

Comprehensive Hematology & Oncology Review: COLORECTAL CANCER

Stacey A. Cohen, MD Associate Professor, University of Washington Associate Professor, Fred Hutchinson Cancer Center <u>shiovitz@uw.edu</u>

September 2024

UW Medicine

Table of Contents

- Epidemiology and risk factors
- Evaluation and initial management
- □ Adjuvant chemotherapy for colon cancer
- □ Localized rectal cancer
- Standard cytotoxic chemotherapy for metastatic cancer
- □ Tailored chemotherapy strategies
- □ Targeting molecular alterations

Epidemiology and Risk Factors

Epidemiology

- 90% are diagnosed after age 50, and the incidence has been declining
- But rising incidence in younger (unscreened) individuals

Environmental risk factors for CRC

	Cases/cohort (n)										Relative risk of early-onset colorectal neoplasia (95% CI)	 Oral antibiotics (1)
≥14 h sedentary ^{*80} ≥2 sugary beverages ⁸¹ Elevated triglycerides ⁸² ≥30 kg/m ² BMI ⁸³ Hepatic stenosis ⁸² ≥14 h sedentary ⁸⁰ Western diet ⁸⁴ ≥20 pack-year smoking ⁸² Processed meat ⁸⁵ ≥14 alcoholic drinks per week ⁸⁵ Fruit ⁸⁵ Vitamin C ⁸⁵ Aspirin use ⁸⁶ Folate ⁸⁵ β-carotene ⁸⁵ Vitamin E ⁸⁵ Vitamin E ⁸⁵ Vegetables ⁸⁵	Cases/cohort (n) 118/89278 109/41272 9574/13678 114/85256 9574/13678 118/89278 9574/13678 329/1361 329/1361 329/1361 329/1361 329/1361 329/1361 329/1361 329/1361 329/1361 329/1361 329/1361 329/1361 329/1361		-1 -3 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4			-					Relative risk of early-onset colorectal neoplasia (95% Cl) 2.62 (1.15-6.00) 2.18 (1.10-4.35) 2.00 (1.26-3.16) 1.93 (1.15-3.25) 1.71 (1.10-2.68) 1.68 (1.09-2.63) 1.67 (1.18-2.37) 1.56 (1.11-2.20) 1.56 (1.12-2.16) 0.75 (0.54-1.02) 0.68 (0.49-0.94) 0.59 (0.40-0.86) 0.52 (0.37-0.72) 0.38 (0.26-0.58) 0.40 (0.28-0.56)	 Oral antibiotics (↑) Microbiome (?) vitamin D (↓) Inflammatory bowel disease both an environmental and hereditary risk factor
		-1	0 F	1 2 Relative ris	3 k of early-	4 onset colo	5 prectal ne	6 oplasia	1 7	8		

Fred Hutchinson Cancer Center

Patel, Lancet Gastro Hep 2022; Zhang, Gut 2019

Microsatellite instability (MSI)

- 15% of colorectal cancers are MSI-high
 - Detect with PCR, IHC, and/or next-generation sequencing
 - Prognostic and predictive biomarker
- 20% MSI-high = germline
 - Lynch syndrome (formerly: HNPCC)
- 80% MSI-high = somatic
 - Typically, due to MLH1 promoter hypermethylation
 - Often also BRAF mutated
- Universal testing recommended

Fred Hutchinson Cancer Center

Genetic syndromes can be seen at any age

- Up to 1/3 are familial
- 5-10% due to highly penetrant cancer family syndromes

Lynch	Polyposis	Other pathogenic variants				
syndrome	syndromes	High penetrance	Moderate/low penetrance			
MLH1	APC	BRCA1	CHEK2			
MSH2	МИТҮН	BRCA2	ATM			
MSH6	SMAD4	TP53	NBN			
PMS2	BMPR1A	PALB2	BARD1			
	PTEN	CDKN2A	BRIP1			
	POLE					

Fred Hutchinson Cancer Center

Stoffel, Gastro 2020

Polyps as precancerous lesions

Key points

- Screening for average risk population now recommended to begin at 45yo
- Lynch syndrome
 - Most common hereditary CRC syndrome
 - Due to germline mismatch repair mutations \rightarrow tumor MSI
 - Not all MSI is due to Lynch (esp. BRAF-mutant)
- >1cm and villous adenomas have the highest likelihood of devolving into cancer

