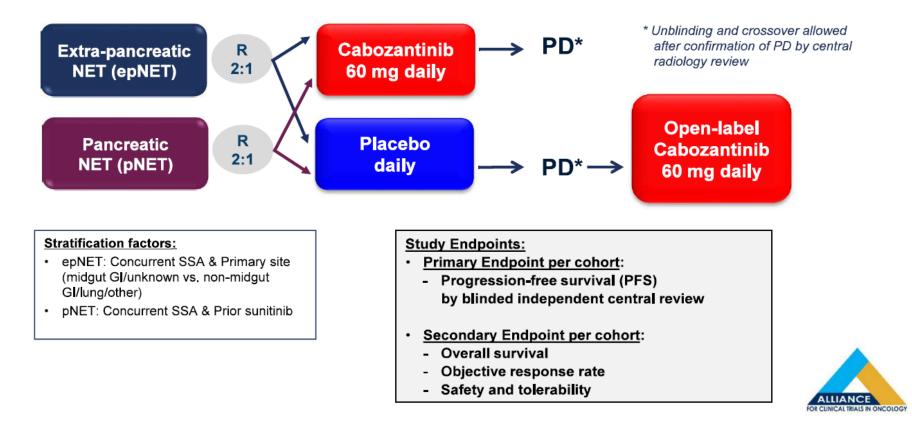
- Tyrosine kinase inhibitors (TKI) target various pathways, particularly with respect to angiogenesis
- VEGF/VEGFR pathway is primary target but most TKI's target other pathways (e.g. c-KIT, PDGFR, others)
- New TKI's inhibit other pathways (e.g FGFR, CSF1-R, MET, AXL) which may be able to overcome resistance after progression on prior treatments
- Sunitinib only approved TKI (for pNET)




Grillo F et al. Endocrine-Related Cancer, 2018; 25: R405–R418

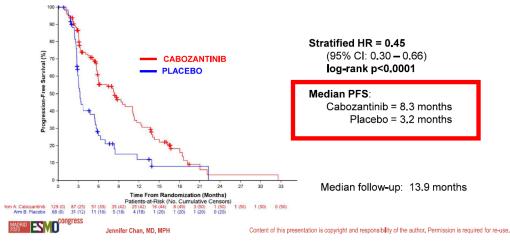
Studies of Other Tyrosine Kinase Inhibitors

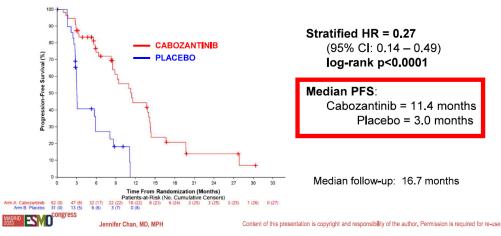
- Various TKI's (pazopanib, axinitinib, lenvatinib, surafatinib) have been evaluated
- New TKI's target other pathways (e.g. CSF-1R with surafatinib)
- No new approvals due to mixed results (pazopanib, axitinib), non-randomized & toxicities (lenvatinib), or need to be studied in other countries (surafatinib)


Surufatimib 129 (0) 100 (16) 83 (24) 63 (31) 46 (36) 37 (36) 25 (42) 13 (47) 13 (47) 8 (49) 7 (49) 7 (49) 4 (50) 3 (50) 2 (51) 2 (51) 0 (52 Placebo 69 (0) 43 (11) 25 (15) 16 (16) 10 (16) 6 (17) 6 (17) 4 (17) 4 (17) 1 (18) 0 (18)

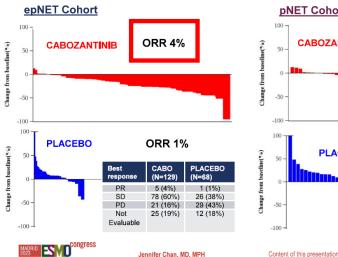
Xiu J et al. Lancet Oncol 2020; 21: 1500–12. Paulson S et al. Abstract 4114, ASCO 2021.

