

Esophageal and Gastric Cancer

2024 Comprehensive Oncology Review

Veena Shankaran MD, MS Professor, Medical Oncology Co-Director, Hutchinson Institute for Cancer Outcomes Research University of Washington School of Medicine Fred Hutchinson Cancer Center

Land Acknowledgement

Fred Hutchinson Cancer Center acknowledges the Coast Salish peoples of this land, the land which touches the shared waters of all tribes and bands within the Duwamish, Puyallup, Suquamish, Tulalip and Muckleshoot nations.

Table of Contents

Epidemiology and Risk Factors

2 Diagnosis, Staging, Pathology

Esophageal cancer – stage I-III

Gastric cancer – stage I-III

5 Advanced ESO-Gastric cancers

Emerging Questions / Topics in Upper GI Cancers

- 1. Esophageal adenocarcinoma CROSS regimen OR perioperative chemotherapy (ESOPEC)
- 2. Immune checkpoint inhibitors in perioperative treatment for gastric cancer
- 3. CPS cut-offs !! Squamous vs. Adeno / Disease stage
- 4. Targeting claudin 18.2 what's coming up

Epidemiology and Risk Factors

Incidence and Mortality - 2024

	Estima	ated new cases		Estimated deaths		
	Male	Female	TOTAL	Male	Female	TOTAL
Esophageal	17,690	4,680	22,370	12,880	3,250	16,130
Gastric	16,160	10,730	26,890	6,490	4,390	10,880

Esophageal Cancer: 6th most common cause of cancer death worldwide Gastric Cancer: 3rd most common cause of cancer death worldwide

Esophageal Cancer Epidemiology

Fred Hutchinson Cancer Center

Esophageal Cancer: Risk Factors

Squamous Cell Carcinoma	Adenocarcinoma	
•Tobacco (5-10 x risk)	•Tobacco (2 x risk)	
•EtOH (3-7 x risk)	•EtOH (1.2 x risk)	
•Betel nut	•GERD (7.7 x risk)	
•Hot liquids – burns	•Obesity (3 x risk)	
•Nitroso compounds		

Barrett's Esophagus

Morales CP et al. *Lancet.* 360: 9345, 2002 American Gastroenterological Association

Fred Hutchinson Cancer Center

Gastric Cancer: Risk Factors

Gastric Cancer

•Nitrite-containing, salt preserved foods

•Smoking (distal gastric cancers) (OR 2.1 vs. nonsmoker)

•GERD (cardia tumors) (OR 2.0)

•Obesity (2-3x higher risk in obese vs. normal BMI)

•**H. pylori** (intestinal subtype; body/distal) (1.2-16.7 fold increased risk, particularly CagA strain)

•**Familial** (Hereditary diffuse gastric cancer (CDH1 mut; E. cadherin loss); HNPCC (Lynch); Peutz-Jehgers (STK11); Li-Fraumeni (p53); FAP (APC)

Gastric Cancer Trends

International variation in age-standardized gastric cancer incidence globally

Fred Hutchinson Cancer Center

Gastric Cancer in Asian vs. Western Populations

- In Asia:
- Younger age at diagnosis
- More localized disease at presentation (53% in Japan vs. 27% in US) screening programs
- More common in distal stomach
- More aggressive surgical resection
- More lines of systemic therapy
- Better Survival

Diagnosis and Staging

Fred Hutchinson Cancer Center

Esophageal Cancer Staging: AJCC 8th ed

AJCC 8 th	Edition - Esophageal Cancer Staging	Stage groupings	
T stage	Tis = high grade dysplasia T1a = Tumor invades lamina propria or muscularis mucosae T1b = Tumor invades submucosa) T2 = Tumor invades muscularis propria T3 = Tumor invades adventitia T4a = Resectable tumor invading pleura, pericardium, or diaphragm T4b = Unresectable tumor invading other adjacent structures, such as aorta, vertebral body, trachea, etc.)	 -Location for squamous (not adeno) -Grade is included in stage grouping for both 	
N stage	N0 = No lymph node metastases N1 = Metastases in 1-2 regional lymph nodes N2 = Metastases in 3-6 regional lymph nodes N3 = Metastases in 7 or more regional lymph nodes		
M stage	M0 = no distant metastases M1 = distant metastases		

Gastric Cancer Staging: AJCC 8th ed

AJCC 8 th Edition - Esophageal Cancer Staging				
T stage	Tis = high grade dysplasia T1a = Tumor invades lamina propria or muscularis mucosae T1b = Tumor invades submucosa T2 = Tumor invades muscularis propria T3 = Tumor penetrates subserosal connective tissue without invasion of visceral peritoneum or adjacent structures T4a = Tumor invades serosa (visceral peritoneum) T4b = Tumor invades adjacent structures/organs			
N stage	N0 = No lymph node metastases N1 = Metastases in 1-2 regional lymph nodes N2 = Metastases in 3-6 regional lymph nodes N3 = Metastases in 7 or more regional lymph nodes			
M stage	M0 = no distant metastases M1 = distant metastases*			

M1 disease: positive peritoneal cytology (without gross peritoneal disease) is considered M1 disease

Esophageal and Gastric Cancer Staging Workup

- <u>**T-stage</u>**: EUS*, Bronchoscopy (if above carina)</u>
- <u>N-stage</u>: EUS (round, hypoechoic, smooth
- bordered), PET
- <u>M-stage</u>: CT, PET, diagnostic laparoscopy (gastric)

* Dysphagia is usually indicative of T3 lesion regardless of EUS EUS may not be helpful in linitis plastica / diffuse-type gastric cancer