Evaluation and Initial Management

Work-up of suspected cancer

- Colonoscopy to terminal ileum
- Pathology (CK7- CK20+ CDX2+ villin+)
 - Labs (including CEA tumor marker)

- Tumor molecular testing (MSI ± extended RAS/RAF/HER2)
- CT chest, abdomen, pelvis with contrast (and rectal MRI for rectal primary)

Fred Hutchinson Cancer Center

- PET scans are NOT routinely part of staging
 - Use to evaluate equivocal CT findings, or if IV contrast is contraindicated

Colorectal cancer staging: TNM score

N0 no nodes

N1 1-3 N1a = 1 N1b = 2-3 N1c = deposits

N2 ≥ 4 N2a = 4-6 N2b = 7+

*Non-regional nodes are considered M1a

Fred Hutchinson Cancer Center

AJCC 8th edition

Colorectal cancer staging

ТММ	AJCC Stage	Sub-stage	5-year Survival
T1-2 N0 M0	Ι		92%
T3-4 N0 M0	II	IIA: T3 N0 IIB: T4a N0 IIC: T4b N0	87% 65% 50%
T N1-2 M0	=	IIIA: T1-2 N1, T1 N2a IIIB: T3-4a N1, T2-3 N2a, T1-2 N2b IIIC: T4a N2a, T3-4a N2b, T4b N1-2	90% 72% 53%
Tx Nx M1	IV	IVA: Tx Nx M1a (single site/organ) IVB: Tx Nx M1b (2+ sites) IVC: Tx Nx M1c (peritoneal ± other)	12%

Treatment overview

Surgery: Partial colectomy with en bloc lymph node removal

- Sufficient margins
 - >5cm proximal and distal to the tumor
- Lymph node sampling
 - En bloc resection with removal of regional LN
 - Minimum 12 removed
- Total mesorectal excision (TME) for rectal
 - Low anterior (LAR) or abdominoperineal (APR)
 - Follows anatomic guidelines
 - Improved circumferential margin clearance
 - Reduced local recurrence with complete TME

Endoscopic resection

Endoscopic colon polypectomy

- Complete polyp removal (not fragmented)
- Negative margins
 - Controversial, but ideally >1mm
- Pedunculated
 - Higher recurrence risk if sessile
- Favorable histologic features
 - Grade 1-2, no lymphovascular or perineural invasion

Rectal transanal excision

- T1 tumors only (limited to submucosa), N0 M0
- Clear margin (>3mm) obtainable
- < 30% circumference of bowel</p>
- < 3 cm in size
- Mobile, non-fixed lesion within 8 cm of anal verge
- Favorable histologic features
 - Grade 1-2, no lymphovascular or perineural invasion
- Otherwise, full oncologic bowel resection surgery
- Local excision may have less complications (sphincter, bladder, sexual dysfunction), but has a higher risk of local recurrence

Key points

- PET-CT should <u>not</u> routinely be part of the work up of colorectal cancer
- Surgical removal of ≥12 LN is a benchmark metric
- Standard surgery includes colorectal resection with en bloc LN removal
 - Total mesorectal excision improves recurrence rates
 - Polypectomy, transanal excision are options in select stage I cases

Adjuvant Chemotherapy for Colon Cancer

Stage II: Adjuvant chemotherapy

- Historically, use is controversial
 - 2-3% non-significant benefit
- May be beneficial for tumors with "high-risk" features:

p	oT4	Bowel obstruction / perforation	
Р	Poorly differentiated	< 12 lymph nodes evaluated	
Ľ	ymphovascular or perineural invasion	Close, indeterminate, or positive margins	
Н	High tumor budding	ctDNA positivity (controversial)	

- Newer data support adjuvant therapy in high-risk MSS stage II, but observation is also acceptable
 - Regimen and duration are debated

Fred Hutchinson Cancer Center

Stage II guided by molecular sub-types

- Microsatellite instability is a useful predictive biomarker
- Retrospective data of adjuvant 5-FU vs. observation

- Adjuvant chemotherapy is currently NOT recommended in stage II colon cancer that is MSI-H
 - And this outweighs "high-risk" features

Stage III: Adjuvant chemotherapy

- Recommendation is an oxaliplatin doublet with 5-FU (FOLFOX) or capecitabine (CAPOX) x 3-6 mo
 - Data for oxaliplatin if ≥70yo had been debated, but newest data is supportive of the doublet³