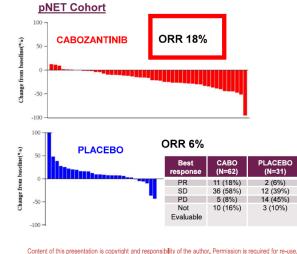
Alliance A021602/CABINET Study: Cabozantinib for Refractory GEP-NET and Pulmonary NET


CABINET Trial Study Design

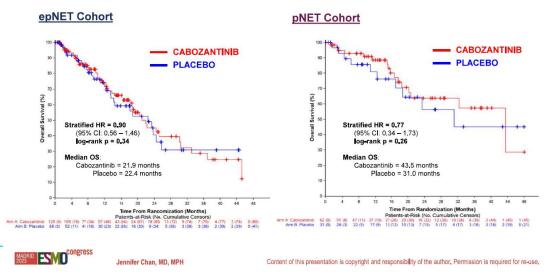

33

CABINET Trial Results


epNET Cohort: Progression-Free Survival (Local Review)



pNET Cohort: Progression-Free Survival (Local Review)



Best Overall Response (Local Review)

Overall Survival

Chan JA et al. Abstract LBA53. ESMO Congress 2023

Summary of CABINET Study Results

- Cabozantinib demonstrated significant improvement in PFS in previously treated GEP-NET
- Benefit seen in pancreas and small bowel NET, but benefit greater in pancreatic NET
- First study demonstrating benefit of an angiogenesis inhibitor in WD-Gr3 disease
- Notable AE's: Fatigue, diarrhea, hypertension, hand/foot syndrome
- Will be a new standard of care in previously treated GEP-NET (anticipated PDUFA date Apr 2025)
- <u>Questions remain:</u>
 - Optimal dose?: Recommended to start 60 mg po daily then dose-reduce as needed for toxicities
 - How best to sequence with other therapies? (e.g. pancreatic NET where there are more options)

Belzutifan in VHL-Associated Pancreatic NET (pNET)

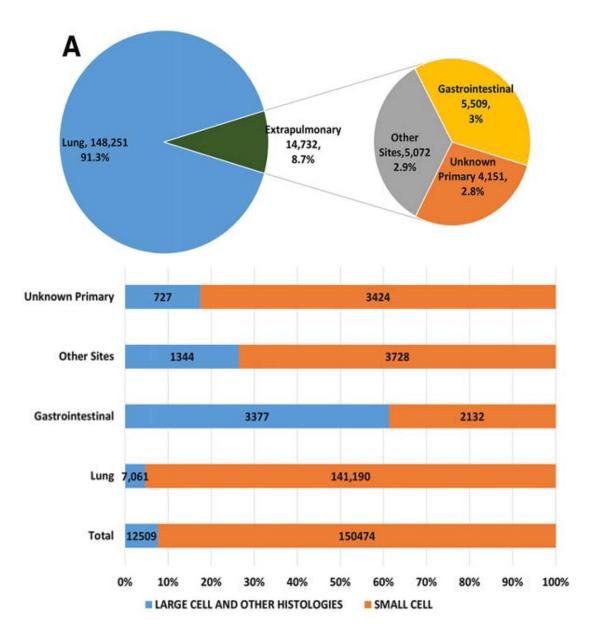
The NEW ENGLAND JOURNAL of MEDICINE

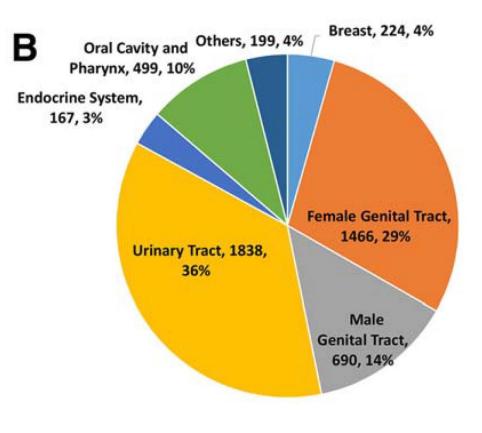
ORIGINAL ARTICLE

Belzutifan for Renal Cell Carcinoma in von Hippel–Lindau Disease

	RCC (n=61)	Pancreatic Lesions (n=61)	pNET (n=22)	CNS Hemangioblasto ma (n=50)
Objective Response Rate (ORR = CR + PR)	30 (49%)	47 (77%)	20 (91%)	15 (30%)
Complete response (CR)	0	6 (9.8%)	3 (13.6%)	3 (6.0%)
Partial response (PR)	30 (49%)	41 (67.2%)	17 (77.3%)	12 (24.0%)
Stable Disease (SD)	30 (49%)	12 (21.3%)	2 (9.1%)	31 (62.0%)
Median time to response	8.2 months	8.4 months	5.5 months	3.2 months
Median duration of response	Not reached	Not reached	Not reached	Not reached