GE Junction– Siewert Classification

Gronnier C, et al. Journal of Visceral Surgery. 149:1, Feb 2012

Esophageal Cancer Staging Nomenclature

- Clinical staging (u or c prefix)
- Pathologic staging (after chemoradiation): yp prefix
- Example: uT3N1 (stage IIIB) distal esophageal adeno
 → chemoRT → surgery → ypT1N0

Tumor Regression Grading

Modified Ryan Scheme			
Description	Tumor Regression Score		
No viable cancer cells (complete response)	0		
Single cells or rare small groups of cancer cells (near complete response)	1		
Residual cancer with evident tumor regression, but more then single or rare groups of cancer cells (partial response)	2		
Extensive residual cancer with no evident tumor regression (poor or no response)	3		

Pathology

Fred Hutchinson Cancer Center

Upper GI Cancer Molecular Subtypes

Fred Hutchinson Cancer Center

The Cancer Genome Atlas Research Network. *Nature*, 2017. 541: 69–175

Lauren Classification - Adenocarcinoma

Intestinal		Diffuse		
•	Inflammation present (H. pylori, atrophic gastritis,	•	No inflammation	
	glandular dysplasia)	•	Loss of E-cadherin no clear precancerous lesion	
•	'Cascade' of events:			
	inflammation \rightarrow intestinal metaplasia \rightarrow dysplasia \rightarrow invasive carcinoma	•	No clear mucosal mass - Invades gastric wall (e.g. linitis plastica)	
•	Mucosal mass	•	Highly metastatic, invasive, poor prognosis	
•	Develop over years, better prognosis			

Intestinal Type Adenocarcinoma

Fred Hutchinson Cancer Center

Diffuse Type Adenocarcinoma

Hereditary Diffuse Gastric Cancer

- Germline mutations in CDH1 gene (leading to loss of Ecadherin)
- Autosomal dominant with > 70% penetrance
- Diffuse, signet ring type adenocarcinoma
- Increased incidence lobular breast cancer
- Prophylactic gastrectomy should be considered

Her2 + Esophageal and Gastric Cancers

- **15-20%** of all gastric/esophageal adenocarcinoma (distal esophageal, GE junction, intestinal-type)
- Her2 3+ OR FISH + (*HER2*/CEP17 ratio ≥2.0) considered eligible

Gastric / Eso	Breast	
Heterogeneous expression	Uniform expression	
 Interpretation criteria differs between biopsy and resection 	 Same interpretation criteria regardless of specimen 	
 Apical membrane often does not stain - + result requires only lateral / basolateral staining 	Complete circumferential staining required for positive result.	

PDL1 Assessment in Upper GI Cancer

- PD-L1 is expressed in approximately 40% of esophagogastric cancers.
- **CPS Score** -- Unlike melanoma or lung cancer, membranous PD-L1 expression is rare ; occurs predominantly on infiltrating immune cells.
- Pembro / Keynote studies = PD-L1 **IHC 22C3** PharmaDx
- Nivo / BMS gastric studies = PD-L1 IHC 28-8 PharmaDx

Stage I-III Esophageal Cancer

Esophageal Cancer Treatment Algorithm

Endoscopic Mucosal Resection – T1a lesions

Surgery (Esophagectomy)

Transhiatal approach	Transthoracic (Ivor Lewis)	
Blind dissection of tumor	Direct visualization of tumor	
Thoracotomy not required	Thoracotomy required	
 Anastomotic leak more common, but easier to manage 	 Anastomotic leak less common, but mediastinal leaks difficult to manage – higher morbidity 	
 Abdominal and cervical incisions 	Abdominal and thoracic	

incisions

Surgery should be done at a high-volume center

Fred Hutchinson Cancer Center

• Shorter ICU / hospital stay

Barreto and Posner. *World J Gastroenterol*. Aug 2010 Chang AC, et al. Ann Thoracic Surgery. 85(2), 2008.

Rationale for Chemoradiation in Esophageal Cancer

•Staging tests aren't perfect

•Esophagus nearby heart, great vessels, and lungs

•Neoadjuvant chemoradiation helps:

- Downstage the tumor
- Sterilizes the surgical field
- Treat micrometastatic dx
- Much more challenging to give adjuvant chemoRT

Dutch CROSS Trial

ORIGINAL ARTICLE

Preoperative Chemoradiotherapy for Esophageal or Junctional Cancer

P. van Hagen, M.C.C.M. Hulshof, J.J.B. van Lanschot, E.W. Steyerberg, M.I. van Berge Henegouwen, B.P.L. Wijnhoven, D.J. Richel,
G.A.P. Nieuwenhuijzen, G.A.P. Hospers, J.J. Bonenkamp, M.A. Cuesta,
R.J.B. Blaisse, O.R.C. Busch, F.J.W. ten Kate, G.-J. Creemers, C.J.A. Punt,
J.T.M. Plukker, H.M.W. Verheul, E.J. Spillenaar Bilgen, H. van Dekken,
M.J.C. van der Sangen, T. Rozema, K. Biermann, J.C. Beukema,
A.H.M. Piet, C.M. van Rij, J.G. Reinders, H.W. Tilanus,
and A. van der Gaast, for the CROSS Group*

Dutch CROSS Trial

Rationale	 Does preoperative chemoradiation add to benefit of surgery?
N = 368	 188 surgery vs 180 chemoRT + surgery
Inclusion	 Adenocarcinoma or SCC Esophagus and GE Junction (Siewert 3 excluded); T1N1, T2-3N0-1
Treatment Arms	 Surgery alone (Transthoracic for mid-thoracic tumors, Transhiatal for distal tumors) Preoperative chemoRT-> surgery Total Radiation Dose = 41.4 Gy Weekly Carboplatin AUC 2 + Paclitaxel 50mg/m2