Fred Hutchinson Cancer Center

¹Andre, JCO 2004; ²Andre, JCO 2009; ³Gallois, JCO 2024

Oxaliplatin neuropathy

Neuropathy	3 mo	nths	6 months		
	FOLFOX	CAPOX	FOLFOX	CAPOX	
Grade 2	9%	14%	26%	29%	
Grade 3-4	1%	2%	9%	8%	

>90% get neuropathy from oxaliplatin 15% is "permanent," but usually mild

Longer duration of oxaliplatin is associated with greater neuropathy

Fred Hutchinson Cancer Center

Andre, JCO 2009; Iveson, JCO 2021

Is 3 months sufficient?

- IDEA consortium
 - 6 trials, 12,800 participants
 - Investigator's choice for FOLFOX (60%) or CAPOX
 - 66% T3, 21% T4; 28% N2

- C80702 (n=2440) was the only trial conducted in North America
 - Protocol only allowed FOLFOX
- Designed as a non-inferiority trial with DFS HR 1.12
 - 12% "harm" arbitrarily decided to be acceptable to change to 3 months
 - Some trials permitted high-risk stage II cancers, which were analyzed separately

Fred Hutchinson Cancer Center

Primary outcome: disease-free survival

Andre, Lancet Oncol 2020

OS outcomes by risk and by regimen

Fred Hutchinson Cancer Center

Sobrero, ASCO 2020; Yamanaka, ESMO GI 2020; Andre, Lancet Oncol 2020

5-year disease-free survival: incremental benefits

Fred Hutchinson Cancer Center

Adapted from: Sobrero, Eur J Cancer 2020

The future of adjuvant therapy

- Younger patients have different toxicity profiles (more GI issues) and receive more chemo, but have worse outcomes
- NO benefit to irinotecan
- NO benefit to cetuximab or bevacizumab
- Expect future (exploratory) subgroup analyses within the IDEA 3 vs. 6 mo trials
 - MSI (dMMR)?
 - Right vs. left?

Biomarkers are needed to better tailor therapy

FOLFOX/CAPOX x3 mo → 5-FU/cape alone x3 mo for poor tolerance probably acceptable^{*}

Fred Hutchinson Cancer Center

Fontana, *JCO* 2021; CALGB 89803; N0147, PETACC-8; NSABP C-08, AVANT; *Gallois, *JCO* 2022

Time to adjuvant chemotherapy vs. survival

- Prior analysis suggested 14% decrease in OS for each 4-week delay after 8 weeks
- Meta-analysis of >18,000 patients
 - Greatest benefit <8 weeks post-op
 - But still some benefit up to +16 weeks
- Newer post hoc analysis suggests <6 weeks is preferred

Gao, BMC Cancer 2018; Biagi, JAMA 2011; Gogenur, JAMA Surg 2024

Emerging role of ctDNA

- Low levels of cell-free DNA (cfDNA) can be detected even in healthy individuals (1-10 ng/ml)
- circulating tumor DNA (ctDNA) = detecting mutations in cfDNA that are highly specific for cancer
 - Half-life: <2 hours, levels are cancer burden-dependent
 - False positives: infection, inflammation, trauma, etc.
- ctDNA is a putative biomarker to demonstrate MRD
 - Minimal/molecular residual disease (MRD) = small volume disease not appreciated radiographically or with other clinical measures

GALAXY: largest prospective observational collection

N=1040 (to date); opportunities for intervention (VEGA/ALTAIR), depending on ctDNA

Kotani, GI ASCO 2022, Nat Med 2023

GALAXY results: DFS (in months from surgery)

- Confirm prior results that negative or cleared to negative do the best %
- · Greatest benefit of adjuvant chemo seen in the ctDNA+

High-risk pStage II

100

DYNAMIC: the first reported large prospective study

- 455 resected stage 2 colon cancer → randomized to ctDNA-guided management vs. standard management
 - 302 ctDNA-guided: received chemotherapy only if positive (at 4 and/or 7 weeks post-op)