- Belzutifan targets HIF-2^α which is upregulated in VHL associated cancers
- Secondary analysis of belzutifan in patients with VHL associated RCC who had concurrent pNET
 - Belzutifan demonstrated ORR of pNET
 - Listed in NCCN guidelines as an option for progressive VHL-associated pNET
- Remaining questions:


٠


- Most VHL pNET are indolent and localized disease --> when would Belzutifan be helpful?
- Would this provide benefit in metastatic pNET (study excluded metastatic disease)?
- Efficacy compared to other therapies for pNET? (i.e. sequencing)

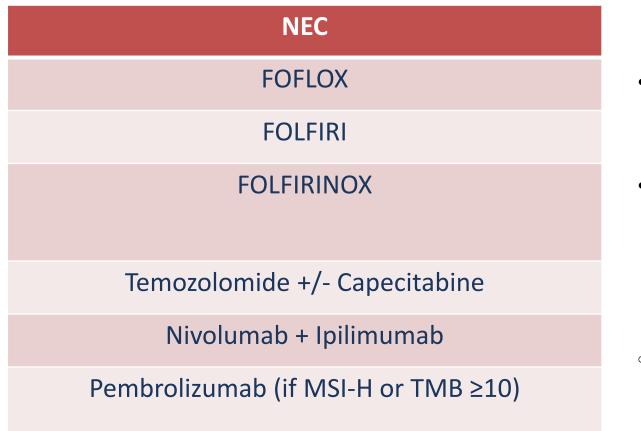
Jonasch E, et al. N Engl J Med 2021; 385:2036-46.

Systemic Therapies for GEP-NEC

NEC Prevalence (SEER Database 1973-2012)

Dasari A et al. Cancer 2018

Current Treatment Paradigm in NEC


•Extrapolated from small cell lung cancer (SCLC) with use of platinum (cisplatin or carboplatin)/etoposide

•Data from restrospective series, except for 1 recent prospective study presented

Study	Ν	Histology (%)	Ki-67 Proportion	OS	PFS	RR
NORDIC-NEC ¹ (GI)	305	Small Cell: 38% Non-small cell: 49% Unknown: 13%	≥55%: 54%	11 mo	4 mo	Overall: 31% Ki-67 ≤ 55%: 15% Ki-67 ≥55%: 42%
FFCD-GTE ² (GI & unknown primary)	Total: 253 GI-NEC: 189	Small Cell: 39% Large Cell: 61%	51-80%: 47% >80%: 18%	11.6 mo	6.2 mo	50%
Mackey JR et al. ³ (GU)	Total 180 (106 bladder, 60 prostate, 8 renal, 6 ureter)	42.7% with mixed histology (adeno+ small cell);	Not reported	Overall: 10.5 mo Prostate: 7 mo Bladder: 13 mo	?	?
Margolis B et al. ⁴ (Cervix)	1,896	Not reported	Not reported	~10 mo	?	?
Morizane C et al. (GI, prospective) ⁵	170	Small Cell: 48% Large Cell: 52%	Ki-67 ≥50%: 85%	12.5 mo	5.6 mo	54.5%

¹Sorbye H et al. Ann Oncol 2013 ²Walter T et al. Eur J Cancer 2017 ³Mackey J et al. J Urol 1998 ⁴Margolis B et al. Gynecol Oncol 2016 ⁵Morizane C et al. JAMA Oncol 2022.

Systemic Therapies for Refractory NEC

Adapted from NCCN Neuroendocrine Guidelines, v. Feb 2022

 No established standard for NEC after progression on platinum/etoposide

• Outcomes remain poor:

- 。 ORR: 20-30%
- Median PFS ~3 months
- 。 Median OS 6-9 months
- Need more effective treatments