Histologic Subtype and Survival

Fred Hutchinson Cancer Center

Dutch CROSS Trial – Key Results

	Surgery alone	CRT + surgery
Ν	188	175
R0 resection rate	67%	92.3%
Path complete response	N/A	32%
Med survival	26 months	49 months
1-year survival	70%	82%
3-year survival	48%	59%
Anastomotic leakage	25%	22%
In-hospital mortality	3.8%	3.4%
Trimodality + Trastuzumab ? RTOG 1010

Radiation Esophagitis

- **Topical anesthetics** (e.g. viscous lidocaine)
- Analgesics and antiinflammatories (narcotics, dex elixir, carafate)
- **Dietary modification** (bland, soft, pureed, less acidic, room temp, converting to liquid medication when possible

Supplementary nutrition

• Avoid PEG/G tubes in surgical candidates; NG / Dobhoff preoperatively in the short term

Adjuvant Therapy -- Checkmate 577

The NEW ENGLAND JOURNAL of MEDICINE

ESTABLISHED IN 1812

APRIL 1, 2021

VOL. 384 NO. 13

Adjuvant Nivolumab in Resected Esophageal or Gastroesophageal Junction Cancer

R.J. Kelly, J.A. Ajani, J. Kuzdzal, T. Zander, E. Van Cutsem, G. Piessen, G. Mendez, J. Feliciano, S. Motoyama, A. Lièvre, H. Uronis, E. Elimova, C. Grootscholten, K. Geboes, S. Zafar, S. Snow, A.H. Ko, K. Feeney, M. Schenker, P. Kocon, J. Zhang, L. Zhu, M. Lei, P. Singh, K. Kondo, J.M. Cleary, and M. Moehler, for the CheckMate 577 Investigators*

Checkmate 577 Study Design

CheckMate 577

CheckMate 577 study design

• CheckMate 577 is a global, phase 3, randomized, double-blind, placebo-controlled trial^a

Median follow-up was 24.4 months (range, 6.2-44.9)^g

• Geographical regions: Europe (38%), US and Canada (32%), Asia (13%), rest of the world (16%)

*ClinicalTrials.gov number, NCT02743494; ^bPatients must have been surgically rendered free of disease with negative margins on resected specimens defined as no vital tumor present within 1 mm of the proximal, distal, or circumferential resection margins; < 1% includes indeterminate/nonevaluable tumor cell PD-L1 expression; ^dUntil disease recurrence, unacceptable toxicity, or withdrawal of consent; *Assessed by investigator, the study required at least 440 DFS events to achieve 91% power to detect an average HR of 0.72 at a 2-sided α of 0.05, accounting for a pre-specified interim analysis; ^fThe study will continue as planned to allow for future analysis of OS; «Time from randomization date to clinical data cutoff (May 12, 2020).

5

Disease-Free Survival

Median DFS 22.4 months (Nivo) vs. 11.0 months (Placebo)

Benefit seen across all pre-specified subgroups; PD-L1 expression did not matter

Nivolumab was FDA approved in May 2021 for adjuvant esophageal cancer with residual disease after trimodality therapy (i.e. not for patients with pathological CR)

Fred Hutchinson Cancer Center

Kelly, RJ et al. NEJM. 384(13): 2021.

ESOPEC – Periop FLOT vs. CROSS in Esophageal Adeno

Fred Hutchinson Gancer Genter

ESOPEC – Key Results

	FLOT	CROSS
Completed neoadjuvant Tx	87.3%	67.7%
Completed adjuvant Tx	52.5%	
R0 resection	94.2%	95.0%
Path CR	16.8%	10%

ESOPEC – Summary

- Lower RT dose (41.4 Gy) than we typically use here in the US; low rates of completion of neoadjuvant Tx and low pCR rates compared with CROSS Trial (32%)
- Control arm does not include adjuvant nivolumab
- Systemic therapy given in CROSS might be too little in adenocarcinoma
- For fit healthy patients with esophageal adenocarcinoma would prefer perioperative FLOT

Definitive Chemoradiation: RTOG 8501

Survival Estimates by Histologic Type after Combined Modality Therapy			
Year	Adenoca (% alive)	Squamous Cell (% alive)	
0	100%	100%	
1	52%	59%	
2	22%	38%	
3	17%	30%	
4	13%	26%	
5	13%	21%	

Take – Home Points – Stage I-III Esophageal Cancer

1. Endoscopic resection for T1a lesions

2. For T2+ or N1+ tumors, Trimodality therapy \rightarrow Adjuvant nivolumab is still a standard approach for squamous cell carcinoma and adenocarcinoma

3. Esophageal adenocarcinoma – recent data supports a non-radiation approach with perioperative FLOT

Stage I-III Gastric Cancer

Fred Hutchinson Cancer Center

Gastric Cancer Treatment Algorithm

Gastric Resection

49

Gastric Cancer Lymph Node Dissection

Lymph Node Dissection	Description
D1	lesser and greater curvature, paracardial
D2	Left gastric, hepatic, celiac, splenic (could require pancreatectomy or splenectomy to access these nodes)
D3	D2 + portahepatic, hepatoduodenal
D4	retropancreatic, root of mesentery, transverse mesocolon, paraaortic

The Dutch Gastric Cancer Group: D1 vs. D2

711 patients undergoing curative resection of gastric cancer

	Peri operative morbidity	Peri operative mortality	5-yr survival
D1	25%	4%	45%
D2	43%	10%	47%

15 Year Follow Up

- High rates of over/under dissection; 45% node negative
- D2 dissection is preferred over D1