Key points

- Overall, no benefit for adjuvant chemotherapy in stage II
 - Use for T4 and consider for other select "high-risk" MSS patients
 - Avoid adjuvant chemotherapy in MSI-high stage II
- 3 months of adjuvant chemotherapy is the new standard for stage III
 - 6 months is still suggested for high-risk (T4 or N2) patients who receive FOLFOX
 - CAPOX may be more effective (though not studied in the US population)
- No indication for irinotecan, cetuximab, or bevacizumab
- Aim to start 4-8 weeks after surgery

Localized Rectal Cancer

Fred Hutchinson Cancer Center

Rectal cancer: General principles

- Definition: primary lesion within 12 cm of anal verge by rigid proctoscopy
 - Treating cancers entirely above the anterior peritoneal reflection "as colon" (*i.e.*, upfront surgery)
- Higher rates of local pelvic recurrence compared to colon

Pelvic radiation

- Delivered in the neoadjuvant setting to improve survival decrease pelvic relapse
 - 1) Long-course/standard: chemoradiation 50.4Gy over 28 fractions (5.5 weeks) with capecitabine
 - 2) Short-course: hypofractionated 25Gy (5Gy x 5 days), NO chemo
- Either way, surgery should be ~8 weeks later \rightarrow similar pCR
- Short-course may have inferior outcomes with non-operative management (RAPIDO trial)
 - Sequencing with surgery, systemic chemotherapy needs to be further elucidated

Fred Hutchinson Cancer Center

Mullen, *Curr Colorectal Cancer Rep* 2017; Bahadoer, *Lancet Oncol* 2020; Dijkstra, *Ann Surg* 2023
Omit radiation?

- Most patients dying from rectal cancer have distant metastases, not local recurrence
- Some patients may never start adjuvant chemotherapy because of surgical complications, or it is quite delayed
- PROSPECT trial: T2N+, T3N0, T3N+
 - Phase III trial of peri-operative FOLFOX
 + selective RT for poor responders or positive margins
 - Chemo was non-inferior for DFS
 - Improved QOL

Disease-free survival

Skip adjuvant chemotherapy?

- May be delayed/omitted in patients with surgical morbidity
- pathologic Complete Response (pCR)
 - Associated with better outcomes
- Unclear if pCR should affect adjuvant therapy
 - 5-FU/capecitabine alone?
 - Observe?

Total neoadjuvant therapy

- Administration of both chemoRT and systemic chemotherapy PRIOR to surgery
 - Removes the need for adjuvant therapy
 - Can be done with short- or long-course RT

- Need more prospective, randomized data
- Newer studies suggest higher pCR rate (25-45% vs. 15-20%)
 - Especially if chemoRT done first?
 - Neoadjuvant FOLFIRINOX is now also an option

Nonoperative management?

- "Watch and wait" approach
 - Avoid surgical morbidity, possibly avoid a permanent ostomy
- Higher rates of local and possibly distant failure
- Need a complete clinical response (by CT, MRI, flex sig)

Radiation

Chemotherap

Chemotherapy

Ellis, JAMA Onc 2017; Verheij, JCO 2023

MSI status now drives neoadjuvant therapy selection

MSI (dMMR) patients poorly respond to standard neoadjuvant chemotherapy

Early data suggests impressive response to neoadjuvant immunotherapy. Long-term followup data is needed (currently: median 18 mo)

Fred Hutchinson Cancer Center

Cercek, Clin Cancer Res 2020; Cercek, NEJM 2022, ASCO 2024

Key points

- There are now many "correct" ways to treat rectal cancer
- Preoperative (chemo)radiation therapy is standard-of-care for T3-4 or node-positive rectal cancers
 - But may be omitted in low-risk patients who respond to neoadjuvant chemotherapy
- Neoadjuvant systemic chemotherapy (TNT) is the new standard-of-care for most patients
 - Non-operative management is possible for patients who achieve a clinical complete response after TNT
- Evaluation of MSI status prior to the initiation of treatment is critical

Standard cytotoxic chemotherapy for metastatic cancer

Multiple chemotherapy options

Fred Hutchinson Cancer Center

*Has activity without 5-FU

Anti-EGFR: no benefit in RAS mutants

• Mut KRAS does not respond to silencing by EGFR inhibition (cetuximab, panitumumab)