Nivolumab + Ipilimumab in Refractory Extrapulmonary NEC

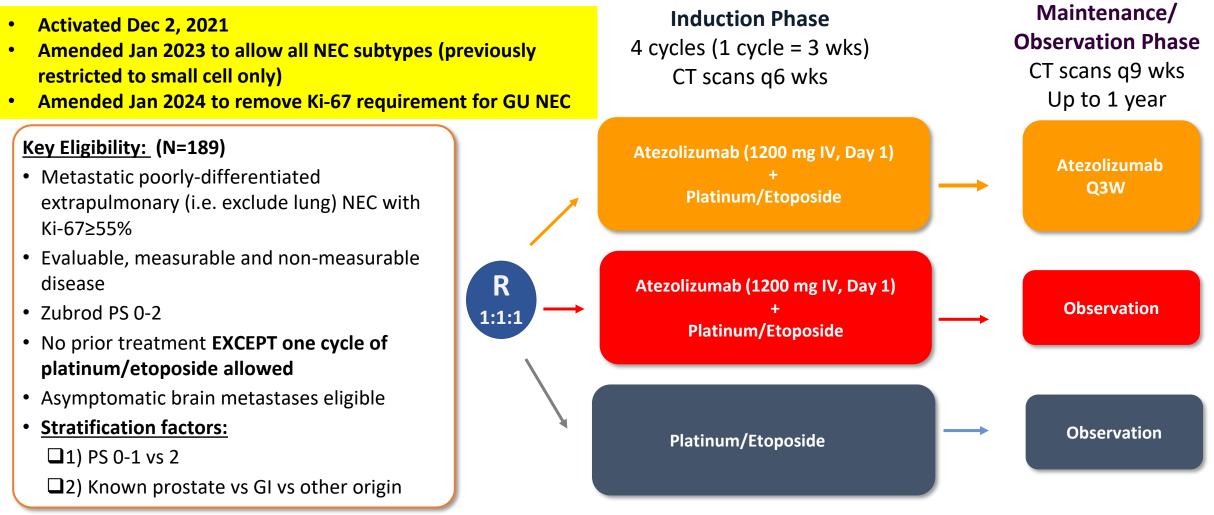
SWOG S1609: Gastrointestinal NET GCO-001 NIPINEC trial Lung and Thymus 100 (excluding pancreas) <2 mitoses/10 HPF <2 mitoses/10 HPF measurement 05 Low Grade (G1) **DART Study** AND/OR <3% Ki-67 index AND no necrosis Randomized, non-comparative phase II trial – Fleming's two-stage design 2-20 mitoses/10 HPF 2-10 mitoses/10 HPF Grade (G2) AND/OR 3-20% Ki-67 index AND/OR foci of necrosis >20 mitoses/10 HPF High Grade (G3) >10 mitoses/10 HPF AND/OR >20% Ki-67 index 90 patients Advanced, refractory tumor pulmonary (large-cell Nivolumab only) or 3 mg/kg IV every 2 weeks gastroenteropancreatic baseline neuroendocrine carcinoma 90 patients R 1:1 Progression after 1 or 2 Nivolumab 5 previous lines of including at least one line of platin-3 mg/kg IV every 2 weeks ange based chemotherapy Ipilimumab Unresectable locally ·단_50 High grade 1mg/kg IV every 6 weeks advanced or metastatic Intermediate grade Maximu Measurable disease Low grade (RECIST 1.1) 2021 ESVO -100 -Thomas Walter MD, PhD Content of this presentation is copyright and responsibility of the author. Permission is required for re-use.

Response Rate by Tumor Grade of Neuroendocrine Neoplasm

Patel SP et al. Clin Cancer Res 2020; 26: 2290-6

Walter T et al. Abstract LBA41. ESMO Congress 2021

- Effective in high grade NEN/NEC (and not NET) ۲
- Extrapumonary ORR: 10-25% (lower compared to lung NEC ~20-60%; nivolumab alone ORR: 7.1%) ٠
- 6-month PFS: 20-30%; Median OS 6-11 months
- Suggests that combination therapy is more effective than monotherapy


until progression or

unacceptable toxicity

(2 years max)

SWOG S2012: Randomized Ph 2/3 Trial of First Line Platinum/Etoposide +/- Atezolizumab for Extrapulmonary NEC

Primary endpoint: OS (from time of randomization)

Secondary endpoints: OS (from time of maintenance/observation), PFS, ORR, DOR

Translational analyses: Banking tissue and blood for future biomarker analyses

Death-like Ligand 3 (DLL-3): Emerging Target in NEC

Wermke M, et al. Future Oncol 2022

Wermke M, et al. Abstract 8502. ASCO 2023

- Tarlatamab (BI 764532) is a bi-specific T-cell engager (BiTE) and approved for refractory SCLC¹
- Promising early results in patients with previously treated NEC
- Efficacy may differ in small cell lung cancer vs extrapulmonary NEC (ORR 26% vs 19%)
- Need larger trials and longer term follow up to look at survival and side effects

Fred Hutchinson Cancer Center

Thank you

dbzhen@uw.edu