Post-Gastrectomy Considerations

- Inability to store and break down food frequent SMALL meals
- Vitamin B12 deficiency lack of instrinsic factor production (cardia)
- Iron deficiency decreased gastric acid
- Dumping syndrome rapid emptying into small bowel lightheadedness, nausea, diarrhea

Adjuvant and Neoadjuvant Treatment

Sasako, M. et al. *J Clin Oncol*. 2011; 29(33): 4387 Cunningham, D et al. *NEJM*. 2006; 355(1): 11 MacDonald, JS et al. *NEJM*. 2001; 345(10): 725

Adjuvant ChemoRT: INT 0116/SWOG 9008

Adjuvant ChemoRT: INT 0116/SWOG 9008

Fred Hutchinson Cancer Center

Adjuvant ChemoRT: INT 0116/SWOG 9008

Level of lymph node dissection	%	
< D1	54%	
D1	36%	
D2	10%	
 <u>Criticisms of INT 0116/SWOG 9008:</u> Survival benefit with chemoRT because of inadequate surgery Better chemotherapy regimens after this trial (so we may not need RT) 		

ARTIST and ARTIST II Trials: Adjuvant Chemo vs. RT

Adjuvant Chemotherapy vs. CRT ARTIST Trial

Park, S. et al. J Clin Oncol. 2015; 33(28)

ARTIST and ARTIST II Trials: Adjuvant Chemo vs. RT

ARTIST II Trial

Adjuvant chemoRadioTherapy with R S-1 (S-1 for 1 year) A N D - 900 Patients with D2 resected gastric 0 Adjuvant chemoRadioTherapy with adenocarcinoma M SOX (S-1/oxaliplatin for 6 months) - pStage II to III, LN+ - Stratified by (1) stage, Ζ (2) type of surgery (STG vs. TG), A Adjuvant chemoRadioTherapy (3) Lauren classification $(SOX \times 2 \rightarrow S - 1/RT \rightarrow SOX \times 4)$ 0 S-1: 40-60 mg bid 4/2 weeks q6 weeks Ν

SOX: S-1 40 mg/m² bid 2/1 weeks q3 weeks+oxaliplatin 130 mg/m² D1 SOXRT: S-1 40 mg bid daily concurrently with RT 45 Gy for 5 weeks

ARTIST and ARTIST II Trials: Adjuvant Chemo vs. RT

Median OS – ARTIST I

DFS – ARTIST II

Fred Hutchinson Cancer Center

Park, S. et al. J Clin Oncol. 2015; 33(28)

Park, S. et al. Annals of Onc. Volume 32, Issue 3P368-374March 2021

Is there a role for Postoperative Radiation?

NO, except ...

- Inadequate resections / lymph node dissection
- Positive margin (R1 resection)
- Studies evaluating radiation in neoadjuvant setting for gastric cancer (e.g. TOPGEAR)

Perioperative Chemotherapy: MAGIC Trial

Perioperative Chemotherapy: MAGIC Trial

5-year survival

- 36.3% (Chemo)
- 23.0% (Surgery)

Median Survival

- 24 months (Chemo)
- 20 months (Surgery)

Perioperative Chemotherapy: FLOT-4

ECF/ECX x 3 \rightarrow surgery \rightarrow ECF/ECX x 3

Perioperative Chemotherapy: FLOT-4

Key Results:

- 50% FLOT vs. 37% ECF/X completed post-operative chemotherapy
- Median OS 50 months vs. 35 months (HR 0.77, p=0.012)
- 3yr OS 57% FLOT vs. 48% ECF/X
- Postop complications and 30/90 day mortality were similar

Adding to FLOT-4?

PETRARCA study (phase II/III) (FLOT +/- Trastuzumab)

- 81 patients randomized
- No benefit with addition of trastuzumab to FLOT path CR, R0 resection rate, DFS, OS
- Study ended early and did not proceed to phase III

Ramses/FLOT-7 (phase II/III) (FLOT-4 +/- Ramucirumab)

- 180 patients randomized (excluding Siewert type I)
- Endpoints: Path response, R0 resection rate, safety
- Findings: Increased AEs, Improved R0 resection rate (97% vs. 83%, p=0.0049), similar path response

Incorporating IO into Perioperative Treatment

Matterhorn study – Perioperative FLOT +/-Durvalumab resected Gastric + GEJ cancer

Improved path CR rate (19% vs. 7%)

DFS / OS data still pending

Keynote 585 – Perioperative FLOT +/-Pembrolizumab resected Gastric + GEJ cancer

Improved path CR rate (12.9% vs. 2%)

DFS: 44.4 mo vs. 25.3 mo, HR 0.81, p=0.0198, NS*

mOS: 60.7 mo vs. 58 mo, HR 0.90, p=0.174

* Above threshold of significance p=0.0178

- 1. Shitara K, et al; *Lancet Oncol*. 2024 Feb;25(2):212-224.
- Janjigian YY, et al. LBA73 <u>Ann Oncol</u>. 2023;34(suppl 2):S1315-S1316.