Fred Hutchinson Cancer Center

Douillard, NEJM 2013; Heinemann, Lancet Onc 2014

EGFR inhibitor-induced rash

Cetuximab	Panitumumab
Any rash: 85%	Any rash: 90%
Grade 3: 10%	Grade 3: 16%

- Prevention:
 - Sunscreen
 - Topical hydrocortisone 1%
 - Oral doxycycline or minocycline
- Treatment:
 - Same agents as prevention
 - Typical clindamycin
 - If severe, treat with isotretinoin

Fred Hutchinson Cancer Center

Gorji, Asian Pac JCO 2021; Van Cutsem, JCO 2007; Geyer, NEJM 2006

Anti-VEGF therapy: no biomarkers

- Bevacizumab
 - 1st or later line
- Aflibercept
 - 2nd line
- Ramucirumab
 - 2nd line
- Regorafenib, fruquintinib
 - 3rd line

Fred Hutchinson Cancer Center

Trials: NO16966, TREE-2; VELOUR; RAISE; CORRECT; FRESCO-2

Optimal first-line therapy in KRASwt: CALGB/SWOG 80405

Differences by side?

• Exploratory classification by left (distal/rectal) vs. right (proximal) primary site

OS (months)	Overall	Cetuximab	Bevacizumab
Left	33	36	31
Right	19	17	24
	p<0.0001	p<0.0001	p<0.0001

Likely driven by molecular profiles

But no difference when accounting for age, race, gender, MSI, *BRAF*, *RAS*, CMS, synchronous/metachronous

• Pooled analysis of 80405 and 5 other RCT, classified by left vs. right

Fred Hutchinson Cancer Center

Venook, ASCO 2016, JAMA 2017; Arnold, Ann Oncol 2017

Newer investigations in sidedness

- Exploratory NGS analysis from 80405
- RNF43 (5.6%): regulates Wnt
 - Mutations enriched in R-sided
 - Worse OS
 - Less benefit from cetuximab
- LRP1B (10.7%)
 - No sidedness
 - Better prognosis
 - Associated with immunotherapy response in other studies

Prospective evaluation of sidedness

- PARADIGM: panitumumab + FOLFOX vs. bevacizumab + FOLFOX
 - KRAS exon 2 wildtype; revised to left-sided only
 - Primary endpoint: overall survival

Progression-free survival - not significantly different - median:13.7 vs 13.2 mo - HR 0.98

45% of bev arm did NOT get anti-EGFR in later line

33% of both arms did NOT get irinotecan in later line

Thus, fails to be practicechanging at this time

Watanabe, JAMA 2023

1L mCRC treatment paradigm

Cremolini, ASCO 2022

Improved survival with triplet therapy

• TRIBE-2 study

Expect improved PFS/ORR but higher toxicity

Highly consider for pt with:

- Excellent performance status
- Desires aggressive care
- And/or need for significant down-staging (*i.e.*, attempt to convert to resectable mets)

Cremolini, Lancet Oncol 2020; Gruenberger, Ann Oncol 2015

Second-line therapy

- All of the same options
 - FOLFOX with bevacizumab or cetuximab*
 - FOLFIRI with bevacizumab or cetuximab*
- Sequencing trials show no "correct" order
- Evidence supports continuation of biologic at progression
 - Ex. FOLFOX + bevacizumab → FOLFIRI + bevacizumab
 FOLFIRI + cetuximab* → FOLFOX + cetuximab*

* pan-RAS wildtype

Bevacizumab at progression

- ML 18147: randomized to continuation of bevacizumab at progression vs. chemotherapy alone
 - All switched FOLFOX ⇔ FOLFIRI
 - Capecitabine allowed

Fred Hutchinson Cancer Center

Bennouna, Lancet Onc 2013

Regorafenib & trifluridine-tipiracil

Oral drugs with minimal clinical benefit as monotherapy •

> Grothey, Lancet 2013; Mayer, NEJM 2015; Fukuoka, JCO 2020; Pfeiffer, Lancet Oncol 2020; Prager, NEJM 2023

Fruquintinib

- Oral highly selective TKI targeting VEGF
- FRESCO-2: randomized to fruquintinib vs. placebo
 - FDA approved 11/2023 for 3L/4L

Fred Hutchinson Cancer Center

Dasari, Lancet 2023

Key points

- No "correct" first-line chemotherapy regimen
 - Any 5-FU based chemo doublet (or triplet) + biologic is acceptable
 - Cetuximab is less effective for right-sided tumors
- Molecular testing should be part of every stage IV CRC work-up
- Regorafenib and trifluridine-tipiracil are approved, but of limited clinical benefit (OS ~2 months) as monotherapy, but may be more effective in combination
- Fruquintinib is now available for unselected refractory metastatic CRC

Tailored chemotherapy strategies

Approaches to longitudinal treatment

Maintenance / de-escalation

- OPTIMOX-1
 - RCT to de-escalating to 5-FU
 - vs. continuous FOLFOX
 - PFS, OS similar
 - Less toxicity with 5-FU maintenance
- Done after 3-6 mo and ≥ stable disease
- Multiple "correct" strategies

5-FU/capecitabine ^{1,2,3,4}	1.7-5.7 mo
5-FU + bevacizumab ^{5,6}	6.9-8.5 mo
Bevacizumab ^{6,7}	3.2-6.1 mo
5-FU + panitumumab ^{2,9}	4.8-8.8 mo
Cetuximab / panitumumab ^{7,9}	4.9-6.1 mo

*Maintenance with 5-FU + biologic has the best PFS, which is supported by limited randomized

Fred Hutchinson Cancer Center

¹Tournigand, JCO 2006; ²Modest, JCO 2021; ²Chibaudel, JCO 2009; ³Simkens, *Lancet* 2015; ⁴Adams, JCO 2021; ⁵Goey, *Ann Oncol* 2017; ⁶Hegewisch-Becker, *Lancet Onc* 2015; ⁷Cremolini, *JAMA Oncol* 2018; ⁸Aparicio, JCO 2018; ⁹Pietrantonio, *JAMA Oncol* 2019

Treatment holiday

• Meta-analysis

Hegewisch-Becker et al, ¹⁹ 2015	0	0	Not estimable
Simkens et al, ¹⁶ 2015	-0.1508	0.0978	0.86 (0.71-1.0
Luo et al, ²¹ 2016	-0.1625	0.1448	0.85 (0.64-1.1
Chibaudel et al, ⁷ 2009	-0.1278	0.1705	0.88 (0.63-1.2
Aparicio et al, ¹⁴ 2018	0.0677	0.0997	1.07 (0.88-1.3
Koeberle et al, ²⁰ 2015	-0.1863	0.1407	0.83 (0.63-1.0

- Complete treatment breaks associated with worse short-term outcomes
- · No clear detriment to overall survival

Resectable liver metastases

• Questionable role of systemic therapy

	EOR	TC 40983	JCOG 0603*			
	Peri-op FOLFOX4 (n=151; resected)	Surgery alone (n=182)		Adj FOLFOX6 (n=151)	Surgery alone (n=149)	
3-yr DFS	38.2%	30.3%	p=0.04	52.7%	42.6%	p=0.006
5-yr OS	51.2%	47.8%	p=0.34	71.2%	83.1%	p=NS

- Like stage III, no demonstrated benefit to adjuvant irinotecan or biologics
 - Guidelines allow for continuation of a biologic if it was helpful in converting to resectable disease → but the data is not strong for this

*No neoadjuvant permitted. If had prior adjuvant, could NOT have had oxali *Terminated early due to improved DFS, but worse OS

Fred Hutchinson Cancer Center

Nordlinger, *Lancet Onc* 2013; Primrose, *Lancet Onc* 2014; Modest, ASCO 2021; Kanemitsu, *JCO* 2021

Unresectable liver metastases

- A portion of patients will convert from unresectable to resectable liver metastases with chemotherapy
 - ORR of the regimen seems to correlate with conversion to R0 resection
 - Chemotherapy is often hepatotoxic and it is dose-dependent
 - Irinotecan: steatohepatitis
 - Oxaliplatin: sinusoidal obstructive syndrome
- General recommendation is to stop chemotherapy and resect as soon as able
 - Avoid undue toxicities
 - Potential for over-treatment (too small to locate) or developed resistance (progression)
- As chemotherapy regimens have intensified, it has been less definitive what is the best regimen

CAIRO-5

CAIRO5: prospective randomized comparison of currently most active systemic regimens in defined subgroups of patients with initially unresectable CRLM

Punt, ASCO 2022; Bond, Lancet Oncol 2023

CAIRO-5: surprising results

• Primary outcome was PFS (... is this the correct endpoint?)