Fred Hutchinson Cancer Center

<u>Take – Home Points – Stage I-III Gastric Cancer</u>

1. D2 gastrectomy should be performed when possible

2. Post-gastrectomy B12 and iron supplementation

3. Perioperative chemotherapy with FLOT-4 regimen

4. Vanishing role of radiation therapy in gastric cancer treated with D2 lymph node dissection

5. Perioperative chemotherapy is a preferred strategy in GE jxn adenocarcinoma

6. Role for IO in perioperative therapy is still unclear

Advanced / Metastatic Esophageal and Gastric Cancers

Initial Diagnostic Evaluation

Clinical Assessment

Labs and Imaging

Molecular testing

- ECOG PS
- Comorbidities
- Nutritional status
 - o Stent
 - o G or J tube

- CT C/A/P w/ IV contrast (peritoneal dz)
- CEA
- CA 19-9

- Her2 IHC and FISH (3+ or FISH+)
- PDL1 (CPS score)
- MSI
- EBV (Gastric)
- NGS for most tumor mutational burden

First-Line Chemotherapy Backbones

2-drug regimens are preferred to the older 3-drug regimens (e.g. ECF, EOX, EOF, DCF, modified DCF)

- FOLFOX (US)
- 5-FU + cisplatin
- FOLFIRI
- Can use capecitabine (but ensure patient can swallow)

Initial Treatment - 2024

Fred Hutchinson Cancer Center
Targeting Her2 – TOGA Trial

Fred Hutchinson Cancer Center

Bang, YJ et al. Lancet 2010; 376: 698-97

TOGA Trial - Results

Bang, YJ et al. Lancet 2010; 376: 698-97

Her2 Agents in Gastric Cancer

- TRIO-013/LOGiC 1st line: CapOx +/- Lapatinib
- JACOB Trial 1st line: FU+Cis+Trastuzumab +/-
- Pertuzumab
- TyTAN study 2nd line: Paclitaxel +/- Lapatinib
- GATSBY trial 2nd line: Taxane vs. TDM-1

Merck 811 – Chemo + Trastuzumab + Pembro

Key eligibility criteria

- Histologically or cytologically confirmed diagnosis of previously untreated, locally advanced unresectable or metastatic HER2-positive gastric or GEJ adenocarcinoma
- Measurable disease per RECIST v1.1
- ECOG performance status of 0 or 1
- Adequate tissue sample

Pembrolizumab 200 mg Q3W + trastuzumab 8 mg/kg loading dose, and 6 mg/kg thereafter Q3W + investigator's choice of FP or CAPOX

Placebo (normal saline) Q3W + trastuzumab 8 mg/kg loading dose, and 6 mg/kg thereafter Q3W + investigator's choice of FP or CAPOX

Stratification

- Geographic region
- PD-L1 status
- Chemotherapy regimen

Primary endpoints: PFS and OS

76

Merck 811 – Chemo + Trastuzumab + Pembro

	Chemo + Trast + Pembro (n=133)	Chemo + Trast + Placebo (n=131)				
ORR* (95% CI)	74% (66, 82)	52% (43, 61)				
Complete response rate	11%	3.1%				
Partial response rate	63%	49%				
p-value	<0.0	0001				
PFS (CPS ≥ 1)	10.0 (10.9)	8.1 (7.3)				
HR 0.73; 95% CI, 0.61-0.87						
OS (CPS ≥ 1)	20 (20.1)	16.8 (15.7)				
HR 0.80; 95% CI, 0.67-0.94; p=0.0040						

FDA *accelerated* approval for **Pembro** with chemo and trastuzumab in advanced Her-2+ gastric/GEJ cancer in May, 2021

Updated results June 2023: Benefit confined to patients with **CPS \geq 1** (80% of subjects in trial)

2nd line and beyond: Trastuzumab Deruxtecan – Destiny Gastric01

- Destiny Gastric 01 study: Randomized phase II study in Japan and Korea
- Patient population: Her2 positive gastric and GE jxn cancer patients who received at least 2 prior lines of therapy (including prior trastuzumab)
- 188 patients randomized (2:1) to trastuzumab deruxtecan versus physician's choice (irinotecan or paclitaxel)
- Primary endpoint = objective response

*Potential to overcome resistance via "by-stander effect"

Trastuzumab Deruxtecan

OR: 51% vs. 14%

PFS: 5.6 vs. 3.5 months (HR 0.47, 95% CI 0.31, 0.71)

Median OS: 12.5 vs. 8.4 months HR 0.59, 95% CI 0.39-0.88)

Safety: neutropenia (51% vs. 24%) and ILD or pneumonitis (10%)

FDA Approval January 2021

Fred Hutchinson Cancer Center

Initial Treatment - 2024

CPS-Based treatment algorithm for checkpoint inhibitors in Her2 negative disease

	Gastric / GEJ adenocarcinoma	Esophageal squamous cell
CPS ≥ 10	Chemotherapy (FOLFOX) + Nivolumab or Pembrolizumab	Chemo + Pembrolizumab or Nivolumab
CPS 5-9	Chemotherapy (FOLFOX) + Nivolumab	Or
CPS < 5	Chemotherapy alone (emerging role for zolbetuximab anti-claudin 18.2 – pending FDA review/approval)	CPS higher benefit most Meta-analyses suggest benefit in no/low CPS

First-line Nivolumab ESO/Gastric Adeno (Checkmate 649 Study)

CheckMate 649

4

CheckMate 649 study design

• CheckMate 649 is a randomized, open-label, phase 3 study^a

• At data cutoff (May 27, 2020), the minimum follow-up was 12.1 months^h

^aClinicalTrials.gov number, NCT02872116; ^b< 1% includes indeterminate tumor cell PD-L1 expression; determined by PD-L1 IHC 28-8 pharmDx assay (Dako); ^cAfter NIVO + chemo arm was added and before new patient enrollment in the NIVO1+IPI3 group was closed; ^dUntil documented disease progression (unless consented to treatment beyond progression for NIVO + chemo), discontinuation due to toxicity, withdrawal of consent, or study end. NIVO is given for a maximum of 2 years; ^eOxaliplatin 130 mg/m² IV (day 1) and capecitabine 1000 mg/m² rally twice daily (days 1-14); ^fOxaliplatin 85 mg/m², leucovorin 400 mg/m², and FU 400 mg/m² IV (day 1) and FU 1200 mg/m² IV daily (days 1-2); ^gBICR assessed; ^hTime from concurrent randomization of the last patient to NIVO + chemo vs chemo to data cutoff.

First-line Nivolumab ESO/Gastric Adeno (Checkmate 649 Study)

Overall survival and progression-free survival in all randomized patients

- Superior OS benefit and clinically meaningful PFS improvement in all randomized patients with NIVO + chemo vs chemo
- Median OS with NIVO + chemo vs chemo in patients with PD-L1 CPS ≥ 5 was 14.4 vs 11.1 months and median PFS was 7.7 vs 6.0 months¹

^aMinimum follow-up, 12.1 months; ^bPer BICR assessment.

1. Moehler M, et al. Oral presentation at the ESMO Virtual Annual Meeting; September 19-21, 2020. Presentation LBA6.

5

Magnitude of benefit is greater in pts with PD-L1 CPS ≥5

- FDA approval of nivolumab in May, 2021 in advanced Her-2 negative gastric/GEJ *regardless of CPS*
- European Medicines Agency limited approval to CPS ≥5
- NCCN recommends limiting first-line nivolumab to CPS ≥5

Fred Hutchinson Cancer Center

Moehler M, et al. Abstract 4002. ASCO 2021 Annual Meeting Janjigian Y et al. Lancet 2021; 398: 27–40

First-line Pembro in Gastric/GEJ Adeno (Keynote-859)

Primary endpoint OS (ITT, CPS \geq 1, and CPS \geq 10)

	Chemo	Chemo + Pembro	HR
ІТТ	11.5	12.9	HR 0·78 [95% CI 0·70–0·87]; p<0·0001
CPS ≥ 1	11.4	13.0	HR 0·74 [0·65– 0·84]; p<0·0001)
CPS ≥ 10	11.8	15.7	HR 0⋅65 [0⋅53– 0⋅79]; p<0⋅0001

FDA approval of pembrolizumab in March, 2021 in advanced Her-2 negative gastric/GEJ *regardless of CPS*

Benefit driven largely by **CPS ≥ 10**

First-Line Pembrolizumab in ESO Adeno + Squamous (Keynote 590 Study)

Patient population: Advanced esophageal cancer and GEJ (Siewert I) CPS assessed by 223C assay

Randomization: N = 749 to 5-FU + cisplatin + / - Pembrolizumab

Primary endpoints: OS / PFS in Squamous cell CPS \ge 10, Squamous cell, CPS \ge 10, and all patients

First-Line Pembrolizumab in ESO Adeno + Squamous (Keynote 590 Study)

N = 749 (83 % Male ; 73% Squamous cell)

Overall survival: all patients in Keynote-590

OS: 12.4 vs 9.8 mo (HR: 0.73, p<0.0001)

PFS: 6.4 vs. 5.8 mo (HR 0.65, p<0.001)

ORR: 45% vs. 29.3% (p<0.0001)

Keynote 590: Results by Histology and CPS

Median Overall Survival (months)							
	С	C + Pem					
All patients	12.4	9.8	HR 0.73				
Squamous cell CPS ≥ 10	13.9	8.8	HR 0.57				
Squamous cell	12.6	9.8	HR 0.72				
Any histology, CPS ≥ 10	13.5	9.4	HR 0.62				
Adenocarcinoma	11.6	9.9	HR 0.74				

Fluoropyrimidine + platinum + pembrolizumab FDA approved for use in esophageal cancer, regardless of CPS, *March, 2021*

Benefit seen largely in SCC patients and CPS ≥ 10

• At data cutoff (January 18, 2021), the minimum follow-up was 12.9 months^g

^aClinicalTrials.gov. NCT03143153; ^b< 1% includes indeterminate tumor cell PD-L1 expression; determined by PD-L1 IHC 28-8 pharmDx assay (Dako); ^cEast Asia includes patients from Japan, Korea, and Taiwan; ^dFluorouracil 800 mg/m² IV daily (days 1-5) and cisplatin 80 mg/m² IV (day 1); ^eUntil documented disease progression (unless consented to treatment beyond progression for NIVO + IPI or NIVO + chemo), discontinuation due to toxicity, withdrawal of consent, or study end. NIVO is given alone or in combination with IPI for a maximum of 2 years; ⁱPer blinded independent central review (BICR); ^gTime from last patient randomized to clinical data cutoff.

Fred Hutchinson Cancer Center

Chau I, et al. Abstract LBA4001. ASCO 2021 Annual Meeting; Doki Y et al. N Engl J Med 2022.

3

CheckMate 648

Overall survival: NIVO + chemo vs chemo

- Superior OS with NIVO + chemo vs chemo in tumor cell PD-L1 ≥ 1% and all randomized populations
 - Tumor cell PD-L1 \geq 1%: 46% reduction in the risk of death and a 6.3-month improvement in median OS
 - All randomized: 26% reduction in the risk of death and a 2.5-month improvement in median OS

^aMinimum follow-up 12.9 months.

CheckMate 648

Overall survival: NIVO + IPI vs chemo

- Superior OS with NIVO + IPI vs chemo in tumor cell PD-L1 ≥ 1% and all randomized populations
 - Tumor cell PD-L1 \ge 1%: 36% reduction in the risk of death and a 4.6-month improvement in median OS
 - All randomized: 22% reduction in the risk of death and a 2.1-month improvement in median OS

^aMinimum follow-up 12.9 months.

FDA approved chemo + nivo AND nivo + ipi for advanced esophageal SCC in May 2022, regardless of PDL1 expression

11

Fred Hutchinson Cancer Center

Chau I, et al. Abstract LBA4001. ASCO 2021 Annual Meeting; Doki Y et al. N Engl J Med 2022.