	Left & wildtype			Right or mutant		
	Doublet/ bev	Doublet/ pani		Doublet/bev	Triplet/bev	
PFS	10.6 mo	10.3 mo	p=0.44	9.0 mo	10.6 mo	p=0.04
ORR	52%	76%	p<0.01	33%	54%	p<0.001
OS	Not yet reported			Not yet reported		
R0/1 resection	58%	56%	p=0.79	37%	51%	p=0.02

• Will be crucial to see mature data, especially the OS data and outcomes for those that do not make it to surgery

Key points

- Maintenance therapy is acceptable in good responders, without compromising PFS or OS
 - 5-FU/capecitabine + biologic is recommended
- Full chemotherapy holidays compromise PFS, but may be appropriate for certain patients
- Curative intent treatment of oligometastatic disease greatly improves longterm survival, in the correct patient

Targeting molecular alterations

Tailoring to biomarkers

*	MSI (3-5%), high TMB (1%)	PD-(L)1 inhibitor PD-(L)1 + CTLA4
*	BRAF V600E (3-8%)	Encorafenib + EGFR
*	HER2 (3-5%)	Trastuzumab + lapatinib Trastuzumab + pertuzumab Trastuzumab + tucatinib Trastuzumab-deruxtecan (T-DXd)
*	KRAS G12C (3%)	Sotorasib/adagrasib + EGFR
	NTRK, ALK (<1%)	Entrectanib, larotrectanib, repotrectinib
	ATM	ATR inhibitor
	RET	selpercatinib

Use of anti-PD1 in first-line therapy

- Keynote-177
 - MSI CRC randomized to pembrolizumab vs. chemotherapy (any doublet ± biologic) allowed
 - Better QOL for pembro

Combination therapy in 1L

- Checkmate-8HW
 - MSI CRC randomized to nivolumab/ipilimumab vs. chemotherapy (any doublet ± biologic)

All sub-groups favored nivo/ipi, including liver metastases and germline Lynch

Fred Hutchinson Cancer Center

Lenz, ASCO 2024

Ongoing investigation (examples)

- First-line therapy
 - COMMIT: atezolizumab vs. FOLFOX/bev/atezo vs. FOLFOX/bev
- Adjuvant therapy
 - ATOMIC: FOLFOX/atezo vs. FOLFOX (complete; awaiting results)

8.2% of Patients are PD-L1 positive

Fred Hutchinson Cancer Center

Salem, *Mol Cancer Res* 2018; Keynote-158: Marabelle, *JCO* 2020; Valero, *JAMA Oncol* 2021; ^{*}Drusbosky, *ASCO* 2021
BRAF V600E targeted therapy

- Poor prognostic marker, resistance to anti-EGFR
- BRAF-inhibitor monotherapy is ineffective \rightarrow Multi-pathway blockade is necessary

New standard: encorafenib + cetuximab/panitumumab MEK inhibition adds no meaningful benefit to BRAF/EGFR Future: BRAF/EGFR/PD1? BRAF/MEK/PDI?

Fred Hutchinson Cancer Center

Cremolini, JCO 2020; Strickler, Cancer Treat Rev 2017; Kopetz, NEJM 2019; Tabernero, JCO 2021

HER2 targeted therapy

¹Tosi, *Clin Colorectal Cancer* 2020; ²Meric-Bernstam, *ASCO* 2021; ³Okamoto, *ASCO* 2021; ⁴Strickler, *ASCO* 2024; ⁵Yoshino, *ASCO* 2021; ⁶Raghav, *ASCO* 2023

KRAS G12C: knowing which mutation matters now!

- 3% of metastatic CRC
- Inhibitors have modest benefit as monotherapy (ORR 12-22%, PFS 5.6-5.7 mo)
- Improved in combination with EGFR inhibition (ORR 30-46%)

Fred Hutchinson Cancer Center

Fakih, NEJM 2023; Yaeger, Cancer Disc 2024

Key points

- MSI is a biomarker for response to immunotherapy
 - Indicated in first or later line
 - Role in combination with chemotherapy is unproven
- Targeting BRAF requires multi-pathway blockade
 - At this point, encorafenib + cetuximab (panitumumab) is standard in 2L+
- HER2 should be evaluated (esp in RAS/RAFwt) as targeted options are available (currently 2L+)
- It is important to know the specific RAS mutation, as targeted options are available

Thank you