CheckMate 648

Treatment-related adverse events

All treated,ª n (%)	NIVO + (n =	chemo 310)	NIVO + IPI Chemo (n = 322) (n = 304)			emo 304)	
	Any grade	Grade 3-4	Any grade	Grade 3-4		Any grade	Grade 3-4
Any TRAEs ^b	297 (96)	147 (47)	256 (80)	102 (32)		275 (90)	108 (36)
Serious TRAEs ^b	74 (24)	57 (18)	103 (32)	73 (23)		49 (16)	38 (13)
TRAEs leading to discontinuation ^{b,c}	106 (34)	29 (9)	57 (18)	41 (13)		59 (19)	14 (5)
Treatment-related deaths ^d	5 (2) ^e		5 (2) ^f		4 (1) ^g		

- Most common any-grade TRAEs (≥ 10%) included:
 - NIVO + chemo and chemo arms: nausea, decreased appetite, and stomatitis
 - NIVO+ IPI arm: rash, pruritus, and hypothyroidism
- The incidence of TRAEs in patients with tumor cell $PD-L1 \ge 1\%$ was consistent with all treated patients across all arms

^aPatients who received ≥ 1 dose of study drug; ^bAssessed in all treated patients during treatment and for up to 30 days after the last dose of study treatment; ^cTRAEs leading to discontinuation of any drug in the regimen; ^dTreatment-related deaths were reported regardless of timeframe; ^eIncluded 1 event each of pneumonia, pneumatosis intestinalis, acute kidney injury, pneumonitis, and pneumonitis/respiratory tract infection; ^fIncluded 2 events of pneumonitis and 1 event each of interstitial lung disease, acute respiratory distress syndrome, and pulmonary embolism; ^gIncluded 1 event each of septic shock, sepsis, acute kidney injury, and pneumonia.

Initial Treatment - 2024

Takeaways – First-Line Checkpoint Inhibitors

Initial therapy in ADENOCARCINOMA – Nivolumab + Chemo (FOLFOX) if CPS \geq 5 (Pembro + chemo is an option for CPS \geq 10)

Pembro monotherapy for patients with MSI-H or CPS ≥ who do not need immediate response / low disease burden

Initial therapy for SQUAMOUS CELL CARCINOMA – Pembrolizumab or Nivolumab + Chemo (FOLFOX)

Nivo + Ipi alone for fit patients with no contraindication who do not need immediate response / low disease burden

Remaining/Evolving Questions:

- What if patients progress quickly on 1L therapy after very little immune checkpoint inhibitor exposure?
- What about patients who recur in the midst of adjuvant therapy?
- What other biomarkers to better predict response/resistance to checkpoint inhibitors?

Targeting Claudin 18.2 in Gastric Adenocarcinoma

- Claudin 18.2 expressed in tight junctions exclusively in the gastric mucosa; expression retained in gastric / GEJ cancers
- Zolbetuximab is a monoclonal antibody targeting claudin 18.2
- First-line GLOW study: CAPOX + / Zolbetuximab
- First-line SPOTLIGHT study: mFOLFOX6 + / Zolbetuximab

94

Targeting Claudin 18.2 in Gastric Adenocarcinoma

SPOTLIGHT

Placebo+ 282 277 271 266 253 242 224 210 197 183 164 152 139 129 108 101 85 77 64 60 49 42 40 36 34 30 25 21 18 17 15 9 8 7 6 5 2 0 0 0 0 0 0 0 0 mFOLFOX6

GLOW

. _._...

No. at risk

 Zolbetuximab + CAPOX
 254 243 233 226 211 203 193 187 171 150 138 125 108 100 87 80 68 61 47 38 31 27 22 21 18 13 12
 Placebo + CAPOX
 253 243 235 220 210 197 181 168 152 136 125 115 104 92 82 70 59 49 40 27 22 20 16 12 10 10 8
 Placebo + CAPOX

	ZOIDetuxime	DTORIOA	F ta 6600 +	ONFOR	-	
Subgroup	Events/patients (n/N)	(months)	Events/patients (n/N)	(months)	HR (95% CI)	
Age						
≤65 years	92/176	14.52	127/180	11.83		0.664 (0.507-0.8
>65 years	52/78	14.39	47/73	12.94		0.951 (0.637-1.42
≤75 years	137/242	14.32	164/239	12.06		0.755 (0.602-0.9
>75 years	7/12	16.49	10/14	17.45 -	•	0.544 (0.183-1.6)
Sex						
Male	94/159	13.08	114/156	11.53		0.779 (0.593-1.0
Female	50/95	16.49	60/97	13.17	_ —	0.722 (0.494-1.0
Region						
Asia	88/157	15.47	110/158	11.24		0.674 (0.508-0.1
Non-Asia	56/97	12.55	64/95	13.27	_ - -	0.903 (0.630-1.2
Number of metastatic sit	es					
0-2	100/189	16.36	126/188	12.94	_ —	0.708 (0.544-0.5
>3	44/65	11.10	48/65	9.86		0.903 (0.598-1.3
Prior gastrectomy					-	
No	109/179	13.60	125/178	11.93		0.804 (0.622-1.0
Yes	35/75	18.83	49/75	12.55	_ _	0.632 (0.408-0.
Primary site					-	
Stomach	124/219	14.52	146/209	12.06		0 718 (0 565-0 9
GEL	20/35	13.08	28/44	12 29		1.013 (0.563-1.8
auren classification	20/00	10.00	20/44	12.12.0	-	1.010 (0.000 1.0.
Diffuse	44/87	14 32	63/100	12 55		0 726 (0 493-1 (
Intertinal	23/36	17.84	30/41	12.60		0.702 (0.403-1.2
Mixed/other	26/54	11.70	27/49	12.02		0.945 (0.594-11
Country	50/54	11.70	37740	13.27	-	0.843 (0.384-1.
lanan	10/04	24.10	10/07	14.60		0.405.00.105.01
Japan Nee Japan	13/24	12.67	155/27	14.09		0.425 (0.193-0.1
China China	131/230	14.52	40/60	10.71		0.603 (0.617-0.5
Nee Chine	40/76	14.02	49/09	10.71		0.093 (0.430-1.0
Page	104/1/8	14.39	120/184	12.32		0.773 (0.595-1.0
White	E2/04	12.27	60/00	12.67		0 801 (0 615 1 2
winde	53/94	13.27	00/90	13.67		0.891 (0.615-1.2
Asian Tobacco bistopy	69/158	15.47	110/158	11.24		0.678 (0.512-0.8
robacco history	74 400	1150	00/100			0.050 (0.401.0)
Never	/1/128	14.52	93/132	11.24	_ _	0.656 (0.481-0.2
Current	20/32	12.29	21/33	15.01		1.006 (0.541-1.8
Former	52/90	14.32	59/84	11.93		0.793 (0.545-1.1

Zolbetuximab + CAPOX Placebo + CAPOX better better

Fred Hutchinson Cancer Center

Second Line Therapy in ESO/Gastric Cancers

For patients who retain good PS

- Paclitaxel (+ Ramucirumab, if adeno)
- Ramucirumab monotherapy (adeno)
- Irinotecan
- Trifluridine/Tipiracil (Lonsurf, TAS-102) (Gastric/GEJ)
- Pembrolizumab / Nivolumab

How to choose ?

- Neuropathy
- Bleeding from primary tumor
- Pace and extent of disease progression
- First-line checkpoint inhibitor receipt?

Ramucirumab: REGARD and RAINBOW

REGARD Study Design

- Stratification factors: region, weight loss (≥10% vs. <10% over 3 months), location of primary tumor (gastric vs. GEJ)
- Global: 6 continents, 30 countries, 120 study centers

Abbreviations: BSC=best supportive care; GEJ= gastroesophageal junction

Fuchs et al. Lancet 2013

Ramucirumab: REGARD and RAINBOW

RAINBOW

	Ram + Paclitaxel	Placebo + Paclitaxel			
RR	28%	16%			
DCR	80%	64%			
PFS	4.4 mo	2.86 mo			
OS	9.63 mo	7.36 mo			

REGARD

	Ram	Placebo
PFS	2.1 mo	1.3 mo
OS	5.2 mo	3.8 mo

Ramucirumab: Adverse Events

	Ramucirum (n=327)	ab plus pac	litaxel		Placebo plus paclitaxel (n=329)			
	Grades 1–2	Grade 3	Grade 4	Grade 5	Grades 1–2	Grade 3	Grade 4	Grade 5
Bleeding or haemorrhage	123 (38%)	12 (4%)	1 (<1%)	1(<1%)	51 (16%)	4 (1%)	2 (<1%)	2 (<1%)
Proteinuria	51 (16%)	4 (1%)	0	0	20 (6%)	0	0	0
Liver injury or failure	39 (12%)	12 (4%)	3 (<1%)	0	28 (9%)	11 (3%)	2 (<1%)	0
Hypertension	34 (10%)	48 (15%)	0	0	10 (3%)	9 (3%)	0	0
Gastrointestinal haemorrhage†	21 (6%)	10 (3%)	1 (<1%)	1(<1%)	15 (5%)	3 (<1%)	1(<1%)	1(<1%)
Infusion-related reaction	17 (5%)	2 (<1%)	0	0	12 (4%)	0	0	0
Renal failure	16 (5%)	4 (1%)	2 (<1%)	0	11 (3%)	0	1 (<1%)	2 (<1%)
Congestive heart failure	6 (2%)	2 (<1%)	0	0	2 (<1%)	1 (<1%)	0	1(<1%)
Venous thromboembolic events	5 (2%)	7 (2%)	0	1(<1%)	7 (2%)	8 (2%)	1(<1%)	2 (<1%)
Arterial thromboembolic events	3 (<1%)	1(<1%)	2 (<1%)	0	2 (<1%)	2 (<1%)	0	1(<1%)
Gastrointestinal perforation	0	1 (<1%)	2 (<1%)	1(<1%)	1(<1%)	0	0	0

Fred Hutchinson Cancer Center

Fuchs, C et al. *Lancet.* Oct 3, 2013 Wilke, H et al. Lancet Oncology. 2014, 15(11): 1224-35.

3rd Line: Trifluridine/Tipiracil

Figure 2: Overall survival in the intention-to-treat population

- Ph 3 RCT trifluridine/tipircil vs placebo for gastric/GEJ, ≥2 lines therapy
- Median OS 5.7 vs 3.6 mo
- Median PFS 2.0 vs 1.8 mo
- ORR 4% vs 2%
- FDA approved in 3rd line setting for gastric/GEJ

Take – Home Points – Metastatic Gastric / Esophageal Cancer

1. 5-FU + Platinum (2 drugs, not 3 drugs) is the chemotherapy backbone

2. Her2 positive: Chemo + Trastuzumab (+ Pembro if $CPS \ge 1$); Fam-trastuzumabderuxtecan in second line or later

3. Her2 negative gastric/eso adenocarcinoma: Chemo + Nivo in CPS \geq 5 or Chemo + Pembro in CPS \geq 10]

4. Squamous cell esophageal cancer: Chemo + Pembro or Nivo; Nivo + Ipi

5. 2nd line and beyond: Consider previous toxicities

Thank you

